Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Breast Cancer Res ; 26(1): 13, 2024 01 18.
Article En | MEDLINE | ID: mdl-38238761

BACKGROUND: Endocrine therapy resistance in hormone receptor-positive/HER2-negative (HR+/HER2-) breast cancer (BC) is a significant clinical challenge that poses several unmet needs in the management of the disease. This study aimed to investigate the prognostic value of c-MET-positive circulating tumor cells (cMET+ CTCs), ESR1/PIK3CA mutations, and cell-free DNA (cfDNA) concentrations in patients with hormone receptor-positive (HR+) metastatic breast cancer (mBC). METHODS: Ninety-seven patients with HR+ mBC were prospectively enrolled during standard treatment at Samsung Medical Center. CTCs were isolated from blood using GenoCTC® and EpCAM or c-MET CTC isolation kits. PIK3CA and ESR1 hotspot mutations were analyzed using droplet digital PCR. CfDNA concentrations were calculated using internal control copies from the ESR1 mutation test. Immunocytochemistry was performed to compare c-MET overexpression between primary and metastatic sites. RESULTS: The proportion of c-MET overexpression was significantly higher in metastatic sites than in primary sites (p = 0.00002). Survival analysis showed that c-MET+ CTC, cfDNA concentration, and ESR1 mutations were significantly associated with poor prognosis (p = 0.0026, 0.0021, and 0.0064, respectively) in HR+/HER2- mBC. By contrast, EpCAM-positive CTC (EpCAM+ CTC) and PIK3CA mutations were not associated with progression-free survival (PFS) in HR+/HER2- mBC. Multivariate analyses revealed that c-MET+ CTCs and cfDNA concentration were independent predictors of PFS in HR+/HER2- mBC. CONCLUSIONS: Monitoring c-MET+ CTC, rather than assessing c-MET expression in the primary BC site, could provide valuable information for predicting disease progression, as c-MET expression can change during treatment. The c-MET+ CTC count and cfDNA concentration could provide complementary information on disease progression in HR+ /HER2- mBC, highlighting the importance of integrated liquid biopsy.


Breast Neoplasms , Cell-Free Nucleic Acids , Neoplastic Cells, Circulating , Humans , Female , Breast Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Cell-Free Nucleic Acids/therapeutic use , Prognosis , Epithelial Cell Adhesion Molecule/genetics , Biomarkers, Tumor/genetics , Disease Progression , Class I Phosphatidylinositol 3-Kinases/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism
2.
Free Radic Biol Med ; 207: 296-307, 2023 10.
Article En | MEDLINE | ID: mdl-37473874

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) isomerizes the nearby proline (Pro) residue when it detects phosphorylated serine (Ser) or threonine (Thr) of target proteins, altering their structure, stability, function, and interaction with other proteins. Hypoxia-inducible factor 2α (HIF-2α), a transcription factor that transactivates many oncogenic genes under hypoxic conditions, harbours the pSer/Thr-Pro motif. We found for the first time that Pin1 binds to HIF-2α physically in normoxic as well as hypoxic conditions in human breast cancer cells. The level of ubiquitinated HIF-2α was significantly raised by Pin1 knockdown, while expression of its mRNA transcript was unaffected. In agreement with this observation, the cycloheximide chase assay demonstrated that Pin1 prolonged the stability of HIF-2α. Serine 672, 696, and 790 of HIF-2α were found to undergo phosphorylation. Of these, the main amino acid involved in the Pin1 binding and HIF-2α stabilization was identified as serine 790, located in the nuclear export signal region of HIF-2α. The tissue array with human breast cancer specimens showed elevated expression of HIF-2α as well as Pin1 compared to adjacent normal tissues. Knockdown of Pin1 or HIF-2α diminished breast cancer cell migration and colony formation. In conclusion, Pin1 stabilizes HIF-2α through direct interaction, which contributes to the growth of breast cancer.


Basic Helix-Loop-Helix Transcription Factors , Breast Neoplasms , NIMA-Interacting Peptidylprolyl Isomerase , Female , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Oxygen , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism , Phosphorylation , Serine/genetics , Serine/metabolism
3.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article En | MEDLINE | ID: mdl-36768924

Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.


Glycolysis , Neoplasms , Humans , Neoplasms/metabolism , Tumor Microenvironment
4.
Mol Cells ; 45(6): 413-424, 2022 Jun 30.
Article En | MEDLINE | ID: mdl-35680374

Suppressor of mothers against decapentaplegic homolog (SMAD) 4 is a pluripotent signaling mediator that regulates myriad cellular functions, including cell growth, cell division, angiogenesis, apoptosis, cell invasion, and metastasis, through transforming growth factor ß (TGF-ß)-dependent and -independent pathways. SMAD4 is a critical modulator in signal transduction and functions primarily as a transcription factor or cofactor. Apart from being a DNA-binding factor, the additional SMAD4 mechanisms in tumor suppression remain elusive. We previously identified methyl malonyl aciduria cobalamin deficiency B type (MMAB) as a critical SMAD4 binding protein using a proto array analysis. This study confirmed the interaction between SMAD4 and MMAB using bimolecular fluorescence complementation (BiFC) assay, proximity ligation assay (PLA), and conventional immunoprecipitation. We found that transient SMAD4 overexpression down-regulates MMAB expression via a proteasome-dependent pathway. SMAD4-MMAB interaction was independent of TGF-ß signaling. Finally, we determined the effect of MMAB downregulation on cancer cells. siRNA-mediated knockdown of MMAB affected cancer cell metabolism in HeLa cells by decreasing ATP production and glucose consumption as well as inducing apoptosis. These findings suggest that SMAD4 controls cancer cell metabolism by regulating MMAB.


Amino Acid Metabolism, Inborn Errors , Neoplasms , Amino Acid Metabolism, Inborn Errors/genetics , Cell Line, Tumor , HeLa Cells , Humans , Neoplasms/genetics , Smad4 Protein/genetics , Smad4 Protein/metabolism , Transforming Growth Factor beta/metabolism , Vitamin B 12/metabolism
5.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 06.
Article En | MEDLINE | ID: mdl-35056131

Shedding of cancer cells from the primary site or undetectable bone marrow region into the circulatory system, resulting in clinically overt metastasis or dissemination, is the hallmark of unfavorable invasive cancers. The shed cells remain in circulation until they extravasate to form a secondary metastatic lesion or undergo anoikis. The circulating tumor cells (CTCs) found as single cells or clusters carry a plethora of information, are acknowledged as potential biomarkers for predicting cancer prognosis and cancer progression, and are supposed to play key roles in determining tailored therapies for advanced diseases. With the advent of novel technologies that allow the precise isolation of CTCs, more and more clinical trials are focusing on the prognostic and predictive potential of CTCs. In this review, we summarize the role of CTCs as a predictive marker for cancer incidence, relapse, and response to therapy.

6.
Cancer Res Treat ; 54(3): 782-792, 2022 Jul.
Article En | MEDLINE | ID: mdl-34844291

PURPOSE: The incidence of BRAF V600E mutation in non-small cell lung carcinoma (NSCLC) is lower than 2%, which poses difficulties in finding legitimate patients for targeted therapy. We investigated the predictive factors pertaining to BRAF V600E and the effectiveness of the VE1 antibody as a screening method for patient selection. MATERIALS AND METHODS: The study was designed into two steps. In a first group, BRAF-mutated NSCLCs were identified from sequencing data to determine the features of BRAF V600E mutation. The results of the first group helped the collection of adenocarcinomas with a papillary or micropapillary pattern but without EGFR or ALK alterations as a second group so that the frequency of BRAF V600E mutation could be calculated. The sensitivity and specificity of the VE1 were compared with BRAF V600E status. RESULTS: Among 39 BRAF-mutated NSCLCs in the first group, 20 (51%) were V600E. BRAF V600E mutation was more common in female patients and showed no significant correlation with smoking status. Nineteen cases were adenocarcinomas without EGFR and ALK alterations. The most common patterns of invasion were papillary and micropapillary along with central fibrosis. The sensitivity and specificity of the VE1 were 90.0% and 92.3%, respectively. In the second group, 6.7% of cases were VE1-positive, indicating that the prevalence was significantly higher than that reported in previous studies (0.3-1.8%). CONCLUSION: BRAF V600E-mutated NSCLCs could be enriched with the application of clinicopathologic parameters, which are not perfect. Therefore, additional VE1 immunohistochemistry may be useful as a screening method.


Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Female , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Receptor Protein-Tyrosine Kinases/genetics
7.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 19.
Article En | MEDLINE | ID: mdl-34681284

Aerobic glycolysis in cancer cells, also known as the Warburg effect, is an indispensable hallmark of cancer. This metabolic adaptation of cancer cells makes them remarkably different from normal cells; thus, inhibiting aerobic glycolysis is an attractive strategy to specifically target tumor cells while sparing normal cells. Macrosphelide A (MSPA), an organic small molecule, is a potential lead compound for the design of anti-cancer drugs. However, its role in modulating cancer metabolism remains poorly understood. MSPA target proteins were screened using mass spectrometry proteomics combined with affinity chromatography. Direct and specific interactions of MSPA with its candidate target proteins were confirmed by in vitro binding assays, competition assays, and simulation modeling. The siRNA-based knockdown of MSPA target proteins indirectly confirmed the cytotoxic effect of MSPA in HepG2 and MCF-7 cancer cells. In addition, we showed that MSPA treatment in the HEPG2 cell line significantly reduced glucose consumption and lactate release. MSPA also inhibited cancer cell proliferation and induced apoptosis by inhibiting critical enzymes involved in the Warburg effect: aldolase A (ALDOA), enolase 1 (ENO1), and fumarate hydratase (FH). Among these enzymes, the purified ENO1 inhibitory potency of MSPA was further confirmed to demonstrate the direct inhibition of enzyme activity to exclude indirect/secondary factors. In summary, MSPA exhibits anti-cancer effects by simultaneously targeting ENO1, ALDOA, and FH.

8.
Micromachines (Basel) ; 11(6)2020 May 30.
Article En | MEDLINE | ID: mdl-32486306

Here, we validated the clinical utility of our previously developed microfluidic device, GenoCTC, which is based on bottom magnetophoresis, for the isolation of circulating tumor cells (CTCs) from patient whole blood. GenoCTC allowed 90% purity, 77% separation rate, and 80% recovery of circulating tumor cells at a 90 µL/min flow rate when tested on blood spiked with epithelial cell adhesion molecule (EpCAM)-positive Michigan Cancer Foundation-7 (MCF7) cells. Clinical studies were performed using blood samples from non-small cell lung cancer (NSCLC) patients. Varying numbers (2 to 114) of CTCs were found in each NSCLC patient, and serial assessment of CTCs showed that the CTC count correlated with the clinical progression of the disease. The applicability of GenoCTC to different cell surface biomarkers was also validated in a cholangiocarcinoma patient using anti-EPCAM, anti-vimentin, or anti-tyrosine protein kinase MET (c-MET) antibodies. After EPCAM-, vimentin-, or c-MET-positive cells were isolated, CTCs were identified and enumerated by immunocytochemistry using anti-cytokeratin 18 (CK18) and anti-CD45 antibodies. Furthermore, we checked the protein expression of PDL1 and c-MET in CTCs. A study in a cholangiocarcinoma patient showed that the number of CTCs varied depending on the biomarker used, indicating the importance of using multiple biomarkers for CTC isolation and enumeration.

9.
Mutat Res Rev Mutat Res ; 780: 92-105, 2019.
Article En | MEDLINE | ID: mdl-31395353

DNA-dependent protein kinase (DNA-PK), a member of phosphatidylinositol-kinase family, is a key protein in mammalian DNA double-strand break (DSB) repair that helps to maintain genomic integrity. DNA-PK also plays a central role in immune cell development and protects telomerase during cellular aging. Epigenetic deregulation due to endogenous and exogenous factors may affect the normal function of DNA-PK, which in turn could impair DNA repair and contribute to genomic instability. Recent studies implicate a role for epigenetics in the regulation of DNA-PK expression in normal and cancer cells, which may impact cancer progression and metastasis as well as provide opportunities for treatment and use of DNA-PK as a novel cancer biomarker. In addition, several small molecules and biological agents have been recently identified that can inhibit DNA-PK function or expression, and thus hold promise for cancer treatments. This review discusses the impact of epigenetic alterations and the expression of DNA-PK in relation to the DNA repair mechanisms with a focus on its differential levels in normal and cancer cells.


DNA-Activated Protein Kinase/genetics , Epigenesis, Genetic/genetics , Genomic Instability/genetics , Neoplasms/genetics , Animals , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA Repair/genetics , Humans
10.
Exp Mol Med ; 50(8): 1-9, 2018 08 16.
Article En | MEDLINE | ID: mdl-30115904

The gastrointestinal tract is a specialized organ in which dynamic interactions between host cells and the complex environment occur in addition to food digestion. Together with the chemical barrier of the mucosal layer and the cellular immune system, the epithelial cell layer performs a pivotal role as the first physical barrier against external factors and maintains a symbiotic relationship with commensal bacteria. The tight junction proteins, including occludin, claudins, and zonula occludens, are crucial for the maintenance of epithelial barrier integrity. To allow the transport of essential molecules and restrict harmful substances, the intracellular signaling transduction system and a number of extracellular stimuli such as cytokines, small GTPases, and post-translational modifications dynamically modulate the tight junction protein complexes. An imbalance in these regulations leads to compromised barrier integrity and is linked with pathological conditions. Despite the obscurity of the causal relationship, the loss of barrier integrity is considered to contribute to inflammatory bowel disease, obesity, and metabolic disorders. The elucidation of the role of diseases in barrier integrity and the underlying regulatory mechanisms have improved our understanding of the intestinal barrier to allow the development of novel and potent therapeutic approaches.


Intestines/pathology , Animals , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Intestinal Diseases/pathology , Intestinal Mucosa/pathology , Tight Junction Proteins/metabolism
11.
Exp Mol Med ; 50(2): e450, 2018 02 23.
Article En | MEDLINE | ID: mdl-29472701

The gut microbiota has an important role in the gut barrier, inflammation and metabolic functions. Studies have identified a close association between the intestinal barrier and metabolic diseases, including obesity and type 2 diabetes (T2D). Recently, Akkermansia muciniphila has been reported as a beneficial bacterium that reduces gut barrier disruption and insulin resistance. Here we evaluated the role of A. muciniphila-derived extracellular vesicles (AmEVs) in the regulation of gut permeability. We found that there are more AmEVs in the fecal samples of healthy controls compared with those of patients with T2D. In addition, AmEV administration enhanced tight junction function, reduced body weight gain and improved glucose tolerance in high-fat diet (HFD)-induced diabetic mice. To test the direct effect of AmEVs on human epithelial cells, cultured Caco-2 cells were treated with these vesicles. AmEVs decreased the gut permeability of lipopolysaccharide-treated Caco-2 cells, whereas Escherichia coli-derived EVs had no significant effect. Interestingly, the expression of occludin was increased by AmEV treatment. Overall, these results imply that AmEVs may act as a functional moiety for controlling gut permeability and that the regulation of intestinal barrier integrity can improve metabolic functions in HFD-fed mice.


Cell Membrane Permeability , Extracellular Vesicles/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Tight Junctions/metabolism , Verrucomicrobia/metabolism , Animals , Biodiversity , Biomarkers , Caco-2 Cells , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Feces/microbiology , Gastrointestinal Microbiome , Humans , Mice
12.
Neoplasia ; 19(10): 735-749, 2017 Oct.
Article En | MEDLINE | ID: mdl-28843398

Toxicity and resistance remain major challenges for advanced or recurrent cervical cancer therapies, as treatment requires high doses of chemotherapeutic agents. Restoration of TP53 and hypophosphorylated-retinoblastoma (pRB) proteins by human papillomavirus (HPV) E6/E7 siRNA sensitizes HPV-positive cervical cancer cells toward chemotherapeutic agents. Here, we investigated the therapeutic effects of E6/E7 siRNA on the dynamic behavior of TP53 and RB/E2F signaling networks in deciding the cell fate. The synergistic effect of HPV E6/E7 siRNA pool (SP) with chemotherapeutic agents on TP53 and RB/E2F signaling, proliferation, and apoptosis was analyzed in vitro and in vivo. Compared to the E6/E7 SP alone, E6/E7 SP with cisplatin treatment effectively restored TP53 and RB/E2F signaling and contributes to differences in cell fate, such as apoptosis or cell cycle arrest. We also developed a cellular dynamics model that includes TP53-RB/E2F dynamics and cell proliferation profiles, and confirmed its utility for investigating E6/E7 siRNA-based combination regimens. Using a dual reporter system, we further confirmed the cross talk between TP53 and RB/E2F signaling mechanisms. Treatment of E6/E7 SP cationic liposome (i.v.) with cisplatin and paclitaxel (i.p.) potentially inhibited tumor growth in BALB/c-nude mice. Altogether, our findings suggest that stabilization of TP53 and the RB/E2F repressor complex by E6/E7 SP combined with low-dose chemotherapy can effectively suppress tumor growth.


Antineoplastic Agents/pharmacology , E2F Transcription Factors/genetics , Oncogene Proteins, Viral/genetics , Papillomaviridae/genetics , RNA Interference , RNA, Small Interfering , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Tracking , Disease Models, Animal , E2F Transcription Factors/metabolism , Gene Expression , Gene Expression Regulation/drug effects , Genes, Reporter , Humans , Mice , Microscopy, Confocal , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
13.
Sci Rep ; 7(1): 1573, 2017 05 08.
Article En | MEDLINE | ID: mdl-28484281

Ulcerative colitis is a multi-factorial disease involving a dysregulated immune response. Disruptions to the intestinal epithelial barrier and translocation of bacteria, resulting in inflammation, are common in colitis. The mechanisms underlying epithelial barrier dysfunction or regulation of tight junction proteins during disease progression of colitis have not been clearly elucidated. Increase in phospholipase D (PLD) activity is associated with disease severity in colitis animal models. However, the role of PLD2 in the maintenance of intestinal barrier integrity remains elusive. We have generated intestinal-specific Pld2 knockout mice (Pld2 IEC-KO) to investigate the mechanism of intestinal epithelial PLD2 in colitis. We show that the knockout of Pld2 confers protection against dextran sodium sulphate (DSS)-induced colitis in mice. Treatment with DSS induced the expression of PLD2 and downregulated occludin in colon epithelial cells. PLD2 was shown to mediate phosphorylation of occludin and induce its proteasomal degradation in a c-Src kinase-dependent pathway. Additionally, we have shown that treatment with an inhibitor of PLD2 can rescue mice from DSS-induced colitis. To our knowledge, this is the first report showing that PLD2 is pivotal in the regulation of the integrity of epithelial tight junctions and occludin turn over, thereby implicating it in the pathogenesis of colitis.


Colitis/metabolism , Colitis/pathology , Epithelial Cells/metabolism , Gene Deletion , Intestines/pathology , Occludin/metabolism , Phospholipase D/genetics , Animals , Colitis/chemically induced , Dextran Sulfate , Dinitrofluorobenzene/analogs & derivatives , Down-Regulation , HT29 Cells , Humans , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Organ Specificity , Phospholipase D/antagonists & inhibitors , Phospholipase D/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteolysis , src-Family Kinases/metabolism
14.
Adv Biol Regul ; 61: 42-6, 2016 05.
Article En | MEDLINE | ID: mdl-26695710

Phospholipase D2 (PLD2) is a lipid-signaling enzyme that produces the signaling molecule phosphatidic acid (PA) by catalyzing the hydrolysis of phosphatidylcholine (PC). The molecular characteristics of PLD2, the mechanisms of regulation of its activity, its functions in the signaling pathway involving PA and binding partners, and its role in cellular physiology have been extensively studied over the past decades. Although several potential roles of PLD2 have been proposed based on the results of molecular and cell-based studies, the pathophysiological functions of PLD2 in vivo have not yet been fully investigated at the organismal level. Here, we address accumulated evidences that provide insight into the role of PLD2 in human disease. We summarize recent studies using animal models that provide direct evidence of the function of PLD2 in several pathological conditions such as vascular disease, immunological disease, and neurological disease. In light of the use of recently developed PLD2-specific inhibitors showing potential in alleviating pathological conditions, improving our understanding of the role of PLD2 in human disease would be necessary to target the regulation of PLD2 activity as a therapeutic strategy.


Immune System Diseases/enzymology , Neoplasms/enzymology , Nervous System Diseases/enzymology , Phospholipase A2 Inhibitors/therapeutic use , Phospholipase D/genetics , Vascular Diseases/enzymology , Animals , Antineoplastic Agents/therapeutic use , Cardiovascular Agents/therapeutic use , Gene Expression Regulation , Humans , Immune System Diseases/drug therapy , Immune System Diseases/genetics , Immune System Diseases/pathology , Immunologic Factors/therapeutic use , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Nervous System Diseases/drug therapy , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Neuroprotective Agents/therapeutic use , Phosphatidic Acids/metabolism , Phosphatidylcholines/metabolism , Phospholipase D/antagonists & inhibitors , Phospholipase D/metabolism , Signal Transduction , Vascular Diseases/drug therapy , Vascular Diseases/genetics , Vascular Diseases/pathology
15.
Arterioscler Thromb Vasc Biol ; 34(8): 1697-703, 2014 Aug.
Article En | MEDLINE | ID: mdl-24947526

OBJECTIVE: Aberrant regulation of the proliferation, survival, and migration of endothelial cells (ECs) is closely related to the abnormal angiogenesis that occurs in hypoxia-induced pathological situations, such as cancer and vascular retinopathy. Hypoxic conditions and the subsequent upregulation of hypoxia-inducible factor-1α and target genes are important for the angiogenic functions of ECs. Phospholipase D2 (PLD2) is a crucial signaling mediator that stimulates the production of the second messenger phosphatidic acid. PLD2 is involved in various cellular functions; however, its specific roles in ECs under hypoxia and in vivo angiogenesis remain unclear. In the present study, we investigated the potential roles of PLD2 in ECs under hypoxia and in hypoxia-induced pathological angiogenesis in vivo. APPROACH AND RESULTS: Pld2 knockout ECs exhibited decreased hypoxia-induced cellular responses in survival, migration, and thus vessel sprouting. Analysis of hypoxia-induced gene expression revealed that PLD2 deficiency disrupted the upregulation of hypoxia-inducible factor-1α target genes, including VEGF, PFKFB3, HMOX-1, and NTRK2. Consistent with this, PLD2 contributed to hypoxia-induced hypoxia-inducible factor-1α expression at the translational level. The roles of PLD2 in hypoxia-induced in vivo pathological angiogenesis were assessed using oxygen-induced retinopathy and tumor implantation models in endothelial-specific Pld2 knockout mice. Pld2 endothelial-specific knockout retinae showed decreased neovascular tuft formation, despite a larger avascular region. Tumor growth and tumor blood vessel formation were also reduced in Pld2 endothelial-specific knockout mice. CONCLUSIONS: Our findings demonstrate a novel role for endothelial PLD2 in the survival and migration of ECs under hypoxia via the expression of hypoxia-inducible factor-1α and in pathological retinal angiogenesis and tumor angiogenesis in vivo.


Carcinoma, Lewis Lung/blood supply , Endothelial Cells/enzymology , Hypoxia/complications , Neovascularization, Pathologic , Phospholipase D/deficiency , Retinal Neovascularization/enzymology , Retinal Vessels/enzymology , Animals , Animals, Newborn , Cell Hypoxia , Cell Movement , Cell Proliferation , Cell Survival , Cells, Cultured , Disease Models, Animal , Endothelial Cells/pathology , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phospholipase D/genetics , RNA Interference , Retinal Neovascularization/etiology , Retinal Neovascularization/genetics , Retinal Neovascularization/pathology , Retinal Vessels/pathology , Time Factors , Tissue Culture Techniques , Transfection
...