Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 163
1.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Article En | MEDLINE | ID: mdl-38725852

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Lipopolysaccharides , Neoplastic Stem Cells , SOX9 Transcription Factor , Humans , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Female , Lipopolysaccharides/pharmacology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Up-Regulation , Signal Transduction , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Gene Expression Regulation, Neoplastic
2.
Cancer Res ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38657120

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Interleukin-1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. Here, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAMs) to inhibit BTIC self-renewal and CD8+ T cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1ß increased PD-L1 expression by interacting with the transcription factor yin yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PD-L1. Combined treatment with an IL1R2-neutralizing antibody and anti-PD-1 led to enhanced anti-tumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes.

3.
Cancer Sci ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38651282

Ubiquitination and deubiquitylation are pivotal posttranslational modifications essential for regulating cellular protein homeostasis and are implicated in the development of human diseases. Ubiquitin-specific protease 3 (USP3), a member of the ubiquitin-specific protease family, serves as a key deubiquitylation enzyme, playing a critical role in diverse cellular processes including the DNA damage response, cell cycle regulation, carcinogenesis, tumor cell proliferation, migration, and invasion. Despite notable research efforts, our current understanding of the intricate and context-dependent regulatory networks governing USP3 remains incomplete. This review aims to comprehensively synthesize existing published works on USP3, elucidating its multifaceted roles, functions, and regulatory mechanisms, while offering insights for future investigations. By delving into the complexities of USP3, this review strives to provide a foundation for a more nuanced understanding of its specific roles in various cellular processes. Furthermore, the exploration of USP3's regulatory networks may uncover novel therapeutic strategies targeting this enzyme in diverse human diseases, thereby holding promising clinical implications. Overall, an in-depth comprehension of USP3's functions and regulatory pathways is crucial for advancing our knowledge and developing targeted therapeutic approaches for human diseases.

4.
Adv Sci (Weinh) ; : e2308945, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627980

Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, has a poor prognosis and lacks effective treatment strategies. Here, the study discovered that TNBC shows a decreased expression of epithelial transcription factor ovo-like 2 (OVOL2). The loss of OVOL2 promotes fatty acid oxidation (FAO), providing additional energy and NADPH to sustain stemness characteristics, including sphere-forming capacity and tumor initiation. Mechanistically, OVOL2 not only suppressed STAT3 phosphorylation by directly inhibiting JAK transcription but also recruited histone deacetylase 1 (HDAC1) to STAT3, thereby reducing the transcriptional activation of downstream genes carnitine palmitoyltransferase1 (CPT1A and CPT1B). PyVT-Ovol2 knockout mice develop a higher number of primary breast tumors with accelerated growth and increased lung-metastases. Furthermore, treatment with FAO inhibitors effectively reduces stemness characteristics of tumor cells, breast tumor initiation, and metastasis, especially in OVOL2-deficient breast tumors. The findings suggest that targeting JAK/STAT3 pathway and FAO is a promising therapeutic strategy for OVOL2-deficient TNBC.

5.
Mol Cancer ; 23(1): 60, 2024 03 22.
Article En | MEDLINE | ID: mdl-38520019

BACKGROUND: Cancer stem-like cell is a key barrier for therapeutic resistance and metastasis in various cancers, including breast cancer, yet the underlying mechanisms are still elusive. Through a genome-wide lncRNA expression profiling, we identified that LINC00115 is robustly upregulated in chemoresistant breast cancer stem-like cells (BCSCs). METHODS: LncRNA microarray assay was performed to document abundance changes of lncRNAs in paclitaxel (PTX)-resistant MDA-MB-231 BCSC (ALDH+) and non-BCSC (ALDH-). RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to determine the binding proteins of LINC00115. The clinical significance of the LINC00115 pathway was examined in TNBC metastatic lymph node tissues. The biological function of LINC00115 was investigated through gain- and loss-of-function studies. The molecular mechanism was explored through RNA sequencing, mass spectrometry, and the CRISPR/Cas9-knockout system. The therapeutic potential of LINC00115 was examined through xenograft animal models. RESULTS: LINC00115 functions as a scaffold lncRNA to link SETDB1 and PLK3, leading to enhanced SETDB1 methylation of PLK3 at both K106 and K200 in drug-resistant BCSC. PLK3 methylation decreases PLK3 phosphorylation of HIF1α and thereby increases HIF1α stability. HIF1α, in turn, upregulates ALKBH5 to reduce m6A modification of LINC00115, resulting in attenuated degradation of YTHDF2-dependent m6A-modified RNA and enhanced LINC00115 stability. Thus, this positive feedback loop provokes BCSC phenotypes and enhances chemoresistance and metastasis in triple-negative breast cancer. SETDB1 inhibitor TTD-IN with LINC00115 ASO sensitizes PTX-resistant cell response to chemotherapy in a xenograft animal model. Correlative expression of LINC00115, methylation PLK3, SETDB1, and HIF1α are prognostic for clinical triple-negative breast cancers. CONCLUSIONS: Our findings uncover LINC00115 as a critical regulator of BCSC and highlight targeting LINC00115 and SETDB1 as a potential therapeutic strategy for chemotherapeutic resistant breast cancer.


RNA, Long Noncoding , Triple Negative Breast Neoplasms , Animals , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Breast/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Paclitaxel/pharmacology , Disease Models, Animal , Neoplastic Stem Cells/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Polo-like Kinases , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism
6.
Sci Rep ; 14(1): 4008, 2024 02 18.
Article En | MEDLINE | ID: mdl-38369538

Triple-negative breast cancer (TNBC) is regarded as the deadliest subtype of breast cancer because of its high heterogeneity, aggressiveness, and limited treatment options. Toxoflavin has been reported to possess antitumor activity. In this study, a series of toxoflavin analogs were synthesized, among which D43 displayed a significant dose-dependent inhibitory effect on the proliferation of TNBC cells (MDA-MB-231 and HCC1806). Additionally, D43 inhibited DNA synthesis in TNBC cells, leading to cell cycle arrest at the G2/M phase. Furthermore, D43 consistently promoted intracellular ROS generation, induced DNA damage, and resulted in apoptosis in TNBC cells. These effects could be reversed by N-acetylcysteine. Moreover, D43 significantly inhibited the growth of breast cancer patient-derived organoids and xenografts with a favorable biosafety profile. In conclusion, D43 is a potent anticancer agent that elicits significant antiproliferation, oxidative stress, apoptosis, and DNA damage effects in TNBC cells, and D43 holds promise as a potential candidate for the treatment of TNBC.


Pyrimidinones , Triazines , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Reactive Oxygen Species/metabolism , Cell Proliferation , Cell Line, Tumor , Apoptosis , DNA Damage
7.
Cell Death Dis ; 15(1): 86, 2024 01 24.
Article En | MEDLINE | ID: mdl-38267403

The NLRP3 inflammasome plays an important role in protecting the host from infection and aseptic inflammation, and its regulatory mechanism is not completely understood. Dysregulation of NLRP3 can cause diverse inflammatory diseases. HECTD3 is a E3 ubiquitin ligase of the HECT family that has been reported to participate in autoimmune and infectious diseases. However, the relationship between HECTD3 and the NLRP3 inflammasome has not been well studied. Herein, we show that HECTD3 blocks the interaction between NEK7 and NLRP3 to inhibit NLRP3 inflammasome assembly and activation. In BMDMs, Hectd3 deficiency promotes the assembly and activation of NLRP3 inflammasome and the secretion of IL-1ß, while the overexpression of HECTD3 inhibits these processes. Unexpectedly, HECTD3 functions in an E3 activity independent manner. Mechanically, the DOC domain of HECTD3 interacts with NACHT/LRR domain of NLRP3, which blocks NLRP3-NEK7 interaction and NLRP3 oligomerization. Furthermore, HECTD3 inhibits monosodium urate crystals (MSU)-induced gouty arthritis, a NLRP3-related disease. Thus, we reveal a novel regulatory mechanism of NLRP3 by HECTD3 and suggest HECTD3 could be a potential therapeutic target for NLRP3-dependent pathologies.


Arthritis, Gouty , Inflammasomes , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammation , Interleukin-1beta , NIMA-Related Kinases/genetics
8.
Sci China Life Sci ; 67(4): 765-777, 2024 Apr.
Article En | MEDLINE | ID: mdl-38110796

Human-specific insertions play important roles in human phenotypes and diseases. Here we reported a 446-bp insertion (Insert-446) in intron 11 of the TBC1D8B gene, located on chromosome X, and traced its origin to a portion of intron 6 of the EBF1 gene on chromosome 5. Interestingly, Insert-446 was present in the human Neanderthal and Denisovans genomes, and was fixed in humans after human-chimpanzee divergence. We have demonstrated that Insert-446 acts as an enhancer through binding transcript factors that promotes a higher expression of human TBC1D8B gene as compared with orthologs in macaques. In addition, over-expression TBC1D8B promoted cell proliferation and migration through "a dual finger" catalytic mechanism (Arg538 and Gln573) in the TBC domain in vitro and knockdown of TBC1D8B attenuated tumorigenesis in vivo. Knockout of Insert-446 prevented cell proliferation and migration in cancer and normal cells. Our results reveal that the human-specific Insert-446 promotes cell proliferation and migration by upregulating the expression of TBC1D8B gene. These findings provide a significant insight into the effects of human-specific insertions on evolution.


Gene Expression Regulation, Neoplastic , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Introns
9.
Front Immunol ; 14: 1264206, 2023.
Article En | MEDLINE | ID: mdl-38152394

Introduction: Breast cancer is a common malignant tumor associated with high morbidity and mortality. The role of ferroptosis, a regulated form of cell death, in breast cancer development and prognosis remains unclear. This study aims to investigate the relationship between ferroptosis-related genes and breast cancer and develop a prognostic model. Methods: RNA-seq expression datasets and clinical samples of breast cancer patients were obtained from public databases. Immunity- and drug resistance-related data were integrated. A preliminary screening was performed, resulting in the identification of 73 candidate ferroptosis factors. Univariate Cox regression analysis was conducted to select 12 genes, followed by LASSO Cox regression analysis to construct a prognostic risk prediction model consisting of 10 ferroptosis-related genes. The model was further characterized by immune cell infiltration. The expression levels of ferroptosis-related genes were validated in human breast cancer cell lines, and immunohistochemical (IHC) analysis was conducted on cancer specimens to assess ferroptosis-related protein expression. Results: The study identified 10 ferroptosis-related genes that were significantly associated with breast cancer prognosis. The constructed prognostic risk prediction model showed potential for predicting the prognostic value of these genes. In addition, the infiltration of immune cells was observed to be a characteristic of the model. The expression levels of ferroptosis-related genes were confirmed in human breast cancer cell lines, and IHC analysis provided evidence of ferroptosis-related protein expression in cancer specimens. Discussion: This study provides a novel prognostic model for breast cancer, incorporating 10 ferroptosis-related genes. The model demonstrates the potential for predicting breast cancer prognosis and highlights the involvement of immune cell infiltration. The expression levels of ferroptosis-related genes and proteins further support the association between ferroptosis and breast cancer development.


Breast Neoplasms , Ferroptosis , Humans , Female , Prognosis , Breast Neoplasms/genetics , Ferroptosis/genetics , Breast , Cell Death
10.
Cell Death Dis ; 14(10): 675, 2023 10 13.
Article En | MEDLINE | ID: mdl-37833248

Myoepithelium plays an important role in mammary gland development, but less is known about the molecular mechanism underlying how myoepithelium controls acinus differentiation during gestation. Herein, we found that loss of Kindlin-2 in myoepithelial cells impaired mammary morphogenesis, alveologenesis, and lactation. Using five genetically modified mouse lines combined with single-cell RNA sequencing, we found a Kindlin-2-Stat3-Dll1 signaling cascade in myoepithelial cells that inactivates Notch signaling in luminal cells and consequently drives luminal progenitor commitment to alveolar cells identity. Single-cell profiling revealed that Kindlin-2 loss significantly reduces the proportion of matured alveolar cells. Mechanistically, Kindlin-2 depletion in myoepithelial cells promotes Stat3 activation and upregulates Dll1, which activates the Notch pathway in luminal cells and inhibits luminal progenitor differentiation and maturation during gestation. Inhibition of Notch1 with tangeretin allowed luminal progenitors to regain commitment ability in the pregnant mice with Kindlin-2 depletion in myoepithelium. Taken together, we demonstrated that Kindlin-2 is essential to myoepithelium-controlled luminal progenitors to alveoli transition during gestation.


Epithelial Cells , Mammary Glands, Animal , Animals , Female , Mice , Pregnancy , Cell Differentiation , Epithelial Cells/metabolism , Epithelium , Lactation
11.
Elife ; 122023 10 03.
Article En | MEDLINE | ID: mdl-37787041

Anti-tumor drug resistance is a challenge for human triple-negative breast cancer (TNBC) treatment. Our previous work demonstrated that TNFAIP2 activates RAC1 to promote TNBC cell proliferation and migration. However, the mechanism by which TNFAIP2 activates RAC1 is unknown. In this study, we found that TNFAIP2 interacts with IQGAP1 and Integrin ß4. Integrin ß4 activates RAC1 through TNFAIP2 and IQGAP1 and confers DNA damage-related drug resistance in TNBC. These results indicate that the Integrin ß4/TNFAIP2/IQGAP1/RAC1 axis provides potential therapeutic targets to overcome DNA damage-related drug resistance in TNBC.


Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Integrin beta4/genetics , Integrin beta4/metabolism , Cell Line, Tumor , Drug Resistance , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , Cytokines
12.
J Biol Chem ; 299(11): 105351, 2023 Nov.
Article En | MEDLINE | ID: mdl-37838174

Breast cancer stem cells are mainly responsible for poor prognosis, especially in triple-negative breast cancer (TNBC). In a previous study, we demonstrated that ε-Sarcoglycan (SGCE), a type Ⅰ single-transmembrane protein, is a potential oncogene that promotes TNBC stemness by stabilizing EGFR. Here, we further found that SGCE depletion reduces breast cancer stem cells, partially through inhibiting the transcription of FGF-BP1, a secreted oncoprotein. Mechanistically, we demonstrate that SGCE could interact with the specific protein 1 transcription factor and translocate into the nucleus, which leads to an increase in the transcription of FGF-BP1, and the secreted FBF-BP1 activates FGF-FGFR signaling to promote cancer cell stemness. The novel SGCE-Sp1-FGF-BP1 axis provides novel potential candidate diagnostic markers and therapeutic targets for TNBC.


Neoplastic Stem Cells , Sarcoglycans , Sp1 Transcription Factor , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation , Neoplastic Stem Cells/metabolism , Sarcoglycans/metabolism , Signal Transduction , Sp1 Transcription Factor/metabolism , Triple Negative Breast Neoplasms/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
13.
Front Oncol ; 13: 1226118, 2023.
Article En | MEDLINE | ID: mdl-37904877

Claudin-low breast cancer (CLBC) is a subgroup of breast cancer discovered at the molecular level in 2007. Claudin is one of the primary proteins that make up tight junctions, and it plays crucial roles in anti-inflammatory and antitumor responses as well as the maintenance of water and electrolyte balance. Decreased expression of claudin results in the disruption of tight junction structures and the activation of downstream signaling pathways, which can lead to tumor formation. The origin of Claudin-low breast cancer is still in dispute. Claudin-low breast cancer is characterized by low expression of Claudin3, 4, 7, E-cadherin, and HER2 and high expression of Vimentin, Snai 1/2, Twist 1/2, Zeb 1/2, and ALDH1, as well as stem cell characteristics. The clinical onset of claudin-low breast cancer is at menopause age, and its histological grade is higher. This subtype of breast cancer is more likely to spread to lymph nodes than other subtypes. Claudin-low breast cancer is frequently accompanied by increased invasiveness and a poor prognosis. According to a clinical retrospective analysis, claudin-low breast cancer can achieve low pathological complete remission. At present, although several therapeutic targets of claudin-low breast cancer have been identified, the effective treatment remains in basic research stages, and no animal studies or clinical trials have been designed. The origin, molecular biological characteristics, pathological characteristics, treatment, and prognosis of CLBC are extensively discussed in this article. This will contribute to a comprehensive understanding of CLBC and serve as the foundation for the individualization of breast cancer treatment.

14.
J Natl Cancer Inst ; 115(12): 1586-1596, 2023 12 06.
Article En | MEDLINE | ID: mdl-37549066

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) and programmed cell death 1 ligand 1 (PD-L1) remain imperfect in predicting clinical outcomes of triple-negative breast cancer because outcomes do not always correlate with the expression of these biomarkers. Genomic and transcriptomic alterations that may contribute to the expression of these biomarkers remain incompletely uncovered. METHODS: We evaluated PD-L1 immunohistochemistry scores (SP142 and 28-8 assays) and TILs in our triple-negative breast cancer multiomics dataset and 2 immunotherapy clinical trial cohorts. Then, we analyzed genomic and transcriptomic alterations correlated with TILs, PD-L1 expression, and patient outcomes. RESULTS: Despite TILs serving as a decent predictor for triple-negative breast cancer clinical outcomes, exceptions remained. Our study revealed that several genomic alterations were correlated with unexpected events. In particular, PD-L1 expression may cause a paradoxical relationship between TILs and prognosis in certain patients. Consequently, we classified triple-negative breast cancers into 4 groups based on PD-L1 and TIL levels. The TIL-negative PD-L1-positive and TIL-positive PD-L1-negative groups were not typical "hot" tumors; both were associated with worse prognoses and lower immunotherapy efficacy than TIL-positive PD-L1-positive tumors. Copy number variation of PD-L1 and oncogenic signaling activation were correlated with PD-L1 expression in the TIL-negative PD-L1-positive group, whereas GSK3B-induced degradation may cause undetectable PD-L1 expression in the TIL-positive PD-L1-negative group. These factors have the potential to affect the predictive function of both PD-L1 and TILs. CONCLUSIONS: Several genomic and transcriptomic alterations may cause paradoxical effects among TILs, PD-L1 expression, and prognosis in triple-negative breast cancer. Investigating and targeting these factors will advance precision immunotherapy for patients with this disease.


B7-H1 Antigen , Triple Negative Breast Neoplasms , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Triple Negative Breast Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , DNA Copy Number Variations , Prognosis , Biomarkers , Genomics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
15.
Cancer Med ; 12(15): 16386-16404, 2023 08.
Article En | MEDLINE | ID: mdl-37392173

BACKGROUND: Breast cancer (BC) seriously threatens women's health. Aspirin plays a key role in the treatment and prognosis of BC. OBJECTIVE: To explore the effect of low-dose aspirin on BC radiotherapy through the mechanism of exosomes and natural killer (NK) cells. METHODS: BC cells were injected into the left chest wall to establish a BC model in nude mice. Tumor morphology and size were observed. Immunohistochemical staining for Ki-67 was used to observe the proliferation of tumor cells. TUNEL was used to detect the apoptosis of cancer cells. Protein levels of exosomal biogenesis- and secretion-related genes (Rab 11, Rab27a, Rab27b, CD63, and Alix) were detected by Western blot. Flow cytometry was used to detect apoptosis. Transwell assays were used to detect cell migration. A clonogenic assay was used to detect cell proliferation. Exosomes of BT549 and 4T1-Luc cells were extracted and observed by electron microscopy. After the coculture of exosomes and NK cells, the activity of NK cells was detected by CCK-8. RESULTS: The protein expression of genes related to exosomal genesis and secretion (Rab 11, Rab27a, Rab27b, CD63, and Alix) in BT549 and 4T1-Luc cells was upregulated under radiotherapy treatment. Low doses of aspirin inhibited exosome release from BT549 and 4T1-Luc cells and alleviated the inhibitory effect of BC cell exosomes on NK cell proliferation. In addition, knocking down Rab27a reduced the protein levels of exosome-related and secretion-related genes in BC cells, further enhancing the promotive effect of aspirin on NK cell proliferation, while overexpressing Rab27a had the opposite effect. Aspirin was combined at a radiotherapeutic dose of 10 Gy to enhance the radiotherapy sensitivity of radiotherapy-tolerant BC cells (BT549R and 4T1-LucR). Animal experiments have also verified that aspirin can promote the killing effect of radiotherapy on cancer cells and significantly inhibit tumor growth. CONCLUSION: Low doses of aspirin can inhibit the release of BC exosomes induced by radiotherapy and weaken their inhibition of NK cell proliferation, promoting radiotherapy resistance.


Exosomes , Neoplasms , Animals , Mice , Female , Mice, Nude , Aspirin/pharmacology , Cell Proliferation , Cell Movement , Exosomes/metabolism , Cell Line, Tumor , Neoplasms/metabolism
16.
Int J Mol Sci ; 24(11)2023 May 23.
Article En | MEDLINE | ID: mdl-37298108

Although DNA damage repair plays a critical role in cancer chemotherapy, the function of lncRNAs in this process remains largely unclear. In this study, in silico screening identified H19 as an lncRNA that potentially plays a role in DNA damage response and sensitivity to PARP inhibitors. Increased expression of H19 is correlated with disease progression and with a poor prognosis in breast cancer. In breast cancer cells, forced expression of H19 promotes DNA damage repair and resistance to PARP inhibition, whereas H19 depletion diminishes DNA damage repair and increases sensitivity to PARP inhibitors. H19 exerted its functional roles via direct interaction with ILF2 in the cell nucleus. H19 and ILF2 increased BRCA1 stability via the ubiquitin-proteasome proteolytic pathway via the H19- and ILF2-regulated BRCA1 ubiquitin ligases HUWE1 and UBE2T. In summary, this study has identified a novel mechanism to promote BRCA1-deficiency in breast cancer cells. Therefore, targeting the H19/ILF2/BRCA1 axis might modulate therapeutic approaches in breast cancer.


Breast Neoplasms , RNA, Long Noncoding , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/therapeutic use , Ubiquitin/metabolism , DNA Damage , Nuclear Factor 45 Protein/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
17.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1487-1495, 2023 May 09.
Article En | MEDLINE | ID: mdl-37162264

Angiopoietin-1 (ANG1) is a pro-angiogenic regulator that contributes to the progression of solid tumors by stimulating the proliferation, migration and tube formation of vascular endothelial cells, as well as the renewal and stability of blood vessels. However, the functions and mechanisms of ANG1 in triple-negative breast cancer (TNBC) are unclear. The clinical sample database shows that a higher level of ANG1 in TNBC is associated with poor prognosis compared to non-TNBC. In addition, knockdown of ANG1 inhibits TNBC cell proliferation and induces cell cycle G1 phase arrest and apoptosis. Overexpression of ANG1 promotes tumor growth in nude mice. Mechanistically, ANG1 promotes TNBC by upregulating carboxypeptidase A4 (CPA4) expression. Overall, the ANG1-CPA4 axis can be a therapeutic target for TNBC.


Triple Negative Breast Neoplasms , Humans , Animals , Mice , Cell Line, Tumor , Triple Negative Breast Neoplasms/metabolism , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Mice, Nude , Endothelial Cells/metabolism , Cell Proliferation/genetics , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
18.
Acta Biochim Biophys Sin (Shanghai) ; 55(6): 1001-1019, 2023 May 15.
Article En | MEDLINE | ID: mdl-37184281

The functional capacity of organisms declines in the process of aging. In the case of breast tissue, abnormal mammary gland development can lead to dysfunction in milk secretion, a primary function, as well as the onset of various diseases, such as breast cancer. In the process of aging, the terminal duct lobular units (TDLUs) within the breast undergo gradual degeneration, while the proportion of adipose tissue in the breast continues to increase and hormonal levels in the breast change accordingly. Here, we review changes in morphology, internal structure, and cellular composition that occur in the mammary gland during aging. We also explore the emerging mechanisms of breast aging and the relationship between changes during aging and breast-related diseases, as well as potential interventions for delaying mammary gland aging and preventing breast disease.


Breast Neoplasms , Mammary Glands, Human , Humans , Female , Breast , Aging
19.
Front Immunol ; 14: 1074242, 2023.
Article En | MEDLINE | ID: mdl-37122728

Breast cancer (BC) is the most common malignant tumor in women worldwide. Emerging evidence indicates the significance of fatty acid metabolism in BC. Fatty acid desaturase (FADS) is closely associated with cancer occurrence and development. Here, bioinformatic analysis and experimental validation were applied to investigate the potential functions of FADS in BC. Several public databases, including TCGA, GEO, HPA, Kaplan-Meier plotter, STRING, DAVID, cBioPortal, TIMER, TRRUST, and LinkedOmics were used to determine mRNA/protein expression levels, prognostic significance, functional enrichment, genetic alterations, association with tumor-infiltrating immune cells, and related transcription factors and kinases. BC tissues showed higher and lower mRNA expression of FADS2/6/8 and FADS3/4/5, respectively. FADS1/2/6 and FADS3/4/5 showed higher and lower protein expression levels, respectively, in BC tissues. Moreover, FADS1/7 up- and FADS3/8 down-regulation predicted poor overall and recurrence-free survival, while FADS2/5 up- and FADS4 down-regulation were associated with poor recurrence-free survival. Receiver operating characteristic curves revealed that FADS2/3/4/8 were indicative diagnostic markers. FADS family members showing differential expression levels were associated with various clinical subtypes, clinical stages, lymph node metastasis status, copy number variants, DNA methylation, and miRNA regulation in BC. The mRNA expression level of FADS1/2/3/4/5/7/8 was observed to be significantly negatively correlated with DNA methylation. FADS1/2 upregulation was significantly correlated with clinical stages. FADS1/4 expression was obviously lower in BC patients with higher lymph node metastasis than lower lymph node metastasis, while FADS7/8 expression was obviously higher in BC patients with higher lymph node metastasis than lower lymph node metastasis. FADS family members showed varying degrees of genetic alterations, and Gene Ontology and KEGG pathway enrichment analyses suggested their involvement in lipid metabolism. Their expression level was correlated with immune cell infiltration levels. FADS2 was chosen for further validation analyses. We found FADS2 to be significantly over-expressed in clinical BC tissue samples. The proliferation, migration, and invasion abilities of MDA-MB-231 and BT474 cells were significantly reduced after FADS2 knockdown. Furthermore, FADS2 may promote the occurrence and development of BC cells via regulating the epithelial-mesenchymal transition (EMT) pathway. Altogether, our results suggest that FADS1/2/3/4 can serve as potential therapeutic targets, prognostic indicators, and diagnostic markers in patients with BC.


Breast Neoplasms , Fatty Acid Desaturases , Humans , Female , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Breast Neoplasms/genetics , Lymphatic Metastasis , Computational Biology , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
J Med Chem ; 66(11): 7421-7437, 2023 06 08.
Article En | MEDLINE | ID: mdl-37212861

Triple-negative breast cancer (TNBC) is a leading malignancy among women that currently lack effective targeted therapeutic agents, and the limitations of treatment have prompted the emergence of new strategies. Methuosis is a novel vacuole-presenting cell death modality that promotes tumor cell death. Hence, a series of pyrimidinediamine derivatives were designed and synthesized through evaluation of their abilities that inhibit proliferation as well as induce methuosis against TNBC cells. Among them, JH530 showed excellent anti-proliferative activities and vacuolization capacity in TNBC. The mechanism research indicated that JH530 caused cell death through inducing methuosis of cancer cells. Furthermore, JH530 inhibited tumor growth remarkably in the HCC1806 xenograft model without an apparent decrease in body weight. Overall, JH530 is a methuosis inducer that displayed remarkable suppression of TNBC growth in vitro and in vivo, which provides a basis for the future progress of more small molecules for TNBC treatment.


Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Female , Apoptosis , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation
...