Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cancer Lett ; 591: 216902, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641310

RESUMEN

Platelets have received growing attention for their roles in hematogenous tumor metastasis. However, the tumor-platelet interaction in osteosarcoma (OS) remains poorly understood. Here, using platelet-specific focal adhesion kinase (FAK)-deficient mice, we uncover a FAK-dependent F3/TGF-ß positive feedback loop in OS. Disruption of the feedback loop by inhibition of F3, TGF-ß, or FAK significantly suppresses OS progression. We demonstrate that OS F3 initiated the feedback loop by increasing platelet TGF-ß secretion, and platelet-derived TGF-ß promoted OS F3 expression in turn and modulated OS EMT process. Immunofluorescence results indicate platelet infiltration in OS niche and we verified it was mediated by platelet FAK. In addition, platelet FAK was proved to mediate platelet adhesion to OS cells, which was vital for the initiation of F3/TGF-ß feedback loop. Collectively, these findings provide a rationale for novel therapeutic strategies targeting tumor-platelet interplay in metastatic OS.


Asunto(s)
Plaquetas , Neoplasias Óseas , Transición Epitelial-Mesenquimal , Osteosarcoma , Factor de Crecimiento Transformador beta , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/genética , Animales , Plaquetas/metabolismo , Plaquetas/patología , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Humanos , Línea Celular Tumoral , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Retroalimentación Fisiológica , Ratones , Ratones Noqueados , Progresión de la Enfermedad , Transducción de Señal , Adhesividad Plaquetaria
2.
J Colloid Interface Sci ; 663: 53-60, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38387186

RESUMEN

FeNC single atom catalysts (SACs) have attracted great interest due to their highly active FeN4 sites. However, the pyrolysis treatment often leads to inevitable metal migration and aggregation, which reduces the catalytic activity. Moreover, due to the Fenton reaction caused by FeNC in alkaline and acidic solutions, the presence of Fe and peroxide in electrodes may generate free radicals, resulting in serious degradation of the organic ionomer and the membrane. Herein, we report an original strategy of introducing Co single atoms into FeNC catalysts, forming atomically dispersed bimetallic active sites (FeCoNC) and improving the activity and stability of the catalyst. Benefiting from this strategy, FeCoNC catalyst exhibits excellent oxygen reduction reaction (ORR) activity in alkaline media (E1/2 = 0.88 V) and in acidic media (E1/2 = 0.77 V). As the cathode of Zn-air battery (ZAB), FeCoNC shows an excellent peak power density of 142.8 mW cm-2 and a specific capacity of 806.6 mAh/gZn. This work provides a novel avenue to optimize and enhance the ORR performance of atomic dispersed FeNC catalysts.

3.
ACS Biomater Sci Eng ; 9(12): 6610-6622, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37988580

RESUMEN

Spinal tumors often lead to more complex complications than other bone tumors. Nerve injuries, dura mater defect, and subsequent cerebrospinal fluid (CSF) leakage generally appear in spinal tumor surgeries and are followed by serious adverse outcomes such as infections and even death. The use of suitable dura mater replacements to achieve multifunctionality in fluid leakage plugging, preventing adhesions, and dural reconstruction is a promising therapeutic approach. Although there have been innovative endeavors to manage dura mater defects, only a handful of materials have realized the targeted multifunctionality. Here, we review recent advances in dura repair materials and techniques and discuss the relative merits in both preclinical and clinical trials as well as future therapeutic options. With these advances, spinal tumor patients with dura mater defects may be able to benefit from novel treatments.


Asunto(s)
Neoplasias de la Columna Vertebral , Humanos , Neoplasias de la Columna Vertebral/etiología , Neoplasias de la Columna Vertebral/cirugía , Pérdida de Líquido Cefalorraquídeo/cirugía , Pérdida de Líquido Cefalorraquídeo/etiología , Pérdida de Líquido Cefalorraquídeo/prevención & control , Procedimientos Neuroquirúrgicos/efectos adversos , Procedimientos Neuroquirúrgicos/métodos , Duramadre/cirugía , Duramadre/lesiones
4.
Front Oncol ; 13: 1192472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404767

RESUMEN

Purpose: Anlotinib, a tyrosine kinase inhibitor (TKI) has been in clinical application to inhibit malignant cell growth and lung metastasis in osteosarcoma (OS). However, a variety of drug resistance phenomena have been observed in the treatment. We aim to explore the new target to reverse anlotinib resistance in OS. Materials and Methods: In this study, we established four OS anlotinib-resistant cell lines, and RNA-sequence was performed to evaluate differentially expressed genes. We verified the results of RNA-sequence by PCR, western blot and ELISA assay. We further explored the effects of tocilizumab (anti- IL-6 receptor), either alone or in combined with anlotinib, on the inhibition of anlotinib-resistant OS cells malignant viability by CCK8, EDU, colony formation, apoptosis, transwell, wound healing, Cytoskeletal stain assays, and xenograft nude mouse model. The expression of IL-6 in 104 osteosarcoma samples was tested by IHC. Results: We found IL-6 and its downstream pathway STAT3 were activated in anlotinib-resistant osteosarcoma. Tocilizumab impaired the tumor progression of anlotinib-resistant OS cells, and combined treatment with anlotinib augmented these effects by inhibiting STAT3 expressions. IL-6 was highly expressed in patients with OS and correlated with poor prognosis. Conclusion: Tocilizumab could reverse anlotinib resistance in OS by IL-6/STAT3 pathway and the combination treatment with anlotinib rationalized further studies and clinical treatment of OS.

5.
ACS Appl Mater Interfaces ; 15(27): 32762-32771, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37389863

RESUMEN

Spinal cord injury (SCI) treatment requires a nanosystem for drug delivery that can effectively penetrate the blood-spinal cord barrier (BSCB). Herein, we designed poly(2-methacryloyloxyethyl phosphorylgallylcholine) (PMPC)/l-arginine (PMPC/A)-based nanomotors that can release nitric oxide (NO). The nanomotors were loaded with the inducible NO synthase inhibitor 1400W and nerve growth factor (NGF). PMPC with a zwitterionic structure not only provided good biocompatibility for the nanomotors but also facilitated their passage through the BSCB owing to the assistance of a large number of choline transporters on the BSCB. Additionally, the l-arginine loaded on the nanomotors was able to react with reactive oxygen species in the microenvironment of the injured nerve to produce NO, thereby conferring the ability of autonomic movement to the nanomotors, which facilitated the uptake of drugs by cells in damaged areas and penetration in pathological tissues. Moreover, in vivo animal experiments indicated that the PMPC/A/1400W/NGF nanomotors could effectively pass through the BSCB and restore the motion function of a rat SCI model by regulating its internal environment as well as the release of therapeutic drugs. Thus, the drug delivery system based on nanomotor technology offers a promising strategy for treating central nervous system diseases.


Asunto(s)
Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Ratas , Nanopartículas/administración & dosificación , Factor de Crecimiento Nervioso/uso terapéutico , Óxido Nítrico Sintasa/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos
6.
ACS Nano ; 17(13): 12573-12593, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37327056

RESUMEN

Recombinant granulocyte colony-stimulating factor (G-CSF), with a direct repair effect on injured cardiomyocytes against myocardial infarction ischemia-reperfusion-injury (IRI), displays a poor effect owing to the limited cardiac targeting efficacy. There are almost no reports of nanomaterials that deliver G-CSF to the IRI site. Herein, we propose a way to protect G-CSF by constructing one layer of nitric oxide (NO)/hydrogen sulfide (H2S) nanomotors on its outside. NO/H2S nanomotors with specific chemotactic ability to high expression of reactive oxygen species (ROS)/induced nitric oxide synthase (iNOS) at the IRI site can deliver G-CSF to the IRI site efficiently. Meanwhile, superoxide dismutase is covalently bound to the outermost part, reducing ROS at the IRI site through a cascade effect with NO/H2S nanomotors. The synergistic effect between NO and H2S on the effective regulation of the IRI microenvironment can not only avoid toxicity caused by excessive concentration of a single gas but also reduce inflammation level and relieve calcium overload, so as to promote G-CSF to play a cardioprotective role.


Asunto(s)
Sulfuro de Hidrógeno , Daño por Reperfusión Miocárdica , Humanos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Óxido Nítrico , Especies Reactivas de Oxígeno , Miocitos Cardíacos/metabolismo , Sulfuro de Hidrógeno/farmacología , Factor Estimulante de Colonias de Granulocitos
7.
J Immunother Cancer ; 11(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37185233

RESUMEN

BACKGROUND: Chordoma is an extremely rare, locally aggressive malignant bone tumor originating from undifferentiated embryonic remnants. There are no effective therapeutic strategies for chordoma. Herein, we aimed to explore cellular interactions within the chordoma immune microenvironment and provide new therapeutic targets. METHODS: Spectrum flow cytometry and multiplex immunofluorescence (IF) staining were used to investigate the immune microenvironment of chordoma. Cell Counting Kit-8, Edu, clone formation, Transwell, and healing assays were used to validate tumor functions. Flow cytometry and Transwell assays were used to analyze macrophage phenotype and chemotaxis alterations. Immunohistochemistry, IF, western blot, PCR, and ELISA assays were used to analyze molecular expression. An organoid model and a xenograft mouse model were constructed to investigate the efficacy of maraviroc (MVC). RESULTS: The chordoma immune microenvironment landscape was characterized, and we observed that chordoma exhibits a typical immune exclusion phenotype. However, macrophages infiltrating the tumor zone were also noted. Through functional assays, we demonstrated that chordoma-secreted CCL5 significantly promoted malignancy progression, macrophage recruitment, and M2 polarization. In turn, M2 macrophages markedly enhanced the proliferation, invasion, and migration viability of chordoma. CCL5 knockdown and MVC (CCL5/CCR5 inhibitor) treatment both significantly inhibited chordoma malignant progression and M2 macrophage polarization. We established chordoma patient-derived organoids, wherein MVC exhibited antitumor effects, especially in patient 4, with robust killing effect. MVC inhibits chordoma growth and lung metastasis in vivo. CONCLUSIONS: Our study implicates that the CCL5-CCR5 axis plays an important role in the malignant progression of chordoma and the regulation of macrophages, and that the CCL5-CCR5 axis is a potential therapeutic target in chordoma.


Asunto(s)
Cordoma , Macrófagos Asociados a Tumores , Humanos , Animales , Ratones , Macrófagos Asociados a Tumores/metabolismo , Cordoma/tratamiento farmacológico , Cordoma/metabolismo , Macrófagos , Maraviroc/metabolismo , Modelos Animales de Enfermedad , Microambiente Tumoral , Quimiocina CCL5/metabolismo
8.
APL Bioeng ; 7(1): 011501, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36845905

RESUMEN

Despite recent developments worldwide in the therapeutic care of osteosarcoma (OS), the ongoing challenges in overcoming limitations and side effects of chemotherapy drugs warrant new strategies to improve overall patient survival. Spurred by rapid progress in biomedicine, nanobiotechnology, and materials chemistry, chemotherapeutic drug delivery in treatment of OS has become possible in recent years. Here, we review recent advances in the design of drug delivery system, especially for chemotherapeutic drugs in OS, and discuss the relative merits in trials along with future therapeutic options. These advances may pave the way for novel therapies requisite for patients with OS.

9.
Cell Death Discov ; 9(1): 64, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792585

RESUMEN

CircRNAs play crucial roles in various malignancies via an increasing number of reported regulatory mechanisms, including the classic sponging mechanism between circRNAs and micro RNAs (miRNAs). We performed bioinformatic analyses and identified circTLK1 as a regulator of malignant chordoma progression. Moreover, we observed that circTLK1 showed high expression in chordoma cells and tissues, while circTLK1 interference suppressed chordoma cell proliferation and invasion. In addition, circTLK1 directly interacted with miR-16-5p, which has previously been shown to repress chordoma, and circTLK1 knockdown suppressed Smad3 expression. Chromatin immunoprecipitation sequencing further demonstrated that Smad3 acts as a positive regulator by interacting with TLK1, thereby mediating the circTLK1/miR-16-5p/Smad3 positive feedback axis. Taken together, our findings suggested that the disruption of the circTLK1/miR-16-5p/Smad3 positive feedback pathway, particularly via the Smad3 inhibitor SIS3, could be a promising therapeutic strategy.

10.
Autophagy ; 19(6): 1693-1710, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36451342

RESUMEN

Chemotherapy is an important treatment modality for osteosarcoma (OS), but the development of chemoresistance limits the therapeutic efficacy of OS and results in a poor prognosis. Thus, a better understanding of the mechanisms underlying chemoresistance in OS is essential. We previously demonstrated that COPS3/CSN3 (COP9 signalosome subunit 3) functions as an oncogene to promote OS cells lung metastasis, which is closely related to chemoresistance. Here, we showed that COPS3 was significantly upregulated in OS tissues with poor response to preoperative chemotherapy. Moreover, COPS3 depletion made OS cells more sensitive to cisplatin treatment in vitro and in vivo, implicating COPS3 as a driver of cisplatin resistance. Mechanistic investigations showed that COPS3 induced a cytoprotective macroautophagy/autophagy in response to cisplatin. Specifically, we identified FOXO3 as a critical target of COPS3, as high expression of COPS3 enhanced the nuclear abundance of FOXO3 and increased the expression of FOXO3-responsive genes, promoting autophagosome formation and maturation. In turn, FOXO3 regulated COPS3 levels by inhibiting ubiquitin-mediated degradation and attenuating SKP2-mediated COPS3 inhibition, cooperatively maintaining a high level of COPS3. In both COPS3-expressing OS cells and a murine xenograft model, inhibition of autophagy could also overcome resistance to cisplatin. Collectively, our results offer insights into the mechanisms of cisplatin resistance and suggest that targeting COPS3-mediated autophagy is a promising therapeutic strategy for overcoming the cisplatin resistance of OS.Abbreviations: 3-MA: 3-methyladenine; BECN1: beclin 1; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; COPS3/CSN3: COP9 signalosome subunit 3; CQ: chloroquine; DEGs: differentially expressed genes; FOXO3: forkhead box O3; GFP: green fluorescent protein; IC50: 50% inhibitory concentration; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; mRFP: monomeric red fluorescent protein; OS: osteosarcoma; PBS: phosphate-buffered saline; qRT-PCR: quantitative real-time PCR; RAB7: RAB7, member RAS oncogene family; RPS6KB1/p70S6K1: ribosomal protein S6 kinase B1; SEM: standard error of the mean; shRNA: short hairpin RNA; siRNA: small interfering RNA; SKP2: S-phase kinase associated protein 2; TEM: transmission electron microscopy; UPS: ubiquitin-proteasome system.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Animales , Ratones , Autofagia/genética , Cisplatino/farmacología , Complejo del Señalosoma COP9 , Retroalimentación , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Ubiquitina , Proteínas Proto-Oncogénicas , Proteína Forkhead Box O3/genética
11.
Orthop Surg ; 15(3): 829-838, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36519392

RESUMEN

OBJECTIVES: The fact that studies on anti-programmed cell death 1 (PD-1) or its relevant ligand 1 (PD-L1) have yielded such few responses greatly decreases the confidence in immunotherapy with checkpoint inhibitors for advanced osteosarcoma. We intended to characterize the expression of various checkpoint molecules with immunohistochemistry in osteosarcoma specimens and analyzed the relationship of the expression of these checkpoint molecules with patients' clinical courses. METHODS: This study was a retrospective non-intervention study from August 1st 2017 to March 1st 2020. Immunohistochemistry for B7-H3 (CD276, Cluster of Differentiation 276), CD47 (Cluster of Differentiation 47), PD-L1 (programmed cell death ligand 1), TIM3 (mucin-domain containing-3), TGF-ß (TransformingGrowth Factor ß), CXCR 4 (Chemokine Receptor 4), CD27 (Cluster of Differentiation 27), IDO1 (Indoleamine 2,3-dioxygenase 1), KIRs (Killer cell Immunoglobulin-like Receptors), and SDF-1 (Stromal cell-Derived Factor-1) was performed on 35 resected osteosarcoma specimens. Patients progressed upon first-line chemotherapy with evaluable lesions were qualified for this study, and their specimens previously stored in the pathological department repository would be retrieved for analysis. Associations between the immunohischemistry markers and clinicopathological variables and survival were evaluated by the χ2 displayed by cross-table, Cox proportional hazards regression model, and Kaplan-Meier plots. RESULTS: The positive rates of B7-H3, CD47, PD-L1, TIM3, and TGF-ß expression in this sample of 35 heavily treated osteosarcomas were 29% (10/35), 15% (5/35), 9% (3/35), 6% (2/35), and 6% (2/35), respectively, and diverse staining intensities were observed. Among these advanced patients, 15/35 (43%) had positive checkpoint expression, of which 33% (5/15) showed evidence of the co-expression of more than one checkpoint molecule. We did not find any obvious correlation with clinicopathological characteristics and the positive expression of these molecules. CONCLUSIONS: The present study highlights that only a small subset of progressive osteosarcomas, which had been heavily-treated, expressed tumor immune-associated checkpoint molecules, of which B7-H3 was the most positively expressed checkpoint and might be a promising target for further osteosarcoma investigation.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Osteosarcoma , Humanos , Neoplasias Pulmonares/patología , Antígeno B7-H1/análisis , Antígeno B7-H1/metabolismo , Antígeno CD47/uso terapéutico , Estudios Retrospectivos , Relevancia Clínica , Receptor 2 Celular del Virus de la Hepatitis A/uso terapéutico , Osteosarcoma/patología , Neoplasias Óseas/patología , Inmunoterapia , Antígenos B7
12.
Cell Death Discov ; 8(1): 488, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509754

RESUMEN

Osteosarcoma (OS) is a mesenchymal-origin tumor that constitutes the most common primary malignant bone tumor. The survival rate of the patients has significantly improved since the introduction of neoadjuvant chemotherapy and extensive resection, but it has stagnated in recent 40 years. Tyrosine kinase inhibitors (TKIs) have played a key part in the treatment of malignant tumors. In advanced OS, TKIs including anlotinib, apatinib, sorafenib, etc. have significantly improved the progression-free survival of patients, while the overall survival remains unchanged. The main reason is the rapid and inevitable progress of acquired drug resistance of OS. However, as the application of TKIs in OS and other tumors is still in the exploratory phase, its drug resistance mechanism and corresponding solutions are rarely reported. Hence, in this review, we summarize knowledge of the applications of TKIs, the mechanism of TKIs resistance, and the attempts to overcome TKIs resistance in OS, which are the three potentially novel insights of TKIs in OS. Because most evidence is derived from studies using animal and cell models, we also reviewed clinical trials and related bioinformatics data available in public databases, which partially improved our understanding of TKIs applications.

13.
Biosens Bioelectron ; 217: 114682, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115124

RESUMEN

Detecting the concentration of oxidized low-density lipoprotein (Ox-LDL) in whole blood is of great significance for monitoring the development of atherosclerosis. In order to simplify the complex processing steps of blood sample before the detection, an electrochemical sensor based on micromotor technology was designed, which was called magnesium (Mg)-Fe3O4@ prussian blue (PB)@ antibody of Ox-LDL (Ab)@ bovine serum albumin (BSA). The active capture of Ox-LDL in whole blood can be realized by the help of the movement of Mg microsphere with the driving force of H2. Then the captured Ox-LDL was collected on the surface of the magnetic glassy carbon electrode (MGCE) by self-made funnel device, and the content of Ox-LDL was detected by electrochemical workstation in the way of chronoamperometry (i-t). Due to the application of micromotor, the electrochemical sensor proposed in this study had good detection efficiency for Ox-LDL in whole blood with range from 1 × 10-2 µg/mL to 10 µg/mL, and the limit of detection (LOD) towards Ox-LDL was 9.80 × 10-4 µg/mL. The electrochemical sensor based on micromotor technology provides a rapid, effective, and sensitive method for the detection of Ox-LDL in whole blood.


Asunto(s)
Técnicas Biosensibles , Albúmina Sérica Bovina , Carbono , Lipoproteínas LDL , Magnesio , Tecnología
14.
Biosens Bioelectron ; 214: 114500, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35797936

RESUMEN

Aflatoxin B1 (AFB1) is a highly toxic fungal contaminant widely found in agricultural products. It causes serious harm to human health and the environment. Thus, a fast and sensitive detection approach is urgently needed to prevent AFB1-contaminated products from entering the market effectively. A photoelectrochemical (PEC) immunosensor was developed based on tungsten trioxide/cadmium sulfide core/shell coated with a composite layer consisting of polydopamine and loaded gold nanoparticles (WO3/CdS@PDA/Au) for AFB1 detection. CdS formed a heterojunction with WO3, which improved the photoelectric performance. The coated PDA reducing CdS toxicity was demonstrated by biological experiment of Bacillus subtilis. PDA and Au NPs promoted electron transfer between the semiconductors, being beneficial promoting the photoelectron transfer. Additionally, the antibodies were immobilized on WO3/CdS@PDA/Au via the reactive quinones on the surface of the PDA and electrostatic adsorption from Au NPs. The WO3/CdS@PDA/Au composite as a Z-scheme heterojunction possessed high performance of photocurrent response, and the photoproduced electron/hole transfer path was speculated by electrons spin-resonance spectroscopy technique. Under the optimum experimental conditions, the PEC immunosensor showed a wide linear detection range from 0.05 to 100 ng mL-1 for AFB1, indicating that the immunosensor has a bright application prospect.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Aflatoxina B1 , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oro/química , Humanos , Inmunoensayo/métodos , Límite de Detección , Nanopartículas del Metal/química
15.
Cancer Lett ; 536: 215660, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35318116

RESUMEN

Despite recent improvements in the therapeutic management of osteosarcoma (OS), the ongoing challenges in overcoming resistance to tyrosine kinase inhibitors (TKIs) warrant new strategies to improve overall patient survival. In this study, we established four anlotinib-resistant OS cell lines and demonstrated that the mechanism of anlotinib resistance is due to the loss of PTEN and reactivation of the MAPK pathway. Reduced PTEN expression was also observed in tumor samples from patients with OS and lung metastasis. We investigated the effects of an orally active PI3K inhibitor, either alone or in combination with anlotinib, on the progression of resistant cells and a xenograft nude mouse model. Notably, PI3K inhibitor suppressed anlotinib-resistant OS cell proliferation, migration, invasion, and cytoskeleton formation, and induced apoptosis. Combined treatment with anlotinib augmented these effects by restoring PTEN expression and decreasing MAPK and PI3K/AKT/mTOR signaling. PI3K inhibitors could reverse anlotinib resistance in OS, limiting OS cell development in combination with anlotinib. Our findings rationalize further studies on the applications of PI3K inhibitors that can be clinically used in anlotinib-refractory OS management.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Osteosarcoma , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Indoles , Ratones , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas
16.
J Orthop Translat ; 33: 107-119, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35330944

RESUMEN

Background/Objective: TiCu/TiCuN is a multilayer composite coating comprising TiN and Cu, which provides excellent wear resistance and antibacterial properties. However, its applicability as a functional coating has not been widely realised, and several aspects pertaining to its properties must still be explored. Methods: This study uses arc ion-plating technology to apply a TiCu/TiCuN coating on the surface of carbon fibre-reinforced (CFR) polyetheretherketone (PEEK) material.The safety and osteogenic activity of TiCu/TiCuN-coated CFR-PEEK materials were explored through cell experiments and animal experiments, and the molecules behind them were verified. Results: The new material exhibits improved mechanical compatibility (mechanical strength and elastic modulus) and superior light transmittance (elimination of metal artifacts and ray refraction during radiology and radiotherapy). The proposed implant delivers excellent biocompatibility for mesenchymal stem cells and human umbilical vein endothelial cells (HUVECs), and it exhibits excellent osteogenic activity both in vitro and in vivo. Additionally, it was determined that the applied TiCu/TiCuN coating aids in upregulating the expression of angiogenesis-related signals (i.e., cluster-of-differentiation 31, α-smooth muscle actin, vascular endothelial growth factor receptor, and hypoxia-inducible factor-1α) to promote neovascularisation, which is significant for characterising the mechanism of the coating in promoting bone regeneration. Conclusion: The current results reveal that the TiCu/TiCuN-coated CFR-PEEK implants may emerge as an advanced generation of orthopaedic implants. Translational potential statement: The results of this study indicate that TiCu/TiCuN coating-modified CFR-PEEK materials can promote bone repair through angiogenesis and have broad clinical translation prospects.

17.
Comb Chem High Throughput Screen ; 25(5): 934-944, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34397325

RESUMEN

AIM AND OBJECTIVE: To investigate the effect of Polyphyllin I (PPI) on HBV-related liver cancer through network pharmacology and in vitro experiments, and to explore its mechanism of action. MATERIALS AND METHODS: Use bioinformatics software to predict the active ingredient target of PPI and the disease target of liver cancer, and perform active ingredient-disease target analysis. The results of network pharmacology through molecular docking and in vitro experiments can be further verified. The HepG2 receptor cells (HepG2. 2. 15) were transfected with HBV plasmid for observation, with the human liver cancer HepG2 being used as the control. RESULTS: Bioinformatics analysis found that PPI had a total of 161 protein targets, and the predicted target and liver cancer targets were combined to obtain 13 intersection targets. The results of molecular docking demonstrated that PPI had a good affinity with STAT3, PTP1B, IL2, and BCL2L1. The results of the in vitro experiments indicated that the PPI inhibited cell proliferation and metastasis in a concentration-dependent manner (P<0.01). Compared with the vehicle group, the PPI group of 1.5, 3, and 6 µmol/L can promote the apoptosis of liver cancer to different degrees (P<0.01). CONCLUSION: The present study revealed the mechanism of PPI against liver cancer through network pharmacology and in vitro experiments. Its mechanism of action is related to the inhibition of PPI on the proliferation of HBV-related liver cancer through promoting the apoptosis of liver cancer cells. Additionally, in vitro experiments have also verified that PPI can promote the apoptosis of HepG2 and HepG2.2.15 cells.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Diosgenina/análogos & derivados , Medicamentos Herbarios Chinos/farmacología , Virus de la Hepatitis B , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Medicina Tradicional China/métodos , Simulación del Acoplamiento Molecular , Farmacología en Red
18.
J Colloid Interface Sci ; 611: 61-70, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34929439

RESUMEN

Vein thrombosis is one of the most serious types of cardiovascular disease. During the traditional treatment, due to the excessive blood flow rate, the drug utilization rate at the thrombus site is low and the thrombolysis efficiency is poor. In this study, bowl-shaped silica nanomotors driven by nitric oxide (NO) are designed to target the thrombus surface by modifying arginine-glycine-aspartic acid (RGD) polypeptide, and simultaneously loading l-arginine (LA) and thrombolytic drug urokinase (UK) in its mesopore structure. LA can react with excessive reactive oxygen species (ROS) in the thrombus microenvironment to produce NO, thus promoting the movement of nanomotors to improve the retention efficiency and utilization rate of drugs in the thrombus site, and at the same time achieve the effect of eliminating ROS and reducing the oxidative stress of inflammatory endothelial cells. The loaded UK can dissolve thrombus quickly. It is worth mentioning that NO can not only be used as a power source of nanomotors, but also can be used as a therapeutic agent to stimulate the growth of endothelial cells and reduce vascular injury. This therapeutic agent based on nanomotor technology is expected to provide support for future research on thrombus treatment.


Asunto(s)
Dióxido de Silicio , Trombosis , Células Endoteliales , Humanos , Óxido Nítrico , Dióxido de Silicio/uso terapéutico , Terapia Trombolítica , Trombosis/tratamiento farmacológico
19.
J Am Chem Soc ; 143(50): 21258-21263, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34879199

RESUMEN

The complex and intriguing structures of the antibiotics amycolamicin and kibdelomycin are herein confirmed through total synthesis. Careful titration of the synthetic products reveals that kibdelomycin is the salt form of amycolamicin. This synthesis employs a highly convergent strategy, which provides a modular approach for further SAR studies of this class of antibiotics.


Asunto(s)
Antibacterianos/síntesis química , Glucósidos/síntesis química , Pirroles/síntesis química , Pirrolidinonas/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Productos Biológicos/síntesis química , Productos Biológicos/química , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/efectos de los fármacos , Glucósidos/química , Glucósidos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Conformación Molecular , Pirroles/química , Pirroles/farmacología , Pirrolidinonas/química , Pirrolidinonas/farmacología
20.
Front Cell Dev Biol ; 9: 731311, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692688

RESUMEN

Background: Abnormal expression of lncRNA is closely related to the occurrence and metastasis of osteosarcoma. The tumor immune microenvironment (TIM) is considered to be an important factor affecting the prognosis and treatment of osteosarcoma. This study aims to explore the effect of immune-related lncRNAs (IRLs) on the prognosis of osteosarcoma and its relationship with the TIM. Methods: Ninety-five osteosarcoma samples from the TARGET database were included. Iterative LASSO regression and multivariate Cox regression analysis were used to screen the IRLs signature with the optimal AUC. The predict function was used to calculate the risk score and divide osteosarcoma into a high-risk group and low-risk group based on the optimal cut-off value of the risk score. The lncRNAs in IRLs signature that affect metastasis were screened for in vitro validation. Single sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithms were used to evaluate the role of TIM in the influence of IRLs on osteosarcoma prognosis. Results: Ten IRLs constituted the IRLs signature, with an AUC of 0.96. The recurrence and metastasis rates of osteosarcoma in the high-risk group were higher than those in the low-risk group. In vitro experiments showed that knockdown of lncRNA (AC006033.2) could increase the proliferation, migration, and invasion of osteosarcoma. ssGSEA and ESTIMATE results showed that the immune cell content and immune score in the low-risk group were generally higher than those in the high-risk group. In addition, the expression levels of immune escape-related genes were higher in the high-risk group. Conclusion: The IRLs signature is a reliable biomarker for the prognosis of osteosarcoma, and they alter the prognosis of osteosarcoma. In addition, IRLs signature and patient prognosis may be related to TIM in osteosarcoma. The higher the content of immune cells in the TIM of osteosarcoma, the lower the risk score of patients and the better the prognosis. The higher the expression of immune escape-related genes, the lower the risk score of patients and the better the prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...