Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Eur Radiol Exp ; 8(1): 46, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594558

RESUMEN

BACKGROUND: Monitoring pyruvate metabolism in the spleen is important for assessing immune activity and achieving successful radiotherapy for cervical cancer due to the significance of the abscopal effect. We aimed to explore the feasibility of utilizing hyperpolarized (HP) [1-13C]-pyruvate magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) to evaluate pyruvate metabolism in the human spleen, with the aim of identifying potential candidates for radiotherapy in cervical cancer. METHODS: This prospective study recruited six female patients with cervical cancer (median age 55 years; range 39-60) evaluated using HP [1-13C]-pyruvate MRI/MRS at baseline and 2 weeks after radiotherapy. Proton (1H) diffusion-weighted MRI was performed in parallel to estimate splenic cellularity. The primary outcome was defined as tumor response to radiotherapy. The Student t-test was used for comparing 13C data between the groups. RESULTS: The splenic HP [1-13C]-lactate-to-total carbon (tC) ratio was 5.6-fold lower in the responders than in the non-responders at baseline (p = 0.009). The splenic [1-13C]-lactate-to-tC ratio revealed a 1.7-fold increase (p = 0.415) and the splenic [1-13C]-alanine-to-tC ratio revealed a 1.8-fold increase after radiotherapy (p = 0.482). The blood leukocyte differential count revealed an increased proportion of neutrophils two weeks following treatment, indicating enhanced immune activity (p = 0.013). The splenic apparent diffusion coefficient values between the groups were not significantly different. CONCLUSIONS: This exploratory study revealed the feasibility of HP [1-13C]-pyruvate MRS of the spleen for evaluating baseline immune potential, which was associated with clinical outcomes of cervical cancer after radiotherapy. TRIAL REGISTRATION: ClinicalTrials.gov NCT04951921 , registered 7 July 2021. RELEVANCE STATEMENT: This prospective study revealed the feasibility of using HP 13C MRI/MRS for assessing pyruvate metabolism of the spleen to evaluate the patients' immune potential that is associated with radiotherapeutic clinical outcomes in cervical cancer. KEY POINTS: • Effective radiotherapy induces abscopal effect via altering immune metabolism. • Hyperpolarized 13C MRS evaluates patients' immune potential non-invasively. • Pyruvate-to-lactate conversion in the spleen is elevated following radiotherapy.


Asunto(s)
Ácido Pirúvico , Neoplasias del Cuello Uterino , Humanos , Femenino , Persona de Mediana Edad , Ácido Pirúvico/metabolismo , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/radioterapia , Estudios Prospectivos , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Lactatos
2.
Magn Reson Med ; 91(6): 2204-2228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38441968

RESUMEN

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.


Asunto(s)
Imagen por Resonancia Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador , Corazón , Hígado/diagnóstico por imagen , Hígado/metabolismo , Isótopos de Carbono/metabolismo
3.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352450

RESUMEN

Hyperpolarized- 13 C magnetic resonance imaging (HP- 13 C MRI) was used to image changes in 13 C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain 13 C-pyruvate, 13 C-lactate and 13 C-bicarbonate production was imaged in healthy volunteers (N=6, ages 24-33) for the two conditions using two separate hyperpolarized 13 C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation. 13 C-metabolite signal was normalized by 13 C-metabolite signal from the brainstem and the percentage change in 13 C-metabolite signal conditions was calculated. A one-way Wilcoxon signed-rank test showed a significant increase in 13 C-lactate in regions of activation when compared to the remainder of the brain ( p = 0.02, V = 21). No significant increase was observed in 13 C-pyruvate ( p = 0.11, V = 17) or 13 C-bicarbonate ( p = 0.95, V = 3) signal. The results show an increase in 13 C-lactate production in the activated region that is measurable with HP- 13 C MRI.

4.
Magn Reson Med ; 91(5): 2162-2171, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38230992

RESUMEN

PURPOSE: To test the hypothesis that lactate oxidation contributes to the 13 $$ {}^{13} $$ C-bicarbonate signal observed in the awake human brain using hyperpolarized 13 $$ {}^{13} $$ C MRI. METHODS: Healthy human volunteers (N = 6) were scanned twice using hyperpolarized 13 $$ {}^{13} $$ C-MRI, with increased radiofrequency saturation of 13 $$ {}^{13} $$ C-lactate on one set of scans. 13 $$ {}^{13} $$ C-lactate, 13 $$ {}^{13} $$ C-bicarbonate, and 13 $$ {}^{13} $$ C-pyruvate signals for 132 brain regions across each set of scans were compared using a clustered Wilcoxon signed-rank test. RESULTS: Increased 13 $$ {}^{13} $$ C-lactate radiofrequency saturation resulted in a significantly lower 13 $$ {}^{13} $$ C-bicarbonate signal (p = 0.04). These changes were observed across the majority of brain regions. CONCLUSION: Radiofrequency saturation of 13 $$ {}^{13} $$ C-lactate leads to a decrease in 13 $$ {}^{13} $$ C-bicarbonate signal, demonstrating that the 13 $$ {}^{13} $$ C-lactate generated from the injected 13 $$ {}^{13} $$ C-pyruvate is being converted back to 13 $$ {}^{13} $$ C-pyruvate and oxidized throughout the human brain.


Asunto(s)
Bicarbonatos , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Ácido Pirúvico , Ácido Láctico , Isótopos de Carbono
5.
ArXiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37731660

RESUMEN

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of hyperpolarized agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate - by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation, (2) MRI system setup and calibrations, (3) data acquisition and image reconstruction, and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods & Equipment study groups. It further aims to provide a comprehensive reference for future consensus building as the field continues to advance human studies with this metabolic imaging modality.

6.
Hum Brain Mapp ; 44(10): 4052-4063, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37219519

RESUMEN

In this study, hyperpolarized 13 C MRI (HP-13 C MRI) was used to investigate changes in the uptake and metabolism of pyruvate with age. Hyperpolarized 13 C-pyruvate was administered to healthy aging individuals (N = 35, ages 21-77) and whole-brain spatial distributions of 13 C-lactate and 13 C-bicarbonate production were measured. Linear mixed-effects regressions were performed to compute the regional percentage change per decade, showing a significant reduction in both normalized 13 C-lactate and normalized 13 C-bicarbonate production with age: - 7 % ± 2 % per decade for 13 C-lactate and - 9 % ± 4 % per decade for 13 C-bicarbonate. Certain regions, such as the right medial precentral gyrus, showed greater rates of change while the left caudate nucleus had a flat 13 C-lactate versus age and a slightly increasing 13 C-bicarbonate versus age. The results show that both the production of lactate (visible as 13 C-lactate signal) as well as the consumption of monocarboxylates to make acetyl-CoA (visible as 13 C-bicarbonate signal) decrease with age and that the rate of change varies by brain region.


Asunto(s)
Bicarbonatos , Imagen por Resonancia Magnética , Humanos , Bicarbonatos/metabolismo , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Isótopos de Carbono/metabolismo
7.
Magn Reson Med ; 87(3): 1136-1149, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687086

RESUMEN

PURPOSE: This study is to investigate time-resolved 13 C MR spectroscopy (MRS) as an alternative to imaging for assessing pyruvate metabolism using hyperpolarized (HP) [1-13 C]pyruvate in the human brain. METHODS: Time-resolved 13 C spectra were acquired from four axial brain slices of healthy human participants (n = 4) after a bolus injection of HP [1-13 C]pyruvate. 13 C MRS with low flip-angle excitations and a multichannel 13 C/1 H dual-frequency radiofrequency (RF) coil were exploited for reliable and unperturbed assessment of HP pyruvate metabolism. Slice-wise areas under the curve (AUCs) of 13 C-metabolites were measured and kinetic analysis was performed to estimate the production rates of lactate and HCO3- . Linear regression analysis between brain volumes and HP signals was performed. Region-focused pyruvate metabolism was estimated using coil-wise 13 C reconstruction. Reproducibility of HP pyruvate exams was presented by performing two consecutive injections with a 45-minutes interval. RESULTS: [1-13 C]Lactate relative to the total 13 C signal (tC) was 0.21-0.24 in all slices. [13 C] HCO3- /tC was 0.065-0.091. Apparent conversion rate constants from pyruvate to lactate and HCO3- were calculated as 0.014-0.018 s-1 and 0.0043-0.0056 s-1 , respectively. Pyruvate/tC and lactate/tC were in moderate linear relationships with fractional gray matter volume within each slice. White matter presented poor linear regression fit with HP signals, and moderate correlations of the fractional cerebrospinal fluid volume with pyruvate/tC and lactate/tC were measured. Measured HP signals were comparable between two consecutive exams with HP [1-13 C]pyruvate. CONCLUSIONS: Dynamic MRS in combination with multichannel RF coils is an affordable and reliable alternative to imaging methods in investigating cerebral metabolism using HP [1-13 C]pyruvate.


Asunto(s)
Imagen por Resonancia Magnética , Ácido Pirúvico , Isótopos de Carbono , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados
8.
Metabolites ; 11(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34436459

RESUMEN

Alterations in metabolism following radiotherapy affect therapeutic efficacy, although the mechanism underlying such alterations is unclear. A new imaging technique-named dynamic nuclear polarization (DNP) carbon-13 magnetic resonance imaging (MRI)-probes the glycolytic flux in a real-time, dynamic manner. The [1-13C]pyruvate is transported by the monocarboxylate transporter (MCT) into cells and converted into [1-13C]lactate by lactate dehydrogenase (LDH). To capture the early glycolytic alterations in the irradiated cancer and immune cells, we designed a preliminary DNP 13C-MRI study by using hyperpolarized [1-13C]pyruvate to study human FaDu squamous carcinoma cells, HMC3 microglial cells, and THP-1 monocytes before and after irradiation. The pyruvate-to-lactate conversion rate (kPL [Pyr.]) calculated by kinetic modeling was used to evaluate the metabolic alterations. Western blotting was performed to assess the expressions of LDHA, LDHB, MCT1, and MCT4 proteins. Following irradiation, the pyruvate-to-lactate conversion rates on DNP 13C-MRI were significantly decreased in the FaDu and the HMC3 cells but increased in the THP-1 cells. Western blot analysis confirmed the similar trends in LDHA and LDHB expression levels. In conclusion, DNP 13C-MRI non-invasively captured the different glycolytic alterations among cancer and immune systems in response to irradiation, implying its potential for clinical use in the future.

9.
NMR Biomed ; 34(7): e4532, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963784

RESUMEN

Hyperpolarized (HP) [1-13 C]lactate is an attractive alternative to [1-13 C]pyruvate as a substrate to investigate cardiac metabolism in vivo: it can be administered safely at a higher dose and can be polarized to a degree similar to pyruvate via dynamic nuclear polarization. While 13 C cardiac experiments using HP lactate have been performed in small animal models, they have not been demonstrated in large animal models or humans. Utilizing the same hardware and data acquisition methods as the first human HP 13 C cardiac study, 13 C metabolic images were acquired following injections of HP [1-13 C]lactate in porcine hearts. Data were also acquired using HP [1-13 C]pyruvate for comparison. The 13 C bicarbonate signal was localized to the myocardium and had a similar appearance with both substrates for all animals. No 13 C pyruvate signal was detected in the experiments following injection of HP 13 C lactate. The signal-to-noise ratio (SNR) of injected lactate was 88 ± 4% of the SNR of injected pyruvate, and the SNR of bicarbonate in the experiments using lactate as the substrate was 52 ± 19% of the SNR in the experiments using pyruvate as the substrate. The lower SNR was likely due to the shorter T1 of [1-13 C]lactate as compared with [1-13 C]pyruvate and the additional enzyme-catalyzed metabolic conversion step before the 13 C nuclei from [1-13 C]lactate were detected as 13 C bicarbonate. While challenges remain, the potential of HP lactate as a substrate for clinical metabolic imaging of human heart has been demonstrated.


Asunto(s)
Isótopos de Carbono/metabolismo , Corazón/diagnóstico por imagen , Ácido Láctico/metabolismo , Animales , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido , Especificidad por Sustrato , Porcinos , Factores de Tiempo
10.
J Neurooncol ; 152(3): 551-557, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33740165

RESUMEN

BACKGROUND: Stereotactic radiosurgery (SRS) is used to manage intracranial metastases in a significant fraction of patients. Local progression after SRS can often only be detected with increased volume of enhancement on serial MRI scans which may lag true progression by weeks or months. METHODS: Patients with intracranial metastases (N = 11) were scanned using hyperpolarized [Formula: see text]C MRI prior to treatment with stereotactic radiosurgery (SRS). The status of each lesion was then recorded at six months post-treatment follow-up (or at the time of death). RESULTS: The positive predictive value of [Formula: see text]C-lactate signal, measured pre-treatment, for prediction of progression of intracranial metastases at six months post-treatment with SRS was 0.8 [Formula: see text], and the AUC from an ROC analysis was 0.77 [Formula: see text]. The distribution of [Formula: see text]C-lactate z-scores was different for intracranial metastases from different primary cancer types (F = 2.46, [Formula: see text]). CONCLUSIONS: Hyperpolarized [Formula: see text]C imaging has potential as a method for improving outcomes for patients with intracranial metastases, by identifying patients at high risk of treatment failure with SRS and considering other therapeutic options such as surgery.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Humanos , Lactatos , Imagen por Resonancia Magnética , Estudios Retrospectivos
11.
Magn Reson Med ; 86(1): 157-166, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33547689

RESUMEN

PURPOSE: This study aimed to investigate the role of regional f0 inhomogeneity in spiral hyperpolarized 13 C image quality and to develop measures to alleviate these effects. METHODS: Field map correction of hyperpolarized 13 C cardiac imaging using spiral readouts was evaluated in healthy subjects. Spiral readouts with differing duration (26 and 45 ms) but similar resolution were compared with respect to off-resonance performance and image quality. An f0 map-based image correction based on the multifrequency interpolation (MFI) method was implemented and compared to correction using a global frequency shift alone. Estimation of an unknown frequency shift was performed by maximizing a sharpness objective based on the Sobel variance. The apparent full width half at maximum (FWHM) of the myocardial wall on [13 C]bicarbonate was used to estimate blur. RESULTS: Mean myocardial wall FWHM measurements were unchanged with the short readout pre-correction (14.1 ± 2.9 mm) and post-MFI correction (14.1 ± 3.4 mm), but significantly decreased in the long waveform (20.6 ± 6.6 mm uncorrected, 17.7 ± 7.0 corrected, P = .007). Bicarbonate signal-to-noise ratio (SNR) of the images acquired with the long waveform were increased by 1.4 ± 0.3 compared to those acquired with the short waveform (predicted 1.32). Improvement of image quality was observed for all metabolites with f0 correction. CONCLUSIONS: f0 -map correction reduced blur and recovered signal from dropouts, particularly along the posterior myocardial wall. The low image SNR of [13 C]bicarbonate can be compensated with longer duration readouts but at the expense of increased f0 artifacts, which can be partially corrected for with the proposed methods.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador , Algoritmos , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Fantasmas de Imagen , Relación Señal-Ruido
12.
Magn Reson Med ; 85(4): 1814-1820, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33179825

RESUMEN

PURPOSE: The purpose of this study was to investigate hyperpolarization and in vivo imaging of [15 N]carnitine, a novel endogenous MRI probe with long signal lifetime. METHODS: L-[15 N]carnitine-d9 was hyperpolarized by the method of dynamic nuclear polarization followed by rapid dissolution. The T1 signal lifetimes were estimated in aqueous solution and in vivo following intravenous injection in rats, using a custom-built dual-tuned 15 N/1 H RF coil at 4.7 T. 15 N chemical shift imaging and 15 N fast spin-echo images of rat abdomen were acquired 3 minutes after [15 N]carnitine injection. RESULTS: Estimated T1 times of [15 N]carnitine at 4.7 T were 210 seconds (in H2 O) and 160 seconds (in vivo), with an estimated polarization level of 10%. Remarkably, the [15 N]carnitine coherence was detectable in rat abdomen for 5 minutes after injection for the nonlocalized acquisition. No downstream metabolites were detected on localized or nonlocalized 15 N spectra. Diffuse liver enhancement was detected on 15 N fast spin-echo imaging 3 minutes after injection, with mean hepatic SNR of 18 ± 5 at a spatial resolution of 4 × 4 mm. CONCLUSION: This study showed the feasibility of hyperpolarizing and imaging the biodistribution of HP [15 N]carnitine.


Asunto(s)
Carnitina , Imagen por Resonancia Magnética , Animales , Ondas de Radio , Ratas , Distribución Tisular
13.
Magn Reson Med ; 84(6): 3351-3365, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32501614

RESUMEN

PURPOSE: With the initiation of human hyperpolarized 13 C (HP-13 C) trials at multiple sites and the development of improved acquisition methods, there is an imminent need to maximally extract diagnostic information to facilitate clinical interpretation. This study aims to improve human HP-13 C MR spectroscopic imaging through means of Tensor Rank truncation-Image enhancement (TRI) and optimal receiver combination (ORC). METHODS: A data-driven processing framework for dynamic HP 13 C MR spectroscopic imaging (MRSI) was developed. Using patient data sets acquired with both multichannel arrays and single-element receivers from the brain, abdomen, and pelvis, we examined the theory and application of TRI, as well as 2 ORC techniques: whitened singular value decomposition (WSVD) and first-point phasing. Optimal conditions for TRI were derived based on bias-variance trade-off. RESULTS: TRI and ORC techniques together provided a 63-fold mean apparent signal-to-noise ratio (aSNR) gain for receiver arrays and a 31-fold gain for single-element configurations, which particularly improved quantification of the lower-SNR-[13 C]bicarbonate and [1-13 C]alanine signals that were otherwise not detectable in many cases. Substantial SNR enhancements were observed for data sets that were acquired even with suboptimal experimental conditions, including delayed (114 s) injection (8× aSNR gain solely by TRI), or from challenging anatomy or geometry, as in the case of a pediatric patient with brainstem tumor (597× using combined TRI and WSVD). Improved correlation between elevated pyruvate-to-lactate conversion, biopsy-confirmed cancer, and mp-MRI lesions demonstrated that TRI recovered quantitative diagnostic information. CONCLUSION: Overall, this combined approach was effective across imaging targets and receiver configurations and could greatly benefit ongoing and future HP 13 C MRI research through major aSNR improvements.


Asunto(s)
Aumento de la Imagen , Imagen por Resonancia Magnética , Isótopos de Carbono , Niño , Humanos , Espectroscopía de Resonancia Magnética , Ácido Pirúvico , Relación Señal-Ruido
14.
NMR Biomed ; 33(5): e4269, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32133713

RESUMEN

Hyperpolarized (HP) 13C MRI provides the means to monitor lactate metabolism noninvasively in tumours. Since 13C -lactate signal levels obtained from HP 13C imaging depend on multiple factors, such as the rate of 13C substrate delivery via the vasculature, the expression level of monocarboxylate transporters (MCTs) and lactate dehydrogenase (LDH), and the local lactate pool size, the interpretation of HP 13C metabolic images remains challenging. In this study, ex vivo tissue extract measurements (i.e., NMR isotopomer analysis, western blot analysis) derived from an MDA-MB-231 xenograft model in nude rats were used to test for correlations between the in vivo 13C data and the ex vivo measures. The lactate-to-pyruvate ratio from HP 13C MRI was strongly correlated with [1- 13C ]lactate concentration measured from the extracts using NMR (R = 0.69, p < 0.05), as well as negatively correlated with tumour wet weight (R = -  0.60, p < 0.05). In this tumour model, both MCT1 and MCT4 expressions were positively correlated with wet weight ( ρ = 0.78 and 0.93, respectively, p < 0.01). Lactate pool size and the lactate-to-pyruvate ratio were not significantly correlated.


Asunto(s)
Isótopos de Carbono/química , Imagen por Resonancia Magnética , Extractos de Tejidos/análisis , Animales , Línea Celular Tumoral , Masculino , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
NMR Biomed ; 33(5): e4264, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31999867

RESUMEN

Dynamic nuclear polarization (DNP) provides the opportunity to boost liquid state magnetic resonance (MR) signals from selected nuclear spins by several orders of magnitude. A cryostat running at a temperature of ~ 1 K and a superconducting magnet set to between 3 and 10 T are required to efficiently hyperpolarize nuclear spins. Several DNP polarizers have been implemented for the purpose of hyperpolarized MR and recent systems have been designed to avoid the need for user input of liquid cryogens. We herein present a zero boil-off DNP polarizer that operates at 1.35 ± 0.01 K and 7 T, and which can polarize two samples in parallel. The samples are cooled by a static helium bath thermally connected to a 1 K closed-cycle 4 He refrigerator. Using a modified version of the commercial fluid path developed for the SPINlab polarizer, we demonstrate that, within a 12-minute interval, the system can produce two separate hyperpolarized 13 C solutions. The 13 C liquid-state polarization of [1-13 C]pyruvate measured 26 seconds after dissolution was 36%, which can be extrapolated to a 55% solid state polarization. The system is well adapted for in vitro and in vivo preclinical hyperpolarized MR experiments and it can be modified to polarize up to four samples in parallel.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Carbono , Microondas , Ácido Pirúvico/química , Reología , Temperatura
16.
Neuroimage ; 204: 116202, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31557546

RESUMEN

Lactate is now recognized as an important intermediate in brain metabolism, but its role is still under investigation. In this work we mapped the distribution of lactate and bicarbonate produced from intravenously injected 13C-pyruvate over the whole brain using a new imaging method, hyperpolarized 13C MRI (N = 14, ages 23 to 77). Segmenting the 13C-lactate images into brain atlas regions revealed a pattern of lactate that was preserved across individuals. Higher lactate signal was observed in cortical grey matter compared to white matter and was highest in the precuneus, cuneus and lingual gyrus. Bicarbonate signal, indicating flux of [1-13C]pyruvate into the TCA cycle, also displayed consistent spatial distribution. One-way ANOVA to test for significant differences in lactate among atlas regions gave F = 87.6 and p < 10-6. This report of a "lactate topography" in the human brain and its consistent pattern is evidence of region-specific lactate biology that is preserved across individuals.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Corteza Cerebral/metabolismo , Sustancia Gris/metabolismo , Ácido Láctico/metabolismo , Sustancia Blanca/metabolismo , Adulto , Anciano , Atlas como Asunto , Bicarbonatos/metabolismo , Corteza Cerebral/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Ácido Pirúvico/farmacocinética , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
17.
Magn Reson Med ; 83(6): 2150-2159, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31721293

RESUMEN

PURPOSE: Asymmetric in-plane k-space sampling of EPI can reduce the minimum achievable TE in hyperpolarized 13C with spectral-spatial radio frequency pulses, thereby reducing T2* weighting and signal-losses. Partial Fourier image reconstruction exploits the approximate Hermitian symmetry of k-space data and can be applied to asymmetric data sets to synthesize unmeasured data. Here we tested whether the application of partial Fourier image reconstruction would improve spatial resolution from hyperpolarized [1- 13C ]pyruvate scans in the human brain. METHODS: Fifteen healthy control subjects were imaged using a volumetric dual-echo echo-planar imaging sequence with spectral-spatial radio frequency excitation. Images were reconstructed by zero-filling as well as with the partial Fourier reconstruction algorithm projection-on-convex-sets. Resulting images were quantitatively evaluated with a no-reference image quality assessment. RESULTS: The no-reference image sharpness metric agreed with perceived improvements in image resolution and contrast. The [1- 13C ]lactate images benefitted most, followed by the [1- 13C ]pyruvate images. The 13C -bicarbonate images were improved by the smallest degree, likely owing to relatively lower SNR. CONCLUSIONS: Partial Fourier imaging and reconstruction were shown to improve the sharpness and contrast of human HP 13C brain data and is a viable method for enhancing resolution.


Asunto(s)
Algoritmos , Imagen Eco-Planar , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Ácido Pirúvico
18.
Cell Metab ; 31(1): 105-114.e3, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31564440

RESUMEN

Metabolic imaging using hyperpolarized magnetic resonance can increase the sensitivity of MRI, though its ability to inform on relevant changes to biochemistry in humans remains unclear. In this work, we image pyruvate metabolism in patients, assessing the reproducibility of delivery and conversion in the setting of primary prostate cancer. We show that the time to max of pyruvate does not vary significantly within patients undergoing two separate injections or across patients. Furthermore, we show that lactate increases with Gleason grade. RNA sequencing data demonstrate a significant increase in the predominant pyruvate uptake transporter, monocarboxylate transporter 1. Increased protein expression was also observed in regions of high lactate signal, implicating it as the driver of lactate signal in vivo. Targeted DNA sequencing for actionable mutations revealed the highest lactate occurred in patients with PTEN loss. This work identifies a potential link between actionable genomic alterations and metabolic information derived from hyperpolarized pyruvate MRI.


Asunto(s)
Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/métodos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Ácido Pirúvico/metabolismo , Simportadores/metabolismo , Anciano , Isótopos de Carbono/metabolismo , Humanos , Cinética , Masculino , Persona de Mediana Edad , Transportadores de Ácidos Monocarboxílicos/genética , Clasificación del Tumor , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , RNA-Seq , Reproducibilidad de los Resultados , Simportadores/genética
19.
Elife ; 82019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31408004

RESUMEN

Metabolic differences among and within tumors can be an important determinant in cancer treatment outcome. However, methods for determining these differences non-invasively in vivo is lacking. Using pancreatic ductal adenocarcinoma as a model, we demonstrate that tumor xenografts with a similar genetic background can be distinguished by their differing rates of the metabolism of 13C labeled glucose tracers, which can be imaged without hyperpolarization by using newly developed techniques for noise suppression. Using this method, cancer subtypes that appeared to have similar metabolic profiles based on steady state metabolic measurement can be distinguished from each other. The metabolic maps from 13C-glucose imaging localized lactate production and overall glucose metabolism to different regions of some tumors. Such tumor heterogeneity would not be not detectable in FDG-PET.


Asunto(s)
Adenocarcinoma/diagnóstico por imagen , Isótopos de Carbono/administración & dosificación , Carcinoma Ductal Pancreático/diagnóstico por imagen , Glucosa/metabolismo , Imagen por Resonancia Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Adenocarcinoma/clasificación , Adenocarcinoma/fisiopatología , Animales , Carcinoma Ductal Pancreático/clasificación , Carcinoma Ductal Pancreático/fisiopatología , Modelos Animales de Enfermedad , Ratones , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/fisiopatología
20.
Sci Rep ; 9(1): 3410, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833588

RESUMEN

Metabolic reprogramming is one of the defining features of cancer and abnormal metabolism is associated with many other pathologies. Molecular imaging techniques capable of detecting such changes have become essential for cancer diagnosis, treatment planning, and surveillance. In particular, 18F-FDG (fluorodeoxyglucose) PET has emerged as an essential imaging modality for cancer because of its unique ability to detect a disturbed molecular pathway through measurements of glucose uptake. However, FDG-PET has limitations that restrict its usefulness in certain situations and the information gained is limited to glucose uptake only.13C magnetic resonance spectroscopy theoretically has certain advantages over FDG-PET, but its inherent low sensitivity has restricted its use mostly to single voxel measurements unless dissolution dynamic nuclear polarization (dDNP) is used to increase the signal, which brings additional complications for clinical use. We show here a new method of imaging glucose metabolism in vivo by MRI chemical shift imaging (CSI) experiments that relies on a simple, but robust and efficient, post-processing procedure by the higher dimensional analog of singular value decomposition, tensor decomposition. Using this procedure, we achieve an order of magnitude increase in signal to noise in both dDNP and non-hyperpolarized non-localized experiments without sacrificing accuracy. In CSI experiments an approximately 30-fold increase was observed, enough that the glucose to lactate conversion indicative of the Warburg effect can be imaged without hyper-polarization with a time resolution of 12s and an overall spatial resolution that compares favorably to 18F-FDG PET.


Asunto(s)
Glucosa/metabolismo , Ácido Láctico/metabolismo , Fluorodesoxiglucosa F18/análisis , Espectroscopía de Resonancia Magnética , Tomografía de Emisión de Positrones/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...