Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Molecules ; 29(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275093

RESUMEN

Recently, oriented external electric fields (OEEFs) have earned much attention due to the possibility of tuning the properties of electronic systems. From a theoretical perspective, one can resort to electronic structure calculations to understand how the direction and strength of OEEFs affect the properties of electronic systems. However, for multi-reference (MR) systems, calculations employing the popular Kohn-Sham density functional theory with the traditional semilocal and hybrid exchange-correlation energy functionals can yield erroneous results. Owing to its decent compromise between accuracy and efficiency for MR systems at the nanoscale (i.e., MR nanosystems), in this study, thermally assisted occupation density functional theory (TAO-DFT) is adopted to explore the electronic properties of n-acenes (n = 2-10), containing n linearly fused benzene rings, in OEEFs, where the OEEFs of various electric field strengths are applied along the long axes of n-acenes. According to our TAO-DFT calculations, the ground states of n-acenes in OEEFs are singlets for all the cases examined. The effect of OEEFs is shown to be significant on the vertical ionization potentials and vertical electron affinities of ground-state n-acenes with odd-number fused benzene rings. Moreover, the MR character of ground-state n-acenes in OEEFs increases with the increase in the acene length and/or the electric field strength.

2.
Plant Dis ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235416

RESUMEN

Fusarium solani species complex (FSSC) is a causal agent of collar rot and fruit rot in passion fruit worldwide. This study investigated the diversity and characteristics of FSSC isolates causing collar rot and fruit rot in Taiwanese passion fruit. Thirty-five FSSC isolates were harvested from collar rot and fruit rot samples of passion fruit from various cultivars and different geographical locations in Taiwan. The majority of these FSSC isolates caused collar rot and fruit rot disease of varying virulence in the stems and fruits of the purple and yellow cultivars of passion fruit. FSSC isolates were categorized into four groups: F. solani-melongenae (FSSC 21; n=29), F. solani (FSSC 5; n=1), F. liriodendri (FSSC 24; n=1), and an unknown group (n=4) based on the phylogenetic analysis of internal transcribed sequence (ITS), translation elongation factor 1 alpha (TEF-1α), and RNA polymerase II subunit 2 (RPB2) sequences. In Taiwan, F. solani-melongenae was the dominant species causing collar rot and fruit rot in passion fruit. F. solani-melongenae was a homothallic fungus that produced perithecia in diseased tissues. However, F. solani and F. liriodendri did not produce perithecia. The unknown FSSC group showed morphological characteristics similar to F. solani-melongenae and produced perithecia. Phylogenetic analysis based on the ITS and TEF-1α sequences demonstrated that the Taiwanese FSSC isolates were distinct from the Brazilian and Chinese FSSC isolates. In summary, FSSC isolates causing collar rot and fruit rot of Taiwanese passion fruit showed high diversity, potentially associated with the geographical locations.

3.
Chem Biol Interact ; 402: 111202, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128802

RESUMEN

High-grade gliomas, including glioblastoma multiforme (GBM), continue to be a leading aggressive brain tumor in adults, marked by its rapid growth and invasive nature. Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), an enzyme, plays a significant role in tumor progression, yet its function in high-grade gliomas is still poorly investigated. In this study, we evaluated ALDH1A1 levels in clinical samples of GBM. We also assessed the prognostic significance of ALDH1A1 expression in GBM and LGG (low grade glioma) patients using TCGA (The Cancer Genome Atlas) database analysis. The MTT and transwell assays were utilized to examine cell growth and the invasive capability of U87 cells, respectively. We quantitatively examined markers for cell proliferation (Ki-67 and cyclin D1) and invasion (MMP2 and 9). A Western blot test was conducted to determine the downstream signaling of ALDH1A1. We found a notable increase in ALDH1A1 expression in high-grade gliomas compared to their low-grade counterparts. U87 cells that overexpressed ALDH1A1 showed increased cell growth and invasion. We found that ALDH1A1 promotes the phosphorylation of AKT, and inhibiting AKT phosphorylation mitigates the ALDH1A1's effects on tumor growth and migration. In summary, our findings suggest ALDH1A1 as a potential therapeutic target for GBM treatment.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Neoplasias Encefálicas , Movimiento Celular , Proliferación Celular , Glioblastoma , Invasividad Neoplásica , Retinal-Deshidrogenasa , Humanos , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Línea Celular Tumoral , Retinal-Deshidrogenasa/metabolismo , Retinal-Deshidrogenasa/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Transducción de Señal
4.
Transl Vis Sci Technol ; 13(7): 2, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949633

RESUMEN

Purpose: We sought to evaluate the efficacy of growth differentiation factor (GDF)-15 treatment for suppressing epithelial-mesenchymal transition (EMT) and alleviating transforming growth factor ß2 (TGFß2)-induced lens opacity. Methods: To test whether GDF-15 is a molecule that prevents EMT, we pretreated the culture with GDF-15 in neural progenitor cells, retinal pigment epithelial cells, and lens epithelial cells and then treated with factors that promote EMT, GDF-11, and TGFß2, respectively. To further investigate the efficacy of GDF-15 on alleviating lens opacity, we used mouse lens explant culture to mimic secondary cataracts. We pretreated the lens culture with GDF-15 and then added TGFß2 to develop lens opacity (n = 3 for each group). Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure EMT protein and gene expression, respectively. Results: In cell culture, GDF-15 pretreatment significantly attenuated EMT marker expression in cultured cells induced by treatment with GDF-11 or TGFß2. In the lens explant culture, GDF-15 pretreatment also reduced mouse lens opacity induced by exposure to TGFß2. Conclusions: Our results indicate that GDF-15 could alleviate TGFß2-induced EMT and is a potential therapeutic agent to slow or prevent posterior capsular opacification (PCO) progression after cataract surgery. Translational Relevance: Cataracts are the leading cause of blindness worldwide, with the only current treatment involving surgical removal of the lens and replacement with an artificial lens. However, PCO, also known as secondary cataract, is a common complication after cataract surgery. The development of an adjuvant that slows the progression of PCO will be beneficial to the field of anterior complications.


Asunto(s)
Catarata , Transición Epitelial-Mesenquimal , Factor 15 de Diferenciación de Crecimiento , Cristalino , Factor de Crecimiento Transformador beta2 , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Catarata/patología , Catarata/metabolismo , Catarata/prevención & control , Ratones , Cristalino/metabolismo , Cristalino/patología , Cristalino/efectos de los fármacos , Ratones Endogámicos C57BL , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Western Blotting , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/metabolismo
5.
Medicine (Baltimore) ; 103(14): e37653, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579059

RESUMEN

RATIONALE: Primary myelofibrosis is a subtype of myeloproliferative neoplasm that leads to bone marrow fibrosis. Historically, the only curative option for primary myelofibrosis was allogeneic hematopoietic stem cell transplant. Ruxolitinib, a Janus kinase inhibitor, is now used for the treatment of primary myelofibrosis and polycythemia vera. It effectively improves symptoms related to splenomegaly and anemia. However, its association with the development of opportunistic infections has been observed in clinical studies and practical application. PATIENT CONCERNS: A 64-year-old female with primary myelofibrosis and chronic hepatitis B infection who received ruxolitinib treatment. She was admitted for spiking fever and altered consciousness. DIAGNOSIS: Tuberculosis meningitis was suspected but cerebrospinal fluid can't identify any pathogens. An abdominal computed tomography scan revealed a left psoas abscess and an enlarged spleen. A computed tomography-guided pus drainage procedure was performed, showing a strong positive acid-fast stain and a positive Mycobacterium tuberculosis polymerase chain reaction result. INTERVENTIONS: antituberculosis medications were administered. The patient developed a psoas muscle abscess caused by tuberculosis and multiple dermatomes of herpes zoster during antituberculosis treatment. OUTCOMES: The patient was ultimately discharged after 6 weeks of treatment without apparent neurological sequelae. LESSONS: This case underscores the importance of clinicians evaluating latent infections and ensuring full vaccination prior to initiating ruxolitinib-related treatment for primary myelofibrosis.


Asunto(s)
Mielofibrosis Primaria , Absceso del Psoas , Pirazoles , Pirimidinas , Tuberculosis , Femenino , Humanos , Persona de Mediana Edad , Nitrilos/efectos adversos , Mielofibrosis Primaria/complicaciones , Mielofibrosis Primaria/tratamiento farmacológico , Absceso del Psoas/complicaciones , Músculos Psoas , Esplenomegalia/etiología , Tuberculosis/complicaciones
6.
R Soc Open Sci ; 10(6): 230126, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37293360

RESUMEN

The body size of an animal plays a crucial role in determining its trophic level and position within the food web, as well as its interactions with other species. In the symbiosis between Termitomyces and fungus-growing termites, termites rely on nutrition of fungal nodules produced by Termitomyces. To understand whether the size of termites and fungal nodules are related to their partner specificity, we quantified the size of termite farmer caste, and the size and density of nodules in termite nests of four genera of fungus-growing termites, and identified their cultivated Termitomyces fungus species based on internal transcribed spacer regions and partial large subunit ribosomal RNA gene sequences. The results showed that the size and density of fungal nodules were different among Termitomyces clades and revealed a constant trade-off between size and density among clades. The nodule size of each clade has low variation and fits normal distribution, indicating that size is a stabilized trait. Moreover, we found larger termite genera cultivated Termitomyces with larger but less numerous nodules. Based on these results, we concluded that there is a size specificity between Termitomyces and fungus-growing termites, which may lead to diversification of Termitomyces as adaptations to different termite genera.

7.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175712

RESUMEN

Abdominal aortic aneurysm (AAA) is a multifactorial cardiovascular disease with a high risk of death, and it occurs in the infrarenal aorta with vascular dilatation. High blood pressure acts on the aortic wall, resulting in rupture and causing life-threatening intra-abdominal hemorrhage. Vascular smooth muscle cell (VSMC) dysregulation and extracellular matrix (ECM) degradation, especially elastin breaks, contribute to structural changes in the aortic wall. The pathogenesis of AAA includes the occurrence of oxidative stress, inflammatory cell infiltration, elastic fiber fragmentation, VSMC apoptosis, and phenotypic transformation. Tributyrin (TB) is decomposed by intestinal lipase and has a function similar to that of butyrate. Whether TB has a protective effect against AAA remains uncertain. In the present study, we established an AAA murine model by angiotensin II (AngII) induction in low-density lipoprotein receptor knockout (LDLR-/-) mice and investigated the effects of orally administered TB on the AAA size, ratio of macrophage infiltration, levels of matrix metalloproteinase (MMP) expression, and epigenetic regulation. TB attenuates AngII-induced AAA size and decreases elastin fragmentation, macrophage infiltration, and MMP expression in the medial layer of the aorta and reduces the levels of SBP (systolic blood pressure, p < 0.001) and MMP-2 (p < 0.02) in the serum. TB reduces the AngII-stimulated expression levels of MMP2 (p < 0.05), MMP9 (p < 0.05), MMP12, and MMP14 in human aortic smooth muscle cells (HASMCs). Moreover, TB and valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, suppress AngII receptor type 1 (AT1R, p < 0.05) activation and increase the expression of acetyl histone H3 by HDAC activity inhibition (p < 0.05). Our findings suggest that TB exerts its protective effect by suppressing the activation of HDAC to attenuate the AngII-induced AT1R signaling cascade.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Humanos , Ratones , Animales , Angiotensina II/metabolismo , Elastina/metabolismo , Epigénesis Genética , Ratones Noqueados , Aneurisma de la Aorta Abdominal/metabolismo , Aorta Abdominal/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
8.
Med Mycol ; 61(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37061781

RESUMEN

Scedosporium and Lomentospora are important opportunistic pathogens causing localized or disseminated infection in humans. Understanding their environmental distribution is critical for public hygiene and clinical management. We carried out the first environmental survey in urbanized and natural regions in Taiwan. Overall, Scedosporium and Lomentospora species were recovered in 132 out of 273 soil samples (48.4%) across Taiwan. We morphologically and molecularly identified six Scedosporium and one Lomentospora species. All four major clinical relevant species were isolated with high frequency, i.e., Scedosporium apiospermum (42.4%), S. boydii (21.8%), Lomentosporaprolificans (14.5%), S. aurantiacum (8.5%); two clinically minor species, Pseudallescheria angusta (6.7%) and S. dehoogii (5.6%), and a saprobic species, S. haikouense (0.6%), had moderate to rare incidence. These fungal species had high incidence in urban (48.6%) and hospital (67.4%) soil samples, and had limited distribution in samples from natural regions (5%). Multivariate analysis of the fungal composition revealed strong evidence of the preferential distribution of these fungi in urban and hospital regions compared with natural sites. In addition, strong evidence suggested that the distribution and abundance of these fungal species were highly heterogeneous in the environment; samples in vicinity often yielded varied fungal communities. We concluded that these fungal species were prevalent in soil in Taiwan and their occurrences were associated with human activities. Although, hygiene sensitive sites such as hospitals were not harboring heavier fungal burdens than other urban facilities in our survey, still, aware should be taken for the high frequency of these clinical relevant species around hospital regions.


Scedosporium and Lomentospora are two fungal genera that can cause infections to wildlife and humans. Our experiment demonstrated that these fungi are ubiquitous in the soil in Taiwan. Their proximity to human-dwelling regions raises our awareness of their exposure to those who are susceptible.


Asunto(s)
Micosis , Scedosporium , Animales , Humanos , Scedosporium/genética , Prevalencia , Taiwán/epidemiología , Micosis/epidemiología , Micosis/microbiología , Micosis/veterinaria
9.
Antioxid Redox Signal ; 38(1-3): 215-233, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35713239

RESUMEN

Aims: Trimethylamine-N-oxide (TMAO) is a metabolite generated from dietary choline, betaine, and l-carnitine, after their oxidization in the liver. TMAO has been identified as a novel independent risk factor for atherosclerosis through the induction of vascular inflammation. However, the effect of TMAO on neointimal formation in response to vascular injury remains unclear. Results: This study was conducted using a murine model of acutely disturbed flow-induced atherosclerosis induced by partial carotid artery ligation. 3,3-Dimethyl-1-butanol (DMB) was used to reduce TMAO concentrations. Wild-type mice were divided into four groups [regular diet, high-TMAO diet, high-choline diet, and high-choline diet+DMB] to investigate the effects of TMAO elevation and its inhibition by DMB. Mice fed high-TMAO and high-choline diets had significantly enhanced neointimal hyperplasia and advanced plaques, elevated arterial elastin fragmentation, increased macrophage infiltration and inflammatory cytokine secretion, and enhanced activation of nuclear factor (NF)-κB, the NLRP3 inflammasome, and endoplasmic reticulum (ER) stress relative to the control group. Mice fed high-choline diets with DMB treatment exhibited attenuated flow-induced atherosclerosis, inflammasome expression, ER stress, and reactive oxygen species expression. Human aortic smooth muscle cells (HASMCs) were used to investigate the mechanism of TMAO-induced injury. The HASMCs were treated with TMAO with or without an ER stress inhibitor to determine whether inhibition of ER stress modulates the TMAO-induced inflammatory response. Innovation: This study demonstrates that TMAO regulates vascular remodeling via ER stress. Conclusion: Our findings demonstrate that TMAO elevation promotes disturbed flow-induced atherosclerosis and that DMB administration mitigates vascular remodeling, suggesting a rationale for a TMAO-targeted strategy for the treatment of atherosclerosis. Antioxid. Redox Signal. 38, 215-233.


Asunto(s)
Aterosclerosis , Inflamasomas , Animales , Humanos , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Arterias Carótidas/metabolismo , Colina/metabolismo , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Remodelación Vascular
10.
J Adv Res ; 40: 95-107, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36100336

RESUMEN

INTRODUCTION: Basic fibroblast growth factor (bFGF) plays a critical role in odontoblast differentiation and dentin matrix deposition, thereby aiding pulpo-dentin repair and regeneration. OBJECTIVES: The purpose of this study was to clarify the effects of bFGF on plasminogen activation factors, TIMP-1), ALP; and SPARC (osteonectin) expression/production of stem cells from apical papilla (SCAP) in vitro; and the involvement of MEK/ERK, p38, Akt, and TAK1 signaling. METHODS: SCAP were exposed to bFGF with/without pretreatment and co-incubation with various signal transduction inhibitors (U0126, SB203580, LY294002, and 5Z-7-oxozeaenol). The expression of FGF receptors (FGFRs), PAI-1, uPA, p-ERK, p-TAK1, and p-p38 was analyzed via immunofluorescent staining. The gene expression and protein secretion of SCAP were determined via real-time PCR and ELISA. ALP activity was evaluated via ALP staining. RESULTS: SCAP expressed FGFR1, 2, 3, and 4. bFGF stimulated the PAI-1, uPA, uPAR, and TIMP-1 mRNA expression (p < 0.05). bFGF induced PAI-1, uPA, and soluble uPAR production (p < 0.05) but suppressed the ALP activity and SPARC production (p < 0.05) of SCAP. bFGF stimulated ERK, TAK1, and p38 phosphorylation of SCAP. U0126 (a MEK/ERK inhibitor) and 5Z-7-oxozeaenol (a TAK1 inhibitor) attenuated the bFGF-induced PAI-1, uPA, uPAR, and TIMP-1 expression and production of SCAP, but SB203580 (a p38 inhibitor) did not. LY294002, SB203580, and 5Z-7oxozeaenol could not reverse the inhibition of ALP activity caused by bFGF. Interestingly, U0126 and 5Z-7-oxozeaenol prevented the bFGF-induced decline of SPARC production (p < 0.05). CONCLUSION: bFGF may regulate fibrinolysis and matrix turnover via modulation of PAI-1, uPA, uPAR, and TIMP-1, but bFGF inhibited the differentiation (ALP, SPARC) of SCAP. These events are mainly regulated by MEK/ERK, p38, and TAK1. Combined use of bFGF and SCAP may facilitate pulpal/root repair and regeneration via regulation of the plasminogen activation system, migration, matrix turnover, and differentiation of SCAP.


Asunto(s)
Fosfatasa Alcalina , Factor 2 de Crecimiento de Fibroblastos , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/farmacología , Butadienos , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Lactonas , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Nitrilos , Osteonectina/metabolismo , Osteonectina/farmacología , Plasminógeno/metabolismo , Plasminógeno/farmacología , Inhibidor 1 de Activador Plasminogénico/metabolismo , Inhibidor 1 de Activador Plasminogénico/farmacología , Resorcinoles , Transducción de Señal , Células Madre/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/farmacología , Zearalenona/administración & dosificación
11.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077238

RESUMEN

Patients with diabetes mellitus tend to develop ischemia-related complications and have compromised endothelial progenitor cell (EPC) function. Melatonin protects against ischemic injury, possibly via EPC modulation. We investigated whether melatonin pretreatment could restore EPC function impairment and improve circulation recovery in a diabetic critical limb ischemia mouse model. Under 25 mM high-glucose medium in vitro, EPC proliferation, nitric oxide production, tube formation, and endothelial nitric oxide synthase (eNOS) phosphorylation were significantly suppressed. Hyperglycemia promoted EPC senescence and apoptosis as well as increased reactive oxygen species (ROS) production. Melatonin treatment reversed the harmful effects of hyperglycemia on EPC through adenosine monophosphate-activated protein kinase-related mechanisms to increase eNOS phosphorylation and heme oxygenase-1 expression. In an in-vivo study, after a 4-week surgical induction of hindlimb ischemia, mice with streptozotocin (STZ)-induced diabetes showed significant reductions in new vessel formation, tissue reperfusion, and EPC mobilization in ischemic hindlimbs compared to non-diabetic mice. Mice with STZ-induced diabetes that received melatonin treatment (10 mg/kg/day, intraperitoneal) had significantly improved blood perfusion ratios of ischemic to non-ischemic limb, EPC mobilization, and densities of capillaries. In addition, a murine bone marrow transplantation model to support these findings demonstrated that melatonin stimulated bone marrow-originated EPCs to differentiate into vascular endothelial cells in femoral ligation-induced ischemic muscles. In summary, this study suggests that melatonin treatment augments EPC function along with neovascularization in response to ischemia in diabetic mice. We illustrated the protective effects of melatonin on EPC H2O2 production, senescence, and migration through melatonin receptors and modulating eNOS, AMPK, and HO-1 activities at the cellular level. Thus, melatonin might be used to treat the impairment of EPC mobilization and circulation recuperation in response to ischemic injury caused by chronic hyperglycemia. Additional studies are needed to elucidate the applicability of the results in humans.


Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Hiperglucemia , Melatonina , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Progenitoras Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Humanos , Peróxido de Hidrógeno/metabolismo , Hiperglucemia/metabolismo , Isquemia/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Estreptozocina/farmacología
12.
J Cell Mol Med ; 26(8): 2451-2461, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35307922

RESUMEN

Circulating endothelial progenitor cells (EPCs), which function in vascular repair, are the markers of endothelial dysfunction and vascular health. Fibroblast growth factor 21 (FGF21), a liver-secreted protein, plays a crucial role in glucose homeostasis and lipid metabolism. FGF21 has been reported to attenuate the progression of atherosclerosis, but its impact on EPCs under high oxidative stress conditions remains unclear. In vitro studies showed that the ß-klotho protein was expressed in cultured EPCs and that its expression was upregulated by FGF21 treatment. Hydrogen peroxide (H2 O2 )-induced oxidative stress impaired EPC function, including cell viability, migration and tube formation. Pretreatment with FGF21 restored the functions of EPCs after the exposure to H2 O2 . Administration of N(ω)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, inhibited the effects of FGF21 in alleviating oxidative injury by suppressing endothelial nitric oxide synthase (eNOS). In an in vivo study, the administration of FGF21 significantly reduced total cholesterol (TC) and blood glucose levels in apolipoprotein E (ApoE)-deficient mice that were fed a high-fat diet (HFD). Endothelial function, as reflected by acetylcholine-stimulated aortic relaxation, was improved after FGF21 treatment in ApoE-deficient mice. Analysis of mRNA levels in the aorta indicated that FGF21 increased the mRNA expression of eNOS and upregulated the expression of the antioxidant genes superoxide dismutase (SOD)1 and SOD2 in ApoE-deficient mice. These data suggest that FGF21 improves EPC functions via the Akt/eNOS/nitric oxide (NO) pathway and reverses endothelial dysfunction under oxidative stress. Therefore, administration of FGF21 may ameliorate a HFD-induced vascular injury in ApoE-deficient mice.


Asunto(s)
Dieta Alta en Grasa , Endotelio Vascular , Animales , Apolipoproteínas E , Dieta Alta en Grasa/efectos adversos , Endotelio Vascular/metabolismo , Factores de Crecimiento de Fibroblastos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , Óxido Nítrico Sintasa de Tipo III/metabolismo , ARN Mensajero/metabolismo
13.
Sci Rep ; 11(1): 17851, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497344

RESUMEN

Diabetes is a complex disease characterized by hyperglycemia, dyslipidemia, and insulin resistance. Plasma advanced glycation end products (AGEs) activated the receptor for advanced glycation end products (RAGE) and the activation of RAGE is implicated to be the pathogenesis of type 2 diabetic mellitus (T2DM) patient vascular complications. Sitagliptin, a dipeptidyl peptidase-4 (DPP4) inhibitor, is a new oral hypoglycemic agent for the treatment of T2DM. However, the beneficial effects on vascular calcification remain unclear. In this study, we used a high-fat diet (HFD)-fed low-density lipoprotein receptor deficiency (LDLR-/-) mice model to investigate the potential effects of sitagliptin on HFD-induced arterial calcification. Mice were randomly divided into 3 groups: (1) normal diet group, (2) HFD group and (3) HFD + sitagliptin group. After 24 weeks treatment, we collected the blood for chemistry parameters and DPP4 activity measurement, and harvested the aorta to evaluate calcification using immunohistochemistry and calcium content. To determine the effects of sitagliptin, tumor necrosis factor (TNF)-α combined with S100A12 was used to induce oxidative stress, activation of nicotinamide adenine dinucleotide phosphate (NADPH), up-regulation of bone markers and RAGE expression, and cell calcium deposition on human aortic smooth muscle cells (HASMCs). We found that sitagliptin effectively blunted the HFD-induced artery calcification and significantly lowered the levels of fasting serum glucose, triglyceride (TG), nitrotyrosine and TNF-α, decreased the calcium deposits, and reduced arterial calcification. In an in-vitro study, both S100A12 and TNF-α stimulated RAGE expression and cellular calcium deposits in HASMCs. The potency of S100A12 on HASMCs was amplified by the presence of TNF-α. Sitagliptin and Apocynin (APO), an NADPH oxidase inhibitor, inhibited the TNF-α + S100A12-induced NADPH oxidase and nuclear factor (NF)-κB activation, cellular oxidative stress, RAGE expression, osteo transcription factors expression and calcium deposition. In addition, treatment with sitagliptin, knockdown of RAGE or TNF-α receptor blunted the TNF-α + S100A12-induced RAGE expression. Our findings suggest that sitagliptin may suppress the initiation and progression of arterial calcification by inhibiting the activation of NADPH oxidase and NF-κB, followed by decreasing the expression of RAGE.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Fosfato de Sitagliptina/uso terapéutico , Calcificación Vascular/tratamiento farmacológico , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Ratones Noqueados , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fosfato de Sitagliptina/farmacología , Calcificación Vascular/metabolismo
14.
Plant Dis ; 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33754863

RESUMEN

Wishbone flower (Torenia fournieri L.) is a common ornamental plant for flower bed in Taiwan. In August 2018, root and stem rot of wishbone flower occurred on the flower bed in the campus of National Chung Hsing University, Taichung city, with 100% incidence. Symptoms were dark brown discoloration of basal stems and brown necrosis of roots. Lesions from base of stems were excised into 5 mm long fragments, which were then surface sterilized in 1% sodium hydrochloride for 1 min, rinsed in sterile distilled water, dried on filter paper and thereafter placed onto 2% water agar. After 24 h, hyphae characteristic of Rhizoctonia (Sneh et al. 1991) appeared and dominated in every isolation. Hyphal tips were transferred to potato dextrose agar (PDA). After 5 days of incubation at 28°C, characteristic brown colonies of Rhizoctonia (Sneh et al. 1991) were observed. Hyphal width was 4.29±0.52 µm. No sclerotia were visibly present after 21 days of growth on PDA at 28°C. Hyphae were stained by 0.3% safranin-O and 1% KOH. There were two nuclei in each hyphal compartment, suggesting a binucleate Rhizoctonia fungus. ITS sequence has been used as the best tool to identify specific anastomosis group (AG) of Rhizoctonia as shown by Sharon et al. (2006, 2008). ITS sequence was amplified using the primers Bd1a and ITS4 (Goka et al. 2009; White et al. 1990). Blast search analysis of this acquired sequence (acc. no. LC498494) revealed the highest similarity (98.75 to 99.83%) with the reference sequences (acc. nos. AB286934, AB286933, and AB196653) of binucleate Rhizoctonia AG-L, namely Ceratobasidium sp. AG-L. Pathogenicity test was carried out using seedlings of 4-week-old wishbone flower each grown in a pot of 6.35 cm diameter. To prepare the inoculum, a PDA agar block (6 mm in diameter) excised from the growing front of 5-day-old colony was transferred into a flask with 200 ml of potato dextrose broth (PDB) incubated in a shaker at 26°C and 120 rpm for 6 days. The PDB broth was then blended into slurry. Ten pots each with a seedling were inoculated by pouring 50 ml of slurry onto the potting medium. Five pots were served as the controls by pouring PDB only. Pots were maintained in a greenhouse (26 to 33°C). Three days after inoculation, all inoculated plants exhibited symptom of root and stem rot. The same fungus was reisolated and confirmed by sequencing rDNA-ITS. This is the first report of root and stem rot of wishbone flower caused by binucleate Rhizoctonia AG-L in Taiwan and in the world. Although this is the second cases, since Wang and Hsieh (1993), for binucleate Rhizoctonia AG-L to be pathogenic, this study shows that this fungus has the potential to cause damages and is worth of further investigations.

15.
FASEB J ; 35(2): e21377, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33481293

RESUMEN

Alcohol-associated liver disease (ALD) is a major human health issue for which there are limited treatment options. Experimental evidence suggests that nutrition plays an important role in ALD pathogenesis, and specific dietary fatty acids, for example, n6 or n3-PUFAs, may exacerbate or attenuate ALD, respectively. The purpose of the current study was to determine whether the beneficial effects of n3-PUFA enrichment in ALD were mediated, in part, by improvement in Wnt signaling. Wild-type (WT) and fat-1 transgenic mice (that endogenously convert n6-PUFAs to n3) were fed ethanol (EtOH) for 6 weeks followed by a single LPS challenge. fat-1 mice had less severe liver damage than WT littermates as evidenced by reduced plasma alanine aminotransferase, hepatic steatosis, liver tissue neutrophil infiltration, and pro-inflammatory cytokine expression. WT mice had a greater downregulation of Axin2, a key gene in the Wnt pathway, than fat-1 mice in response to EtOH and LPS. Further, there were significant differences between WT and fat-1 EtOH+LPS-challenged mice in the expression of five additional genes linked to the Wnt signaling pathway, including Apc, Fosl1/Fra-1, Mapk8/Jnk-1, Porcn, and Nkd1. Compared to WT, primary hepatocytes isolated from fat-1 mice exhibited more effective Wnt signaling and were more resistant to EtOH-, palmitic acid-, or TNFα-induced cell death. Further, we demonstrated that the n3-PUFA-derived lipid mediators, resolvins D1 and E1, can regulate hepatocyte expression of several Wnt-related genes that were differentially expressed between WT and fat-1 mice. These data demonstrate a novel mechanism by which n3-PUFAs can ameliorate ALD.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/prevención & control , Sustancias Protectoras/metabolismo , Vía de Señalización Wnt , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Etanol/efectos adversos , Ácido Graso Desaturasas/deficiencia , Ácido Graso Desaturasas/genética , Femenino , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Inflamación/genética , Lipopolisacáridos/efectos adversos , Hepatopatías Alcohólicas/etiología , Hepatopatías Alcohólicas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética
16.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33200960

RESUMEN

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Asunto(s)
Fusarium , Fusarium/genética , Filogenia , Enfermedades de las Plantas , Plantas
17.
Plant Dis ; 104(11): 3043-3053, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32822264

RESUMEN

Brown root rot (BRR), caused by Phellinus noxius (Corner) G. Cunningham, occurs on over 200 species of plants, especially woody trees and shrubs. Ceylon myrtle (Phyllanthus myrtifolius [Wight] Müll.Arg.), a common hedge plant, was recently observed to be infected with BRR. Disease diagnosis was performed by completing Koch's postulates, and Ceylon myrtle was confirmed to be a new host of P. noxius. Typical symptoms of BRR were observed, including reduction in leaf size, dieback of branches, and suspended growth of young leaves. A disease severity index was used to quantify BRR in this study. Compared with Malabar chestnut, Ceylon myrtle was relatively resistant to BRR. Surprisingly, phylogenetic analysis of the ITS and 28S sequences revealed that isolates identified as P. noxius from Taiwan and many other countries were clustered in the same clade but separate from the clade comprising isolates from China, which were designated Pyrrhoderma noxium based on P. noxius. Therefore, to temporarily distinguish these pathogens, the former clade was designated GPN (global P. noxius), whereas the latter clade was designated CPN (China Py. noxium). In biocontrol assays, Streptomyces padanus and Bacillus sp. were selected for BRR control of Ceylon myrtle. Disease severity was reduced from 0.51 to 0.37 by S. padanus and to 0.14 by Bacillus sp. in greenhouse trials. In addition, the two biocontrol agents, especially S. padanus, exhibited good growth-promoting effects on cuttings of Ceylon myrtle. With these double advantages, S. padanus and Bacillus sp. have great potential to control BRR in practical applications.


Asunto(s)
Agentes de Control Biológico , Phyllanthus , China , Filogenia , Enfermedades de las Plantas , Streptomyces , Taiwán
18.
Mycologia ; 112(1): 64-82, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31906813

RESUMEN

Species of Ceriporia (Irpicaceae, Basidiomycota) are saprotrophs or endophytes in forest ecosystems. To evaluate the taxonomy and generic relationships of Ceriporia and other related taxa, we used morphology and multigene phylogenetic analyses based on sequence data from nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 (ITS) region, nuc 28S rDNA (28S), and RNA polymerase II largest subunit (rpb1). Our results show that Ceriporia sensu lato is polyphyletic and distributed across multiple clades in the Irpicaceae, Phanerochaetaceae, and Meruliaceae. Some species previously considered in Ceriporia are now recovered in Meruliopsis, resulting in four new combinations: M. albomellea, M. crassitunicata, M. nanlingensis, and M. pseudocystidiata. Two new species of Meruliopsis are described: M. leptocystidiata from northeast China and South Korea and M. parvispora from Taiwan. Ceriporia arbuscula is described as a new species from Taiwan. Ceriporia mellita and Meruliopsis nanlingensis are newly recorded from Japan and Taiwan, and M. taxicola is recorded from Taiwan for the first time.


Asunto(s)
Filogenia , Polyporales/clasificación , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Asia Oriental , Bosques , Hifa/clasificación , Hifa/citología , Hifa/genética , Polyporales/citología , Polyporales/genética , ARN Polimerasa II/genética , ARN Ribosómico 28S/genética , Análisis de Secuencia de ADN , Esporas Fúngicas/clasificación , Esporas Fúngicas/citología , Esporas Fúngicas/genética
19.
J Cell Mol Med ; 24(1): 160-173, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31714683

RESUMEN

The four and a half LIM domain protein 2 (FHL2) is a member of the four and a half LIM domain (FHL) gene family, and it is associated with cholesterol-enriched diet-promoted atherosclerosis. However, the effect of FHL2 protein on vascular remodelling in response to hemodynamic alterations remains unclear. Here, we investigated the role of FHL2 in a model of restricted blood flow-induced atherosclerosis. To promote neointimal hyperplasia in vivo, we subjected FHL2+/+ and FHL2-/- mice to partial ligation of the left carotid artery (LCA). The expression of p-ERK and p-AKT was decreased in FHL2-/- mice. FHL2 bound to AKT regulated AKT phosphorylation and led to Rac1-GTP inactivation. FHL2 silencing in human aortic smooth muscle cells down-regulated the PDGF-induced phosphorylation of ERK and AKT. Furthermore, FHL2 silencing reduced cytoskeleton conformational changes and caused cell cycle arrest. We concluded that FHL2 is essential for the regulation of arterial smooth muscle cell function. FHL2 modulates proliferation and migration via mitogen-activated protein kinase (MAPK) and PI3K-AKT signalling, leading to arterial wall thickening and thus neointimal hyperplasia.


Asunto(s)
Aterosclerosis/prevención & control , Arterias Carótidas/patología , Grosor Intima-Media Carotídeo , Eliminación de Gen , Proteínas con Homeodominio LIM/fisiología , Proteínas Musculares/fisiología , Factores de Transcripción/fisiología , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Arterias Carótidas/cirugía , Movimiento Celular , Proliferación Celular , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Transducción de Señal
20.
Sci Rep ; 9(1): 4249, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862856

RESUMEN

Trimethylamine N-oxide (TMAO) is a metabolite originated from bacterial metabolism of choline-rich foods. Evidence suggests an association between TMAO and atherosclerosis, but the relationship between TMAO and endothelial progenitor cells (EPCs) remains unclear. This study aimed to identify the relationship between TMAO concentrations, circulating EPCs, and endothelial function in patients with stable angina. Eighty-one stable angina subjects who underwent coronary angiography were enrolled. The circulating EPCs and flow-mediated vasodilation (FMD) were measured to evaluate endothelial function. Plasma TMAO and inflammatory markers, such as hsCRP and IL-1ß, were determined. Furthermore, the effect of TMAO on EPCs was assessed in vitro. Patients with lower FMD had significantly decreased circulating EPCs, elevated TMAO, hsCRP, and IL-1ß concentrations. Plasma TMAO levels were negatively correlated with circulating EPC numbers and the FMD, and positively correlated with hsCRP, IL-1ß concentrations. In in vitro studies, incubation of TMAO in cultured EPCs promoted cellular inflammation, elevated oxidative stress, and suppressed EPC functions. Enhanced plasma TMAO levels were associated with reduced circulating EPCs numbers, endothelial dysfunction, and more adverse cardiovascular events. These findings provided evidence of TMAO's toxicity on EPCs, and delivered new insight into the mechanism of TMAO-mediated atherosclerosis, which could be derived from TMAO-downregulated EPC functions.


Asunto(s)
Angina Estable/fisiopatología , Células Progenitoras Endoteliales/metabolismo , Endotelio Vascular/fisiopatología , Metilaminas/metabolismo , Oxidantes/metabolismo , Anciano , Angina Estable/sangre , Angina Estable/diagnóstico , Angina Estable/inmunología , Proteína C-Reactiva/análisis , Proteína C-Reactiva/inmunología , Angiografía Coronaria , Femenino , Humanos , Masculino , Metilaminas/sangre , Persona de Mediana Edad , Oxidantes/sangre , Estudios Retrospectivos , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA