Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
J Neurosci Methods ; 403: 110038, 2024 03.
Article En | MEDLINE | ID: mdl-38145720

BACKGROUND: Deep brain stimulation (DBS) is an effective treatment for movement disorders such as Parkinson's disease (PD). However, local field potentials (LFPs) recorded through lead externalization during high-frequency stimulation (HFS) are contaminated by stimulus artifacts, which require to be removed before further analysis. NEW METHOD: In this study, a novel stimulus artifact removal algorithm based on manifold denoising, termed Shrinkage and Manifold-based Artifact Removal using Template Adaptation (SMARTA), was proposed to remove artifacts by deriving a template for each stimulus artifact and subtracting it from the signal. Under a low-dimensional manifold assumption, a matrix denoising technique called optimal shrinkage was applied to design a similarity metric such that the template for stimulus artifacts could be accurately recovered. RESULT: SMARTA was evaluated using semirealistic signals, which were the combination of semirealistic stimulus artifacts recorded in an agar brain model and LFPs of PD patients with no stimulation, and realistic LFP signals recorded in patients with PD during HFS. The results indicated that SMARTA removes stimulus artifacts with a modest distortion in LFP estimates. COMPARISON WITH EXISTING METHODS: SMARTA was compared with moving-average subtraction, sample-and-interpolate technique, and Hampel filtering. CONCLUSION: The proposed SMARTA algorithm helps the exploration of the neurophysiological mechanisms of DBS effects.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Artifacts , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Algorithms
2.
Front Hum Neurosci ; 16: 958521, 2022.
Article En | MEDLINE | ID: mdl-36158623

Background: The therapeutic effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) is related to the modulation of pathological neural activities, particularly the synchronization in the ß band (13-35 Hz). However, whether the local ß activity in the STN region can directly predict the stimulation outcome remains unclear. Objective: We tested the hypothesis that low-ß (13-20 Hz) and/or high-ß (20-35 Hz) band activities recorded from the STN region can predict DBS efficacy. Methods: Local field potentials (LFPs) were recorded in 26 patients undergoing deep brain stimulation surgery in the subthalamic nucleus area. Recordings were made after the implantation of the DBS electrode prior to its connection to a stimulator. The maximum normalized powers in the theta (4-7 Hz), alpha (7-13 Hz), low-ß (13-20 Hz), high-ß (20-35 Hz), and low-γ (40-55 Hz) subbands in the postoperatively recorded LFP were correlated with the stimulation-induced improvement in contralateral tremor or bradykinesia-rigidity. The distance between the contact selected for stimulation and the contact with the maximum subband power was correlated with the stimulation efficacy. Following the identification of the potential predictors by the significant correlations, a multiple regression analysis was performed to evaluate their effect on the outcome. Results: The maximum high-ß power was positively correlated with bradykinesia-rigidity improvement (r s = 0.549, p < 0.0001). The distance to the contact with maximum high-ß power was negatively correlated with bradykinesia-rigidity improvement (r s = -0.452, p < 0.001). No significant correlation was observed with low-ß power. The maximum high-ß power and the distance to the contact with maximum high-ß power were both significant predictors for bradykinesia-rigidity improvement in the multiple regression analysis, explaining 37.4% of the variance altogether. Tremor improvement was not significantly correlated with any frequency. Conclusion: High-ß oscillations, but not low-ß oscillations, recorded from the STN region with the DBS lead can inform stimulation-induced improvement in contralateral bradykinesia-rigidity in patients with PD. High-ß oscillations can help refine electrode targeting and inform contact selection for DBS therapy.

4.
Front Hum Neurosci ; 16: 829198, 2022.
Article En | MEDLINE | ID: mdl-35273486

Delineation of the subthalamic nuclei (STN) on MRI is critical for deep brain stimulation (DBS) surgery in patients with Parkinson's disease (PD). We propose this retrospective cohort study for quantitative analysis of MR signal-to-noise ratio (SNR), contrast, and signal difference-to-noise ratio (SDNR) of the STN on pre-operative three-dimensional (3D) stereotactic MRI in patients with medication-refractory PD. Forty-five consecutive patients with medication-refractory PD who underwent STN-DBS surgery in our hospital from January 2018 to June 2021 were included in this study. All patients had whole-brain 3D MRI, including T2-weighted imaging (T2WI), T2-weighted fluid-attenuated inversion recovery (FLAIR), and susceptibility-weighted imaging (SWI), at 3.0 T scanner for stereotactic navigation. The signal intensities of the STN, corona radiata, and background noise were obtained after placing regions of interest (ROIs) on corresponding structures. Quantitative comparisons of SNR, contrast, and SDNR of the STN between MR pulse sequences, including the T2WI, FLAIR, and SWI. Subgroup analysis regarding patients' sex, age, and duration of treatment. We used one-way repeated measures analysis of variance for quantitative comparisons of SNR, contrast, and SDNR of the STN between different MR pulse sequences, and we also used the dependent t-test for the post hoc tests. In addition, we used Mann-Whitney U test for subgroup analyses. Both the contrast (0.33 ± 0.07) and SDNR (98.65 ± 51.37) were highest on FLAIR (all p < 0.001). The SNR was highest on SWI (276.16 ± 115.5), and both the SNR (94.23 ± 31.63) and SDNR (32.14 ± 17.23) were lowest on T2WI. Subgroup analyses demonstrated significantly lower SDNR on SWI for patients receiving medication treatment for ≥13 years (p = 0.003). In conclusion, on 3D stereotactic MRI of medication-refractory PD patients, the contrast and SDNR for the STN are highest on FLAIR, suggesting the optimal delineation of STN on FLAIR.

5.
J Phys Chem A ; 125(41): 9077-9091, 2021 Oct 21.
Article En | MEDLINE | ID: mdl-34617775

Electronic structure methods based on density functional theory and coupled-cluster theory were employed to characterize elementary steps for the gas-phase thermal decomposition of bis(1,2,4-oxadiazole)bis(methylene) dinitrate (BODN). As typically found for nitrate ester-functionalized compounds, NO2 and HONO eliminations were the most energetically favorable unimolecular paths for the parent molecule's decomposition. From there, sequences of unimolecular reactions for daughters of the initiation steps were postulated and characterized. For intermediates found to have barriers to unimolecular decomposition that would make their rate at the temperatures and time scales of interest negligible, their decomposition via H-atom abstraction and radical-addition reactions was characterized. Creating a comprehensive network that can be employed to develop a detailed finite-rate chemical kinetics mechanism for simulating BODN's decomposition, the results provide a basis for modeling BODN's combustion, as well as its response to thermal loads germane to its aging, storage, and handling.

6.
Sci Rep ; 11(1): 14781, 2021 07 20.
Article En | MEDLINE | ID: mdl-34285292

Nonmotor symptoms (NMSs) cause major burden in patients with Parkinson's disease (PD). Previous NMSs progression studies mostly focused on the prevalence. We conducted a longitudinal study to identify the progression pattern by the severity. PD patients recruited from the outpatient clinics of a tertiary medical center were evaluated by the Unified Parkinson's Disease Rating Scale and Non-Motor Symptoms Scale (NMSS). A retrospective study with three-step analysis was performed. Step 1, the NMSs severity was compared among patients stratified by disease duration every 2 years up to 10 years. Step 2, patients with repeated tests in 2 years were categorized into 4 groups by the diseased duration of every 5 years. Step 3, the NMSS score changes in 6 years follow-up were determined, and the dosage of anti-PD drugs was compared to the NMSs severity changes. 676 patients completed the step 1 analysis, which showed a trend of NMSs worsening but not significant until the disease duration longer than 4-6 years. Furthermore, the severity did not change between repeated evaluations in 2 years in all patients. The progression became apparent after 6 years. Individual symptoms had different progression patterns and the increment of medications was independent to NMSs evolution. We demonstrated the NMSs severity progression in Taiwanese PD patients and the independence of the medications and NMSs progression.


Antiparkinson Agents/administration & dosage , Parkinson Disease/drug therapy , Aged , Antiparkinson Agents/therapeutic use , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Neuropsychological Tests , Parkinson Disease/psychology , Retrospective Studies , Severity of Illness Index , Taiwan , Tertiary Care Centers , Treatment Outcome
7.
Front Nutr ; 8: 650053, 2021.
Article En | MEDLINE | ID: mdl-34277679

Background: Lactobacillus plantarum PS128 (PS128) is a specific probiotic, known as a psychobiotic, which has been demonstrated to alleviate motor deficits and inhibit neurodegenerative processes in Parkinson's disease (PD)-model mice. We hypothesize that it may also be beneficial to patients with PD based on the possible mechanism via the microbiome-gut-brain axis. Methods: This is an open-label, single-arm, baseline-controlled trial. The eligible participants were scheduled to take 60 billion colony-forming units of PS128 once per night for 12 weeks. Clinical assessments were conducted using the Unified Parkinson's Disease Rating Scale (UPDRS), modified Hoehn and Yahr scale, and change in patient "ON-OFF" diary recording as primary outcome measures. The non-motor symptoms questionnaire, Beck depression inventory-II, patient assessment of constipation symptom, 39-item Parkinson's Disease Questionnaire (PDQ-39), and Patient Global Impression of Change (PGI-C) were assessed as secondary outcome measures. Results: Twenty-five eligible patients (32% women) completed the study. The mean age was 61.84 ± 5.74 years (range, 52-72), mean disease duration was 10.12 ± 2.3 years (range, 5-14), and levodopa equivalent daily dosage was 1063.4 ± 209.5 mg/daily (range, 675-1,560). All patients remained on the same dosage of anti-parkinsonian and other drugs throughout the study. After 12 weeks of PS128 supplementation, the UPDRS motor scores improved significantly in both the OFF and ON states (p = 0.004 and p = 0.007, respectively). In addition, PS128 intervention significantly improved the duration of the ON period and OFF period as well as PDQ-39 values. However, no obvious effect of PS128 on non-motor symptoms of patients with PD was observed. Notably, the PGI-C scores improved in 17 patients (68%). PS128 intervention was also found to significantly reduce plasma myeloperoxidase and urine creatinine levels. Conclusion: The present study demonstrated that PS128 supplementation for 12 weeks with constant anti-parkinsonian medication improved the UPDRS motor score and quality of life of PD patients. We suggest that PS128 could serve as a therapeutic adjuvant for the treatment of PD. In the future, placebo-controlled studies are needed to further support the efficacy of PS128 supplementation. Clinical Trial Registration: https://clinicaltrials.gov/, identifier: NCT04389762.

8.
Front Hum Neurosci ; 15: 797314, 2021.
Article En | MEDLINE | ID: mdl-34987369

Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective treatment for the motor impairments of patients with advanced Parkinson's disease. However, mood or behavioral changes, such as mania, hypomania, and impulsive disorders, can occur postoperatively. It has been suggested that these symptoms are associated with the stimulation of the limbic subregion of the STN. Electrophysiological studies demonstrate that the low-frequency activities in ventral STN are modulated during emotional processing. In this study, we report 22 patients with Parkinson's disease who underwent STN DBS for treatment of motor impairment and presented stimulation-induced mood elevation during initial postoperative programming. The contact at which a euphoric state was elicited by stimulation was termed as the hypomania-inducing contact (HIC) and was further correlated with intraoperative local field potential recorded during the descending of DBS electrodes. The power of four frequency bands, namely, θ (4-7 Hz), α (7-10 Hz), ß (13-35 Hz), and γ (40-60 Hz), were determined by a non-linear variation of the spectrogram using the concentration of frequency of time (conceFT). The depth of maximum θ power is located approximately 2 mm below HIC on average and has significant correlation with the location of contacts (r = 0.676, p < 0.001), even after partializing the effect of α and ß, respectively (r = 0.474, p = 0.022; r = 0.461, p = 0.027). The occurrence of HIC was not associated with patient-specific characteristics such as age, gender, disease duration, motor or non-motor symptoms before the operation, or improvement after stimulation. Taken together, these data suggest that the location of maximum θ power is associated with the stimulation-induced hypomania and the prediction of θ power is frequency specific. Our results provide further information to refine targeting intraoperatively and select stimulation contacts in programming.

9.
NeuroRehabilitation ; 47(4): 415-426, 2020.
Article En | MEDLINE | ID: mdl-33136071

BACKGROUND: Recent studies have suggested that cognitive-motor dual-task (DT) training might improve gait performance, locomotion automaticity, balance, and cognition in patients with Parkinson's disease (PD). OBJECTIVE: We aimed to investigate the efficacy of cognitive-cycling DT training in patients with early-stage PD. METHODS: Participants were scheduled to perform cognitive tasks simultaneously with the cycling training twice per week for eight weeks for a total of 16 sessions during their on-states. Clinical assessments were conducted using the unified Parkinson's disease rating scale (UPDRS), modified Hoehn and Yahr stage, Timed Up and Go (TUG) test, gait and cognitive performances under dual-task paradigm, the new freezing of gait questionnaire, Schwab and England Activities of Daily Living scale, 39-item Parkinson's disease questionnaire, and cognitive performance. RESULTS: Thirteen eligible patients were enrolled in the study. The mean age was 60.64±5.32 years, and the mean disease duration was 7.02±3.23 years. Twelve PD patients completed 16 serial cognitive-cycling sessions for two months. After 16 sessions of training (T2), the UPDRS III scores improved significantly in both the off- and on-states, and TUG were significantly less than those at pretraining (T0). During both the single-task and the DT situations, gait performance and spatial memory cognitive performance significantly improved from T0 to T2. CONCLUSION: The present study demonstrated that cognitive-cycling DT training improves the motor functions, gait and cognitive performances of PD patients.


Cognition/physiology , Gait/physiology , Parkinson Disease/psychology , Parkinson Disease/rehabilitation , Psychomotor Performance/physiology , Activities of Daily Living/psychology , Aged , Early Diagnosis , Female , Humans , Male , Middle Aged , Parkinson Disease/physiopathology , Pilot Projects , Treatment Outcome
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5188-5191, 2020 07.
Article En | MEDLINE | ID: mdl-33019154

A miniaturized intracerebral potential recorder for long-term local field potential (LFP) of deep brain signals is proposed. LFP can be recorded by deep brain electrodes. The abnormal beta-band oscillation of LFP in subthalamic nucleus and internal globus pallidus in patients with Parkinson's disease (PD) are associated with the severity of the symptoms. The LFP signal from patients who have been implanted with deep brain electrode can be monitored by our system for at least 24 hours in real time. Graphical user interface has also been developed for use by medical personnel. Imitation experiments and in vivo experiments were performed to successfully verify that our system can measure LFP signals. With 24-hour intracerebral signals, researchers can analyze what is happened in the brain in daily life. In the future, more effective PD treatment can be developed, such as intelligent closed-loop deep brain stimulation.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Brain , Globus Pallidus , Humans , Parkinson Disease/therapy
12.
J Neurol ; 267(5): 1499-1507, 2020 May.
Article En | MEDLINE | ID: mdl-32025799

INTRODUCTION: Nonmotor symptoms (NMSs) severely affect the daily quality of life of patients with Parkinson's disease (PD). Although many studies have documented the clinical characteristics of NMSs in PD patients, some issues remain unaddressed. The severity and gender distribution of NMSs in Asian and the Western patients differ. The correlations between clinical characteristics and NMS manifestations remain unclear. We studied these relationships in a large cohort of Taiwanese PD patients. METHODS: Patients with PD were recruited from the outpatient clinic of a tertiary medical center and evaluated with standardized assessment protocols, including the NonMotor Symptoms Scale (NMSS), Unified Parkinson's Disease Rating Scale (UPDRS), Hoehn and Yahr (H&Y) scale, Mini-Mental Status Examination, and Montreal Cognitive Assessment. RESULTS: Among 820 patients enrolled, 41.8% were female. The prevalence of the NMSs was 96.5%, with attention/memory (79.51%) being the most frequently involved domain. The mean severity score on the NMSS was 36.48 ± 34.30. Male patients reported higher NMS prevalence and severity than female patients, mostly in the gastrointestinal tract and urinary domains. We found that the severity of NMSs was correlated with disease duration, UPDRS Part III score, and H&Y stage. CONCLUSION: Although they exhibited similar NMS prevalence, Taiwanese PD patients reported less intense NMSs compared with those reported by Western patients. Furthermore, the NMS items our patients emphasized and gender discrepancies were distinct from those in Western studies.


Cognitive Dysfunction/physiopathology , Gastrointestinal Diseases/physiopathology , Parkinson Disease/physiopathology , Urologic Diseases/physiopathology , Aged , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Female , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/etiology , Humans , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/epidemiology , Prevalence , Retrospective Studies , Severity of Illness Index , Taiwan/epidemiology , Urologic Diseases/epidemiology , Urologic Diseases/etiology
13.
Neurobiol Dis ; 132: 104605, 2019 12.
Article En | MEDLINE | ID: mdl-31494286

Freezing of gait (FOG) is a disabling clinical phenomenon often found in patients with advanced Parkinson's disease (PD). FOG impairs motor function, causes falls and leads to loss of independence. Whereas dual tasking that distracts patients' attention precipitates FOG, auditory or visual cues ameliorate this phenomenon. The pathophysiology of FOG remains unclear. Previous studies suggest that the basal ganglia are involved in the generation of FOG. Investigation of the modulation of neuronal activities within basal ganglia structures during walking is warranted. To this end, we recorded local field potentials (LFP) from the subthalamic nucleus (STN) while PD patients performed single-task gait (ST) or walked while dual-tasking (DT). An index of FOG (iFOG) derived from trunk accelerometry was used as an objective measure to differentiate FOG-vulnerable gait from normal gait. Two spectral activities recorded from the STN region were associated with vulnerability to freezing. Greater LFP power in the low beta (15-21 Hz) and theta (5-8 Hz) bands were noted during periods of vulnerable gait in both ST and DT states. Whereas the elevation of low beta activities was distributed across STN, the increase in theta activity was focal and found in ventral STN and/or substantia nigra (SNr) in ST. The results demonstrate that low beta and theta band oscillations within the STN area occur during gait susceptible to freezing in PD. They also add to the evidence that narrow band ~18 Hz activity may be linked to FOG.


Gait Disorders, Neurologic/physiopathology , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology , Aged , Deep Brain Stimulation , Female , Gait Disorders, Neurologic/etiology , Humans , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/therapy
15.
Front Hum Neurosci ; 12: 470, 2018.
Article En | MEDLINE | ID: mdl-30568585

Objective: Magnetic resonance imaging fusion techniques guided by frame-based stereotactic computed tomography and microelectrode recordings are widely used to target the subthalamic nucleus. However, MRI is not always available. The aim of this study was to determine whether the indirect targeting of the subthalamic nucleus for deep brain stimulation using frame-based stereotactic computed tomography and microelectrode recording guidance in patients with advanced idiopathic Parkinson's disease was an effective and safe treatment and to determine the factors that contributed to outcome. Methods: Thirty-four consecutive patients with Parkinson's disease who were treated from 2010 to 2012 were enrolled in this retrospective cohort study. The patients were assessed with the Unified Parkinson's Disease Rating Scale-part III (UPDRS-III) and other clinical profiles peri- and post-operatively. The horizontal and vertical distances between the midpoint of the head frame and the brain midline at the septum pellucidum level and the upper edge of the bilateral lens, respectively, on a thin-section brain computed tomography scan were defined as the horizontal and vertical deviations, respectively. Results: After the deep brain stimulation surgery, the patients' UPDRS-III scores improved 48 ± 2.8% (range, 20-81%) compared to the patients' baseline off-levodopa scores. No surgery-associated complications were found. The mean recorded length difference of the subthalamic nucleus between the initial and final single microelectrode recording trajectories was 5.37 ± 0.16 mm (range, 3.99-7.50). Multiple linear regression analyses revealed that the increased lengths of the vertical (regression coefficient [B]: -0.0626; 95% confidence interval [CI]: -0.113 to -0.013) and horizontal deviations (B: -0.0497; 95% CI: -0.083 to -0.017) were associated with less improvement in the patients' UPDRS scores. Conclusion: These results showed that the indirect targeting of the subthalamic nucleus for deep brain stimulation using frame-based stereotactic computed tomography and microelectrode recording guidance in patients with advanced idiopathic Parkinson's disease was effective and safe. Greater symmetry of the head frame fixation resulted in better outcomes of the deep brain stimulation of the subthalamic nucleus in patients with Parkinson's disease, especially when the horizontal deviation was 2 mm or less and the vertical deviation was 1 mm or less.

16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2320-2324, 2018 Jul.
Article En | MEDLINE | ID: mdl-30440871

Deep Brain Stimulation (DBS) is a widely used therapy to ameliorate symptoms experienced by patients with Parkinson's Disease (PD). Conventional DBS is continuously ON even though PD symptoms fluctuate over time leading to undesirable side-effects and high energy requirements. This study investigates the use of a Iogistic regression-based classifier to identify periods when PD patients have rest tremor exploiting Local Field Potentials (LFPs) recorded with DBS electrodes implanted in the Subthalamic Nucleus in 7 PD patients (8 hemispheres). Analyzing 36.1 minutes of data with a 512 milliseconds non-overlapping window, the classification accuracy was well above chance-level for all patients, with Area Under the Curve (AUC) ranging from 0.67 to 0.93. The features with the most discriminative ability were, in descending order, power in the 31-45 Hz, 5-7 Hz, 21-30 Hz, 46-55 Hz, and 56-95 Hz frequency bands. These results suggest that using a machine learning-based classifier, such as the one proposed in this study, can form the basis for on-demand DBS therapy for PD tremor, with the potential to reduce side-effects and lower battery consumption.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Tremor/therapy , Electrodes , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Tremor/etiology
17.
J Neurosci ; 38(22): 5111-5121, 2018 05 30.
Article En | MEDLINE | ID: mdl-29760182

Gait disturbances in Parkinson's disease are commonly refractory to current treatment options and majorly impair patient's quality of life. Auditory cues facilitate gait and prevent motor blocks. We investigated how neural dynamics in the human subthalamic nucleus of Parkinsons's disease patients (14 male, 2 female) vary during stepping and whether rhythmic auditory cues enhance the observed modulation. Oscillations in the beta band were suppressed after ipsilateral heel strikes, when the contralateral foot had to be raised, and reappeared after contralateral heel strikes, when the contralateral foot rested on the floor. The timing of this 20-30 Hz beta modulation was clearly distinct between the left and right subthalamic nucleus, and was alternating within each stepping cycle. This modulation was similar, whether stepping movements were made while sitting, standing, or during gait, confirming the utility of the stepping in place paradigm. During stepping in place, beta modulation increased with auditory cues that assisted patients in timing their steps more regularly. Our results suggest a link between the degree of power modulation within high beta frequency bands and stepping performance. These findings raise the possibility that alternating deep brain stimulation patterns may be superior to constant stimulation for improving parkinsonian gait.SIGNIFICANCE STATEMENT Gait disturbances in Parkinson's disease majorly reduce patients' quality of life and are often refractory to current treatment options. We investigated how neural activity in the subthalamic nucleus of patients who received deep brain stimulation surgery covaries with the stepping cycle. 20-30 Hz beta activity was modulated relative to each step, alternating between the left and right STN. The stepping performance of patients improved when auditory cues were provided, which went along with enhanced beta modulation. This raises the possibility that alternating stimulation patterns may also enhance beta modulation and may be more beneficial for gait control than continuous stimulation, which needs to be tested in future studies.


Beta Rhythm , Subthalamic Nucleus/physiopathology , Walking , Acoustic Stimulation , Aged , Biomechanical Phenomena , Cues , Deep Brain Stimulation , Electrodes, Implanted , Feedback, Psychological , Female , Gait/physiology , Heel/physiology , Humans , Male , Middle Aged , Parkinson Disease/physiopathology , Psychomotor Performance
18.
J Clin Neurol ; 14(2): 225-233, 2018 Apr.
Article En | MEDLINE | ID: mdl-29629527

BACKGROUND AND PURPOSE: The effects of high-intensity cycling as an adjuvant therapy for early-stage Parkinson's disease (PD) were highlighted recently. However, patients experience difficulties in maintaining these cycling training programs. The present study investigated the efficacy of cycling at a mild-to-moderate intensity in early-stage PD. METHODS: Thirteen PD patients were enrolled for 16 serial cycling sessions over a 2-month period. Motor function was assessed using the Unified Parkinson's Disease Rating Scale part III (UPDRS III) and Timed Up and Go (TUG) test as primary outcomes. The Montreal Cognitive Assessment (MoCA), modified Hoehn and Yahr Stage (mHYS), total UPDRS, Falls Efficacy Scale, New Freezing of Gait Questionnaire, Schwab and England Activities of Daily Living, 39-item Parkinson's Disease Questionnaire, Patient Global Impression of Change, and gait performance were assessed as secondary outcomes. RESULTS: The age and the age at onset were 59.67±7.24 and 53.23±10.26 years (mean±SD), respectively. The cycling cadence was 53.27±8.92 revolutions per minute. The UPDRS III score improved significantly after 8 training sessions (p=0.011) and 16 training sessions (T2) (p=0.001) in the off-state, and at T2 (p=0.004) in the on-state compared to pretraining (T0). The TUG duration was significantly shorter at T2 than at T0 (p<0.05). The findings of MoCA, total UPDRS, double limb support time, and mHYS (in both the off- and on-states) also improved significantly at T2. CONCLUSIONS: Our pioneer study has demonstrated that a low-intensity progressive cycling exercise can improve motor function in PD, especially akinesia. The beneficial effects were similar to those of high-intensity rehabilitation programs.

19.
Brain ; 140(7): 1977-1986, 2017 07 01.
Article En | MEDLINE | ID: mdl-28459950

See Vidailhet et al. (doi:10.1093/brain/awx140) for a scientific commentary on this article. Misdiagnosis among tremor syndromes is common, and can impact on both clinical care and research. To date no validated neurophysiological technique is available that has proven to have good classification performance, and the diagnostic gold standard is the clinical evaluation made by a movement disorders expert. We present a robust new neurophysiological measure, the tremor stability index, which can discriminate Parkinson's disease tremor and essential tremor with high diagnostic accuracy. The tremor stability index is derived from kinematic measurements of tremulous activity. It was assessed in a test cohort comprising 16 rest tremor recordings in tremor-dominant Parkinson's disease and 20 postural tremor recordings in essential tremor, and validated on a second, independent cohort comprising a further 55 tremulous Parkinson's disease and essential tremor recordings. Clinical diagnosis was used as gold standard. One hundred seconds of tremor recording were selected for analysis in each patient. The classification accuracy of the new index was assessed by binary logistic regression and by receiver operating characteristic analysis. The diagnostic performance was examined by calculating the sensitivity, specificity, accuracy, likelihood ratio positive, likelihood ratio negative, area under the receiver operating characteristic curve, and by cross-validation. Tremor stability index with a cut-off of 1.05 gave good classification performance for Parkinson's disease tremor and essential tremor, in both test and validation datasets. Tremor stability index maximum sensitivity, specificity and accuracy were 95%, 95% and 92%, respectively. Receiver operating characteristic analysis showed an area under the curve of 0.916 (95% confidence interval 0.797­1.000) for the test dataset and a value of 0.855 (95% confidence interval 0.754­0.957) for the validation dataset. Classification accuracy proved independent of recording device and posture. The tremor stability index can aid in the differential diagnosis of the two most common tremor types. It has a high diagnostic accuracy, can be derived from short, cheap, widely available and non-invasive tremor recordings, and is independent of operator or postural context in its interpretation.


Essential Tremor/diagnosis , Parkinson Disease/diagnosis , Severity of Illness Index , Aged , Biomechanical Phenomena , Diagnosis, Differential , Humans , Middle Aged , Sensitivity and Specificity
20.
Oncotarget ; 7(34): 54215-54227, 2016 Aug 23.
Article En | MEDLINE | ID: mdl-27509057

Parkinson's disease (PD) is the second common neurodegenerative disease. Identification of biomarkers for early diagnosis and prediction of disease progression is important. The present comparative proteomic study of serum samples using two-dimensional fluorescence differential gel electrophoresis followed by ELISA confirmation demonstrated that protein expression of Rab35 was increased in PD patients compared with matched control subjects and other parkinsonian disorders, progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). The serum level of Rab35 was significantly correlated with the age at onset of PD. The median age of onset in patients with higher Rab35 serum level was 5 years younger than those with lower Rab35 serum level. There was a positive correlation between the Rab35 level and disease duration of PD. Moreover, the protein expression of Rab35 was increased in the substantia nigra but not in the striatum of mouse models of PD, including MPTP-treated mice, rotenone-treated mice, (R1441C) LRRK2 or (G2019S) LRRK2 transgenic mice. Furthermore, overexpression of Rab35 increased the aggregation and secretion of mutant A53T α-synuclein in dopaminergic SH-SY5Y cells. Co-expression of Rab35 with wild-type or A53T α-synuclein in SH-SY5Y cells deteriorated cell death. Our results suggest that Rab35 is potentially useful in the differential diagnosis of parkinsonian disorders and is implicated in the pathogenesis of PD.


Parkinson Disease/etiology , rab GTP-Binding Proteins/analysis , Animals , Biomarkers/analysis , Cells, Cultured , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/physiology , Mice , Mice, Transgenic , Parkinson Disease/diagnosis , Substantia Nigra/chemistry , alpha-Synuclein/metabolism
...