Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Res ; 33(1): 45-60, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36617667

RESUMEN

Genetic variation originates from several types of spontaneous mutation, including single-nucleotide substitutions, short insertions and deletions (indels), and larger structural changes. Structural mutations (SMs) drive genome evolution and are thought to play major roles in evolutionary adaptation, speciation, and genetic disease, including cancers. Sequencing of mutation accumulation (MA) lines has provided estimates of rates and spectra of single-nucleotide and indel mutations in many species, yet the rate of new SMs is largely unknown. Here, we use long-read sequencing to determine the full mutation spectrum in MA lines derived from two strains (CC-1952 and CC-2931) of the green alga Chlamydomonas reinhardtii The SM rate is highly variable between strains and between MA lines, and SMs represent a substantial proportion of all mutations in both strains (CC-1952 6%; CC-2931 12%). The SM spectra differ considerably between the two strains, with almost all inversions and translocations occurring in CC-2931 MA lines. This variation is associated with heterogeneity in the number and type of active transposable elements (TEs), which comprise major proportions of SMs in both strains (CC-1952 22%; CC-2931 38%). In CC-2931, a Crypton and a previously undescribed type of DNA element have caused 71% of chromosomal rearrangements, whereas in CC-1952, a Dualen LINE is associated with 87% of duplications. Other SMs, notably large duplications in CC-2931, are likely products of various double-strand break repair pathways. Our results show that diverse types of SMs occur at substantial rates, and support prominent roles for SMs and TEs in evolution.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Mutación , Acumulación de Mutaciones , Mutagénesis , Nucleótidos
2.
Artif Life ; 28(2): 264-286, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727996

RESUMEN

We implement an agent-based simulation of the response threshold model of reproductive division of labor. Ants in our simulation must perform two tasks in their environment: forage and reproduce. The colony is capable of allocating ant resources to these roles using different division of labor strategies via genetic architectures and plasticity mechanisms. We find that the deterministic allocation strategy of the response threshold model is more robust than the probabilistic allocation strategy. The deterministic allocation strategy is also capable of evolving complex solutions to colony problems like niche construction and recovery from the loss of the breeding caste. In addition, plasticity mechanisms had both positive and negative influence on the emergence of reproductive division of labor. The combination of plasticity mechanisms has an additive and sometimes emergent impact.


Asunto(s)
Conducta Animal , Conducta Social , Animales , Conducta Animal/fisiología , Simulación por Computador , Modelos Estadísticos , Reproducción/fisiología
3.
Genetics ; 220(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34864966

RESUMEN

Both pleiotropic connectivity and mutational correlations can restrict the decoupling of traits under divergent selection, but it is unknown which is more important in trait evolution. To address this question, we create a model that permits within-population variation in both pleiotropic connectivity and mutational correlation, and compare their relative importance to trait evolution. Specifically, we developed an individual-based stochastic model where mutations can affect whether a locus affects a trait and the extent of mutational correlations in a population. We find that traits can decouple whether there is evolution in pleiotropic connectivity or mutational correlation, but when both can evolve, then evolution in pleiotropic connectivity is more likely to allow for decoupling to occur. The most common genotype found in this case is characterized by having one locus that maintains connectivity to all traits and another that loses connectivity to the traits under stabilizing selection (subfunctionalization). This genotype is favored because it allows the subfunctionalized locus to accumulate greater effect size alleles, contributing to increasingly divergent trait values in the traits under divergent selection without changing the trait values of the other traits (genetic modularization). These results provide evidence that partial subfunctionalization of pleiotropic loci may be a common mechanism of trait decoupling under regimes of corridor selection.


Asunto(s)
Fenotipo
4.
Genetics ; 219(4)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34849850

RESUMEN

Genetic correlations between traits may cause correlated responses to selection. Previous models described the conditions under which genetic correlations are expected to be maintained. Selection, mutation, and migration are all proposed to affect genetic correlations, regardless of whether the underlying genetic architecture consists of pleiotropic or tightly linked loci affecting the traits. Here, we investigate the conditions under which pleiotropy and linkage have different effects on the genetic correlations between traits by explicitly modeling multiple genetic architectures to look at the effects of selection strength, degree of correlational selection, mutation rate, mutational variance, recombination rate, and migration rate. We show that at mutation-selection(-migration) balance, mutation rates differentially affect the equilibrium levels of genetic correlation when architectures are composed of pairs of physically linked loci compared to architectures of pleiotropic loci. Even when there is perfect linkage (no recombination within pairs of linked loci), a lower genetic correlation is maintained than with pleiotropy, with a lower mutation rate leading to a larger decrease. These results imply that the detection of causal loci in multitrait association studies will be affected by the type of underlying architectures, whereby pleiotropic variants are more likely to be underlying multiple detected associations. We also confirm that tighter linkage between nonpleiotropic causal loci maintains higher genetic correlations at the traits and leads to a greater proportion of false positives in association analyses.


Asunto(s)
Ligamiento Genético , Pleiotropía Genética , Sitios de Carácter Cuantitativo , Animales , Bacterias , Mapeo Cromosómico , Simulación por Computador , Estudio de Asociación del Genoma Completo , Humanos , Modelos Genéticos , Mutación , Tasa de Mutación , Plantas , Polimorfismo de Nucleótido Simple , Recombinación Genética , Selección Genética
5.
Mol Biol Evol ; 38(9): 3709-3723, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33950243

RESUMEN

De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here, we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii. Using whole-genome sequencing data, we estimate that the median single nucleotide mutation (SNM) rate in C. incerta is µ = 7.6 × 10-10, and is highly variable between MA lines, ranging from µ = 0.35 × 10-10 to µ = 131.7 × 10-10. The SNM rate is strongly positively correlated with the mutation rate for insertions and deletions between lines (r > 0.97). We infer that the genomic factors associated with variation in the mutation rate are similar to those in C. reinhardtii, allowing for cross-prediction between species. Among these genomic factors, sequence context and complexity are more important than GC content. With the exception of a remarkably high C→T bias, the SNM spectrum differs markedly between the two Chlamydomonas species. Our results suggest that similar genomic and biological characteristics may result in a similar mutation rate in the two species, whereas the SNM spectrum has more freedom to diverge.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Composición de Base , Chlamydomonas/genética , Chlamydomonas reinhardtii/genética , Mutación , Acumulación de Mutaciones , Tasa de Mutación
6.
Heredity (Edinb) ; 126(1): 107-116, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32868871

RESUMEN

For over a century, inbred mice have been used in many areas of genetics research to gain insight into the genetic variation underlying traits of interest. The generalizability of any genetic research study in inbred mice is dependent upon all individual mice being genetically identical, which in turn is dependent on the breeding designs of companies that supply inbred mice to researchers. Here, we compare whole-genome sequences from individuals of four commonly used inbred strains that were procured from either the colony nucleus or from a production colony (which can be as many as ten generations removed from the nucleus) of a large commercial breeder, in order to investigate the extent and nature of genetic variation within and between individuals. We found that individuals within strains are not isogenic, and there are differences in the levels of genetic variation that are explained by differences in the genetic distance from the colony nucleus. In addition, we employ a novel approach to mutation rate estimation based on the observed genetic variation and the expected site frequency spectrum at equilibrium, given a fully inbred breeding design. We find that it provides a reasonable per nucleotide mutation rate estimate when mice come from the colony nucleus (~7.9 × 10-9 in C3H/HeN), but substantially inflated estimates when mice come from production colonies.


Asunto(s)
Tasa de Mutación , Nucleótidos , Animales , Ratones , Ratones Endogámicos C3H
7.
Evolution ; 71(10): 2298-2312, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28755417

RESUMEN

Phenotypic traits do not always respond to selection independently from each other and often show correlated responses to selection. The structure of a genotype-phenotype map (GP map) determines trait covariation, which involves variation in the degree and strength of the pleiotropic effects of the underlying genes. It is still unclear, and debated, how much of that structure can be deduced from variational properties of quantitative traits that are inferred from their genetic (co) variance matrix (G-matrix). Here we aim to clarify how the extent of pleiotropy and the correlation among the pleiotropic effects of mutations differentially affect the structure of a G-matrix and our ability to detect genetic constraints from its eigen decomposition. We show that the eigenvectors of a G-matrix can be predictive of evolutionary constraints when they map to underlying pleiotropic modules with correlated mutational effects. Without mutational correlation, evolutionary constraints caused by the fitness costs associated with increased pleiotropy are harder to infer from evolutionary metrics based on a G-matrix's geometric properties because uncorrelated pleiotropic effects do not affect traits' genetic correlations. Correlational selection induces much weaker modular partitioning of traits' genetic correlations in absence then in presence of underlying modular pleiotropy.


Asunto(s)
Pleiotropía Genética , Modelos Genéticos , Tasa de Mutación , Aptitud Genética , Genotipo , Carácter Cuantitativo Heredable , Selección Genética , Programas Informáticos
8.
G3 (Bethesda) ; 5(7): 1481-91, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26002924

RESUMEN

Parallel changes in body shape may evolve in response to similar environmental conditions, but whether such parallel phenotypic changes share a common genetic basis is still debated. The goal of this study was to assess whether parallel phenotypic changes could be explained by genetic parallelism, multiple genetic routes, or both. We first provide evidence for parallelism in fish shape by using geometric morphometrics among 300 fish representing five species pairs of Lake Whitefish. Using a genetic map comprising 3438 restriction site-associated DNA sequencing single-nucleotide polymorphisms, we then identified quantitative trait loci underlying body shape traits in a backcross family reared in the laboratory. A total of 138 body shape quantitative trait loci were identified in this cross, thus revealing a highly polygenic architecture of body shape in Lake Whitefish. Third, we tested for evidence of genetic parallelism among independent wild populations using both a single-locus method (outlier analysis) and a polygenic approach (analysis of covariation among markers). The single-locus approach provided limited evidence for genetic parallelism. However, the polygenic analysis revealed genetic parallelism for three of the five lakes, which differed from the two other lakes. These results provide evidence for both genetic parallelism and multiple genetic routes underlying parallel phenotypic evolution in fish shape among populations occupying similar ecological niches.


Asunto(s)
Genoma , Sitios de Carácter Cuantitativo , Salmonidae/genética , Animales , Evolución Biológica , Mapeo Cromosómico , Femenino , Marcadores Genéticos , Variación Genética , Genotipo , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Salmonidae/anatomía & histología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...