Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
bioRxiv ; 2024 Feb 07.
Article En | MEDLINE | ID: mdl-37292763

Rationale: Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular (LV) hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that -α-tubulin detyrosination (dTyr-tub) is markedly elevated in heart failure. Acute reduction of dTyr-tub by inhibition of the detyrosinase (VASH/SVBP complex) or activation of the tyrosinase (tubulin tyrosine ligase, TTL) markedly improved contractility and reduced stiffness in human failing cardiomyocytes, and thus poses a new perspective for HCM treatment. Objective: In this study, we tested the impact of chronic tubulin tyrosination in a HCM mouse model ( Mybpc3 -knock-in; KI), in human HCM cardiomyocytes and in SVBP-deficient human engineered heart tissues (EHTs). Methods and Results: AAV9-mediated TTL transfer was applied in neonatal wild-type (WT) rodents and 3-week-old KI mice and in HCM human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. We show that i) TTL for 6 weeks dose-dependently reduced dTyr-tub and improved contractility without affecting cytosolic calcium transients in WT cardiomyocytes; ii) TTL for 12 weeks improved diastolic filling, cardiac output and stroke volume and reduced stiffness in KI mice; iii) TTL for 10 days normalized cell hypertrophy in HCM hiPSC-cardiomyocytes; iv) TTL induced a marked transcription and translation of several tubulins and modulated mRNA or protein levels of components of mitochondria, Z-disc, ribosome, intercalated disc, lysosome and cytoskeleton in KI mice; v) SVBP-deficient EHTs exhibited reduced dTyr-tub levels, higher force and faster relaxation than TTL-deficient and WT EHTs. RNA-seq and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-KO vs. TTL-KO EHTs. Conclusion: This study provides the first proof-of-concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the non-sarcomeric cytoskeleton in heart disease.

2.
Front Cell Dev Biol ; 10: 837486, 2022.
Article En | MEDLINE | ID: mdl-35433678

A proliferated and post-translationally modified microtubule network underlies cellular growth in cardiac hypertrophy and contributes to contractile dysfunction in heart failure. Yet how the heart achieves this modified network is poorly understood. Determining how the "tubulin code"-the permutations of tubulin isoforms and post-translational modifications-is rewritten upon cardiac stress may provide new targets to modulate cardiac remodeling. Further, while tubulin can autoregulate its own expression, it is unknown if autoregulation is operant in the heart or tuned in response to stress. Here we use heart failure patient samples and murine models of cardiac remodeling to interrogate transcriptional, autoregulatory, and post-translational mechanisms that contribute to microtubule network remodeling at different stages of heart disease. We find that autoregulation is operant across tubulin isoforms in the heart and leads to an apparent disconnect in tubulin mRNA and protein levels in heart failure. We also find that within 4 h of a hypertrophic stimulus and prior to cardiac growth, microtubule detyrosination is rapidly induced to help stabilize the network. This occurs concomitant with rapid transcriptional and autoregulatory activation of specific tubulin isoforms and microtubule motors. Upon continued hypertrophic stimulation, there is an increase in post-translationally modified microtubule tracks and anterograde motors to support cardiac growth, while total tubulin content increases through progressive transcriptional and autoregulatory induction of tubulin isoforms. Our work provides a new model for how the tubulin code is rapidly rewritten to establish a proliferated, stable microtubule network that drives cardiac remodeling, and provides the first evidence of tunable tubulin autoregulation during pathological progression.

3.
Sci Transl Med ; 13(618): eabd7287, 2021 11 03.
Article En | MEDLINE | ID: mdl-34731015

Truncating variants in TTN (TTNtvs) are the most common known cause of nonischemic dilated cardiomyopathy (DCM), but how TTNtvs cause disease has remained controversial. Efforts to detect truncated titin proteins in affected human DCM hearts have failed, suggesting that disease is caused by haploinsufficiency, but reduced amounts of titin protein have not yet been demonstrated. Here, we leveraged a collection of 184 explanted posttransplant DCM hearts to show, using specialized electrophoretic gels, Western blotting, allelic phasing, and unbiased proteomics, that truncated titin proteins can quantitatively be detected in human DCM hearts. The sizes of truncated proteins corresponded to that predicted by their respective TTNtvs; the truncated proteins were encoded by the TTNtv-bearing allele; and no degradation fragments from protein encoded by either allele were detectable. In parallel, full-length titin was less abundant in TTNtv+ than in TTNtv− DCM hearts. Disease severity or need for transplantation did not correlate with TTNtv location. Transcriptomic profiling revealed few differences in splicing or allelic imbalance of the TTN transcript between TTNtv+ and TTNtv− DCM hearts. Studies with isolated human adult cardiomyocytes revealed no defects in contractility in cells from TTNtv+ compared to TTNtv− DCM hearts. Together, these data demonstrate the presence of truncated titin protein in human TTNtv+ DCM, show reduced amounts of full-length titin protein in TTNtv+ DCM hearts, and support combined dominant-negative and haploinsufficiency contributions to disease.


Cardiomyopathy, Dilated , Connectin , Adult , Alleles , Cardiomyopathy, Dilated/genetics , Connectin/genetics , Connectin/metabolism , Humans , Myocytes, Cardiac/metabolism
4.
Circ Res ; 127(2): e14-e27, 2020 07 03.
Article En | MEDLINE | ID: mdl-32272864

RATIONALE: Impaired myocardial relaxation is an intractable feature of several heart failure (HF) causes. In human HF, detyrosinated microtubules stiffen cardiomyocytes and impair relaxation. Yet the identity of detyrosinating enzymes have remained ambiguous, hindering mechanistic study and therapeutic development. OBJECTIVE: We aimed to determine if the recently identified complex of VASH1/2 (vasohibin 1/2) and SVBP (small vasohibin binding protein) is an active detyrosinase in cardiomyocytes and if genetic inhibition of VASH-SVBP is sufficient to lower stiffness and improve contractility in HF. METHODS AND RESULTS: Transcriptional profiling revealed that VASH1 transcript is >10-fold more abundant than VASH2 in human hearts. Using short hairpin RNAs (shRNAs) against VASH1, VASH2, and SVBP, we showed that both VASH1- and VASH2-SVBP complexes function as tubulin carboxypeptidases in cardiomyocytes, with a predominant role for VASH1. We also generated a catalytically dead version of the tyrosinating enzyme TTL (TTL-E331Q) to separate the microtubule depolymerizing effects of TTL from its enzymatic activity. Assays of microtubule stability revealed that both TTL and TTL-E331Q depolymerize microtubules, while VASH1 and SVBP depletion reduce detyrosination independent of depolymerization. We next probed effects on human cardiomyocyte contractility. Contractile kinetics were slowed in HF, with dramatically slowed relaxation in cardiomyocytes from patients with HF with preserved ejection fraction. Knockdown of VASH1 conferred subtle kinetic improvements in nonfailing cardiomyocytes, while markedly improving kinetics in failing cardiomyocytes. Further, TTL, but not TTL-E331Q, robustly sped relaxation. Simultaneous measurements of calcium transients and contractility demonstrated that VASH1 depletion speeds kinetics independent from alterations to calcium cycling. Finally, atomic force microscopy confirmed that VASH1 depletion reduces the stiffness of failing human cardiomyocytes. CONCLUSIONS: VASH-SVBP complexes are active tubulin carboxypeptidases in cardiomyocytes. Inhibition of VASH1 or activation of TTL is sufficient to lower stiffness and speed relaxation in cardiomyocytes from patients with HF, supporting further pursuit of detyrosination as a therapeutic target for diastolic dysfunction.


Cell Cycle Proteins/metabolism , Heart Failure/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Angiogenic Proteins/genetics , Angiogenic Proteins/metabolism , Animals , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cells, Cultured , HEK293 Cells , Heart Failure/physiopathology , Humans , Mutation , Myocytes, Cardiac/physiology , Rats , Rats, Sprague-Dawley
5.
Circulation ; 141(11): 902-915, 2020 03 17.
Article En | MEDLINE | ID: mdl-31941365

BACKGROUND: Diastolic dysfunction is a prevalent and therapeutically intractable feature of heart failure (HF). Increasing ventricular compliance can improve diastolic performance, but the viscoelastic forces that resist diastolic filling and become elevated in human HF are poorly defined. Having recently identified posttranslationally detyrosinated microtubules as a source of viscoelasticity in cardiomyocytes, we sought to test whether microtubules contribute meaningful viscoelastic resistance to diastolic stretch in human myocardium. METHODS: Experiments were conducted in isolated human cardiomyocytes and trabeculae. First, slow and rapid (diastolic) stretch was applied to intact cardiomyocytes from nonfailing and HF hearts and viscoelasticity was characterized after interventions targeting microtubules. Next, intact left ventricular trabeculae from HF patient hearts were incubated with colchicine or vehicle and subject to pre- and posttreatment mechanical testing, which consisted of a staircase protocol and rapid stretches from slack length to increasing strains. RESULTS: Viscoelasticity was increased during diastolic stretch of HF cardiomyocytes compared with nonfailing counterparts. Reducing either microtubule density or detyrosination reduced myocyte stiffness, particularly at diastolic strain rates, indicating reduced viscous forces. In myocardial tissue, we found microtubule depolymerization reduced myocardial viscoelasticity, with an effect that decreased with increasing strain. Colchicine reduced viscoelasticity at strains below, but not above, 15%, with a 2-fold reduction in energy dissipation upon microtubule depolymerization. Post hoc subgroup analysis revealed that myocardium from patients with HF with reduced ejection fraction were more fibrotic and elastic than myocardium from patients with HF with preserved ejection fraction, which were relatively more viscous. Colchicine reduced viscoelasticity in both HF with preserved ejection fraction and HF with reduced ejection fraction myocardium. CONCLUSIONS: Failing cardiomyocytes exhibit elevated viscosity and reducing microtubule density or detyrosination lowers viscoelastic resistance to diastolic stretch in human myocytes and myocardium. In failing myocardium, microtubules elevate stiffness over the typical working range of strains and strain rates, but exhibited diminishing effects with increasing length, consistent with an increasing contribution of the extracellular matrix or myofilament proteins at larger excursions. These studies indicate that a stabilized microtubule network provides a viscous impediment to diastolic stretch, particularly in HF.


Heart Failure/pathology , Microtubules/physiology , Myocardium/ultrastructure , Myocytes, Cardiac/ultrastructure , Adult , Aged , Colchicine/pharmacology , Diastole , Elasticity , Female , Humans , Male , Microtubules/drug effects , Microtubules/metabolism , Microtubules/ultrastructure , Middle Aged , Myocardial Contraction , Myocytes, Cardiac/drug effects , Protein Processing, Post-Translational , Sesquiterpenes/pharmacology , Stress, Mechanical , Stroke Volume , Tyrosine/metabolism , Ventricular Dysfunction, Left/pathology , Viscosity
7.
Biophys J ; 115(9): 1796-1807, 2018 11 06.
Article En | MEDLINE | ID: mdl-30322798

BACKGROUND: Microtubules (MTs) buckle and bear load during myocyte contraction, a behavior enhanced by post-translational detyrosination. This buckling suggests a spring-like resistance against myocyte shortening, which could store energy and aid myocyte relaxation. Despite this visual suggestion of elastic behavior, the precise mechanical contribution of the cardiac MT network remains to be defined. METHODS: Here we experimentally and computationally probe the mechanical contribution of stable MTs and their influence on myocyte function. We use multiple approaches to interrogate viscoelasticity and cell shortening in primary murine myocytes in which either MTs are depolymerized or detyrosination is suppressed and use the results to inform a mathematical model of myocyte viscoelasticity. RESULTS: MT ablation by colchicine concurrently enhances both the degree of shortening and speed of relaxation, a finding inconsistent with simple spring-like MT behavior and suggestive of a viscoelastic mechanism. Axial stretch and transverse indentation confirm that MTs increase myocyte viscoelasticity. Specifically, increasing the rate of strain amplifies the MT contribution to myocyte stiffness. Suppressing MT detyrosination with parthenolide or via overexpression of tubulin tyrosine ligase has mechanical consequences that closely resemble colchicine, suggesting that the mechanical impact of MTs relies on a detyrosination-dependent linkage with the myocyte cytoskeleton. Mathematical modeling affirms that alterations in cell shortening conferred by either MT destabilization or tyrosination can be attributed to internal changes in myocyte viscoelasticity. CONCLUSIONS: The results suggest that the cardiac MT network regulates contractile amplitudes and kinetics by acting as a cytoskeletal shock-absorber, whereby MTs provide breakable cross-links between the sarcomeric and nonsarcomeric cytoskeleton that resist rapid length changes during both shortening and stretch.


Cell Movement , Elasticity , Microtubules/metabolism , Muscle Cells/cytology , Animals , Biomechanical Phenomena , Models, Biological , Rats , Viscosity
8.
Nat Med ; 24(8): 1225-1233, 2018 08.
Article En | MEDLINE | ID: mdl-29892068

Detyrosinated microtubules provide mechanical resistance that can impede the motion of contracting cardiomyocytes. However, the functional effects of microtubule detyrosination in heart failure or in human hearts have not previously been studied. Here, we utilize mass spectrometry and single-myocyte mechanical assays to characterize changes to the cardiomyocyte cytoskeleton and their functional consequences in human heart failure. Proteomic analysis of left ventricle tissue reveals a consistent upregulation and stabilization of intermediate filaments and microtubules in failing human hearts. As revealed by super-resolution imaging, failing cardiomyocytes are characterized by a dense, heavily detyrosinated microtubule network, which is associated with increased myocyte stiffness and impaired contractility. Pharmacological suppression of detyrosinated microtubules lowers the viscoelasticity of failing myocytes and restores 40-50% of lost contractile function; reduction of microtubule detyrosination using a genetic approach also softens cardiomyocytes and improves contractile kinetics. Together, these data demonstrate that a modified cytoskeletal network impedes contractile function in cardiomyocytes from failing human hearts and that targeting detyrosinated microtubules could represent a new inotropic strategy for improving cardiac function.


Heart Failure/metabolism , Microtubules/metabolism , Myocytes, Cardiac/metabolism , Tyrosine/metabolism , Cell Proliferation , Desmin/metabolism , Elasticity , Humans , Intermediate Filaments/metabolism , Muscle Cells/cytology , Muscle Cells/metabolism , Myocardial Infarction , Proteomics , Up-Regulation , Viscosity
9.
Proc Natl Acad Sci U S A ; 113(32): 8939-44, 2016 08 09.
Article En | MEDLINE | ID: mdl-27457951

In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, ß-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts-consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats.


Heart Rate , Heart/embryology , Animals , Chick Embryo , Gap Junctions/physiology , Models, Biological , Myocardial Contraction , Myocytes, Cardiac/physiology
10.
Science ; 352(6284): aaf0659, 2016 Apr 22.
Article En | MEDLINE | ID: mdl-27102488

The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes. MTs deformed under contractile load into sinusoidal buckles, a behavior dependent on posttranslational "detyrosination" of α-tubulin. Detyrosinated MTs associated with desmin at force-generating sarcomeres. When detyrosination was reduced, MTs uncoupled from sarcomeres and buckled less during contraction, which allowed sarcomeres to shorten and stretch with less resistance. Conversely, increased detyrosination promoted MT buckling, stiffened the myocyte, and correlated with impaired function in cardiomyopathy. Thus, detyrosinated MTs represent tunable, compression-resistant elements that may impair cardiac function in disease.


Microtubules/metabolism , Myocardial Contraction , Myocytes, Cardiac/physiology , Protein Processing, Post-Translational , Tubulin/metabolism , Tyrosine/metabolism , Animals , Desmin/metabolism , Elasticity , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Male , Mice , Models, Biological , Myocytes, Cardiac/metabolism , Peptide Synthases/genetics , Peptide Synthases/metabolism , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Sarcomeres/metabolism
...