Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Trauma Surg Acute Care Open ; 9(1): e001439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957620

RESUMEN

Background: The relationship between English proficiency (EP), Glasgow Coma Scale (GCS) and traumatic brain injury (TBI) is not well characterized. We aimed to understand the impact of limited English proficiency (LEP) on the evaluation and outcomes of TBI. Methods: Retrospective comparative study in a single institution of patients aged ⪰65 who presented to the emergency department after a fall with head strike between January 2018 and December 2021. TBI was defined as documented loss of consciousness or intracranial hemorrhage (ICH). Relationships between EP, GCS, and TBI were analyzed with multivariable and propensity score-matched models. Results: Of the 2905 included, 1233 (42%) had LEP. Most LEP patients were Asian (60%) while the majority of EP patients were non-Hispanic Caucasians (72%). In a univariate analysis, LEP had higher incidence of decreased GCS and was strongly correlated with risk of TBI (OR 1.47, CI 1.26 to 1.71). After adjusting for multiple covariates including race, LEP did not have a significantly increased risk for GCS score <13 (OR 1.66, CI 0.99 to 2.76) or increased risk of TBI. In the matched analysis, LEP had a small but significantly higher risk of GCS score <13 (OR 1.03, CI 1.02 to 1.05) without an increased risk in TBI. Decreased GCS remained strongly correlated with presence of ICH in LEP patients in the adjusted model (OR 1.39, CI 1.30 to 1.50). Conclusions: LEP correlated with lower GCS in geriatric patients with TBI. This association weakened after adjusting for factors like race, suggesting racial disparities may have more influence than language differences. Moreover, GCS remained effective for predicting ICH in LEP individuals, highlighting its value with suitable translation resources. Level of evidence: This is a Level III evidence restrospective comparative study.

2.
Colloids Surf B Biointerfaces ; 242: 114087, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39003846

RESUMEN

This study introduces a novel approach of repetitive modeling to simulate the pathological process of recurrent gout attacks in humans. This methodology addresses the instability issues present in rat models of gout, providing a more accurate representation of the damage recurrent gout episodes inflict on human skeletal systems. A soluble nanoneedle system encapsulating colchicine and iguratimod ethosomal formulations was developed. This system aims to modulate inflammatory cytokines and inhibit osteoclast activity, thereby treating inflammatory pain and bone damage associated with recurrent gout. Additionally, a comprehensive evaluation of the microneedles' appearance, morphology, mechanical properties, and penetration capability confirmed their effectiveness in penetrating the stratum corneum. Dissolution tests and skin irritation assessments demonstrated that these microneedles dissolve rapidly without irritating the skin. In vitro permeation studies indicated that transdermal drug delivery via these microneedles is more efficient and incurs lower drug loss compared to traditional topical applications. In vivo pharmacodynamic assessments conducted in animal models revealed significant analgesic and anti-inflammatory effects when both types of microneedles were used together. Further analyses, including X-ray imaging, hematoxylin and eosin (H&E) staining, Safranin-O/fast green staining, tartrate-resistant acid phosphatase staining, and quantification of osteoclasts, confirmed the bone-protective effects of the microneedle combination. In conclusion, the findings of this research underscore the potential of this novel therapeutic approach for clinical application in the treatment of recurrent gout.

3.
Environ Sci Technol ; 58(26): 11578-11586, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38899536

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are the primary organic carbons in soot. In addition to PAHs with even carbon numbers (PAHeven), substantial odd-carbon PAHs (PAHodd) have been widely observed in soot and ambient particles. Analyzing and understanding the photoaging of these compounds are essential for assessing their environmental effects. Here, using laser desorption ionization mass spectrometry (LDI-MS), we reveal the substantially different photoreactivity of PAHodd from PAHeven in the aging process and their MS detection through their distinct behaviors in the presence and absence of elemental carbon (EC) in soot. During direct photooxidation of organic carbon (OC) alone, the PAHeven are oxidized more rapidly than the PAHodd. However, the degradation of PAHodd becomes preponderant over PAHeven in the presence of EC during photoaging of the whole soot. All of these observations are proposed to originate from the more rapid hydrogen abstraction reaction from PAHodd in the EC-photosensitized reaction, owing to its unique structure of a single sp3-hybridized carbon site. Our findings reveal the photoreactivity and reaction mechanism of PAHodd for the first time, providing a comprehensive understanding of the oxidation of PAHs at a molecular level during soot aging and highlight the enhanced effect of EC on PAHodd ionization in LDI-MS analysis.


Asunto(s)
Carbono , Hidrocarburos Policíclicos Aromáticos , Hollín , Hidrocarburos Policíclicos Aromáticos/química , Carbono/química , Hollín/química , Procesos Fotoquímicos , Oxidación-Reducción , Fotoquímica
4.
Sci Total Environ ; 932: 173069, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723974

RESUMEN

The exposure to cooking organic aerosols (COA) is closely related to people's daily lives. Despite extensive investigations into COA's model compounds like oleic acid, the intricacies of heterogeneous ozonolysis of real COA and the effects of ambient conditions like humidity remain elusive. In this work, the ozonolysis of COA proxies from heated peanut oil emissions was investigated using diffuse reflectance infrared Fourier transform (DRIFTS) spectroscopy, and proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). We found that humidity hinders the reaction between ozone and CC double bonds due to the competitive adsorption of water and ozone on COA. Although visible light has little influence on the ozonolysis of COA in the absence of humidity, the ozonolytic CO production is significantly promoted by visible light in the presence of humidity. It may be attributed to the formation of water-derived reactive oxygen species (ROS, mainly HO•) from the photosensitization of polycyclic aromatic hydrocarbons (PAHs) in COA. We also found that humidity can enhance the depolymerization of carboxylic acid dimers and hydrolysis of intrinsic acetals in the COA. Moreover, humidity promotes the release of VOCs during both the dark and light ozonolysis of COA. This work reveals the important roles of humidity-responsive and photo-responsive components in COA during its ozonolysis, and the change in VOC release may guide the control of human VOC exposure in indoor air.

5.
Natl Sci Rev ; 11(4): nwae053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38666092

RESUMEN

The water oxidation half-reaction at anodes is always considered the rate-limiting step of overall water splitting (OWS), but the actual bias distribution between photoanodes and cathodes of photoelectrochemical (PEC) OWS cells has not been investigated systematically. In this work, we find that, for PEC cells consisting of photoanodes (nickel-modified n-Si [Ni/n-Si] and α-Fe2O3) with low photovoltage (Vph < 1 V), a large portion of applied bias is exerted on the Pt cathode for satisfying the hydrogen evolution thermodynamics, showing a thermodynamics-controlled characteristic. In contrast, for photoanodes (TiO2 and BiVO4) with Vph > 1 V, the bias required for cathode activation can be significantly reduced, exhibiting a kinetics-controlled characteristic. Further investigations show that the bias distribution can be regulated by tuning the electrolyte pH and using alternative half-reaction couplings. Accordingly, a volcano plot is presented for the rational design of the overall reactions and unbiased PEC cells. Motivated by this, an unbiased PEC cell consisting of a simple Ni/n-Si photoanode and Pt cathode is assembled, delivering a photocurrent density of 5.3 ± 0.2 mA cm-2.

6.
Adv Sci (Weinh) ; 11(25): e2401685, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38664981

RESUMEN

The redox mediated photoelectrochemical (PEC) or electrochemical (EC) alkene oxidation process is a promising method to produce high value-added epoxides. However, due to the competitive reaction of water oxidation and overoxidation of the mediator, the utilization of the electricity is far below the ideal value, where the loss of epoxidation's faradaic efficiency (FE) is ≈50%. In this study, a Br-/HOBr-mediated method is developed to achieve a near-quantitative selectivity and ≈100% FE of styrene oxide on α-Fe2O3, in which low concentration of Br- as mediator and locally generated acidic micro-environment work together to produce the higher active HOBr species. A variety of styrene derivatives are investigated with satisfied epoxidation performance. Based on the analysis of local pH-dependent epoxidation FE and products distribution, the study further verified that HOBr serves as the true active mediator to generate the bromohydrin intermediate. It is believed that this strategy can greatly overcome the limitation of epoxidation FE to enable future industrial applications.

7.
J Dent Sci ; 19(1): 580-586, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303784

RESUMEN

Background/purpose: The accumulation of advanced glycation end products (AGEs) lead to a series of immune responses such as: increased oxidative stress and inflammation which contribute to the development of diabetic complications and periodontal disease. Resveratrol is a natural compound that has anti-oxidant and anti-inflammatory effects. Studies have found that diabetes-induced periodontitis is mainly caused by oxidative stress, aging and increased inflammation. In view of resveratrol has been proposed to have the ability in anti-oxidant and anti-inflammation in a variety of tissues. However, the role of resveratrol in diabetic periodontitis remains to be investigated. In this study, we aimed to investigate the role of resveratrol in preventing and treating diabetic periodontitis. Materials and methods: First, cell proliferation was measured in AGEs-treated human gingival fibroblast with or without resveratrol. We examined the reactive oxygen species (ROS) generation, senescence-associated beta-galactosidase (SA-ß-gal) and senescence marker p16 in human gingival fibroblasts (HGFs) stimulated with AGEs with or without the treatment of resveratrol. To determine whether resveratrol has the potential to regulate inflammaging which is mediated via the NF-κB signaling pathway and, the expression of p65 and p-IκB were also investigated. Furthermore, the concentration of interleukin (IL)-6 and IL-8 were also measured in AGEs-stimulated HGFs treated with or without resveratrol. Results: ROS generation, cell senescence, and the secretion of IL-6 and IL-8 were significantly upregulated following the treatment of AGEs. However, the administration of resveratrol suppresses the generation of IL-6 and IL-8 and cell senescence via inhibiting NF-κB signaling pathway. Our results revealed that resveratrol inhibits inflammaging by downregulating NF-κB signaling pathway. Conclusion: According to our findings, AGEs increase senescence and the production of proinflammatory cytokines in the gingiva, while the administration of resveratrol impedes inflammaging via suppressing NF-κB signaling pathway.

8.
J Dent Sci ; 19(1): 345-356, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303880

RESUMEN

Background/purpose: Bacteria-associated oral diseases such as dental caries and periodontitis are widespread epidemics that cause oral pain and loss of function. The purpose of this study was to evaluate the in vitro cytotoxicity and antibacterial activity of different concentrations of hypochlorous acid (HOCl). Materials and methods: Five different concentrations (100, 200, 300, 400, and 500 ppm) of HOCl were evaluated for their antimicrobial efficacy against Gram-negative (A. actinomycetcmcomitans and P. gingivalis) and Gram-positive bacteria (S. mutans and S. sanguinis) after treatment for 1 and 10 min. Sodium hypochlorite (NaOCl) and chlorhexidine (CHX) were used as positive controls. In addition, HOCl was examined for L929 cytotoxicity and RAW 264.7 growth. Results: The bacteriostatic ratio of NaOCl was comparable to that of CHX and significantly (P < 0.05) higher than that of all HOCl solutions. Higher HOCl concentration had significantly (P < 0.05) higher antibacterial effect, and the bacteriostatic ratio of 10 min treatment was slightly higher than that of 1 min treatment. CHX and NaOCl seeded into L929 cells resulted in low cell viability with only 30-39%, much significantly (P < 0.05) lower than all HOCl groups (greater than 80%). All HOCl solutions met the recommendations of ISO 10993-5 and showed no cytotoxicity, although there was a concentration-dependent decrease in cell viability. All antimicrobial agents showed the same trend of response to RAW 264.7 as L929. Conclusion: Within the limit of this study, 400 ppm HOCl disinfectant may be a potential antimicrobial candidate for mouthwash, endodontic irrigants, and periodontitis treatment.

9.
Environ Sci Technol ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319710

RESUMEN

The NO3•-driven nighttime aging of brown carbon (BrC) is known to greatly impact its atmospheric radiative forcing. However, the impact of oxidation by NO3• on the optical properties of BrC in atmospheric waters as well as the associated reaction mechanism remain unclear. In this work, we found that the optical variation of BrC proxies under environmentally relevant NO3• exposure depends strongly on their sources, with enhanced light absorptivity for biomass-burning BrC but bleaching for urban aerosols and humic substances. High-resolution mass spectrometry using FT-ICR MS shows that oxidation by NO3• leads to the formation of light-absorbing species (e.g., nitrated organics) for biomass-burning BrC while destroying electron donors (e.g., phenols) within charge transfer complexes in urban aerosols and humic substances, as evidenced by transient absorption spectroscopy and NaBH4 reduction experiments as well. Moreover, we found that the measured rate constants between NO3• with real BrCs (k = (1.8 ± 0.6) × 107 MC-1s-1, expressed as moles of carbon) are much higher than those of individual model organic carbon (OC), suggesting the reaction with OCs may be a previously ill-quantified important sink of NO3• in atmospheric waters. This work provides insights into the kinetics and molecular transformation of BrC during the oxidation by NO3•, facilitating further evaluation of BrC's climatic effects and atmospheric NO3• levels.

10.
Chem Sci ; 15(8): 3018-3027, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38404385

RESUMEN

Photo(electro)catalytic chlorine oxidation has emerged as a useful method for chemical transformation and environmental remediation. However, the reaction selectivity usually remains low due to the high activity and non-selectivity characteristics of free chlorine radicals. In this study, we report a photoelectrochemical (PEC) strategy for achieving controlled non-radical chlorine activation on hematite (α-Fe2O3) photoanodes. High selectivity (up to 99%) and faradaic efficiency (up to 90%) are achieved for the chlorination of a wide range of aromatic compounds and alkenes by using NaCl as the chlorine source, which is distinct from conventional TiO2 photoanodes. A comprehensive PEC study verifies a non-radical "Cl+" formation pathway, which is facilitated by the accumulation of surface-trapped holes on α-Fe2O3 surfaces. The new understanding of the non-radical Cl- activation by semiconductor photoelectrochemistry is expected to provide guidance for conducting selective chlorine atom transfer reactions.

11.
J Healthc Qual ; 46(3): 150-159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38214652

RESUMEN

ABSTRACT: The implementation of the National Health Insurance has transformed the medical care landscape in Taiwan, rendering perceived medical service quality (PMSQ) and patient satisfaction significant focal points in medical care management. Past studies mostly focused on the technical aspects of medical care services, while overlooking the patients' perception of services and the delivery process of PMSQ in the medical care experience. This study integrated the theoretical framework of the Donabedian SPO model and the SERVQUAL questionnaire. The survey was conducted among the outpatients of three types of medical institutions in northern Taiwan: academic medical centers, metropolitan hospitals, and local community hospitals. A total of 400 questionnaires were collected, and 315 valid questionnaires remained after eliminating the incomplete ones. This study established a PMSQ delivery model to explore patients' perceptions of medical service quality. It was found that the variable, Assurance, could deliver the PMSQ and enhance the Medical outcome (MO), while improving the variable, Tangible, in medical institutions could not significantly enhance the MO. These findings emphasize the importance of healthcare institutions prioritizing the professional background, demeanor of their healthcare staff, treatment methods, and processes over tangible elements.


Asunto(s)
Satisfacción del Paciente , Calidad de la Atención de Salud , Humanos , Taiwán , Encuestas y Cuestionarios , Femenino , Masculino , Adulto , Persona de Mediana Edad , Programas Nacionales de Salud , Anciano , Atención a la Salud/normas
12.
Phys Chem Chem Phys ; 26(4): 2915-2925, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38186081

RESUMEN

Copper (Cu) has been widely used for catalyzing the CO2 reduction reaction (CO2RR), but the plasmonic effect of Cu has rarely been explored for tuning the activity and selectivity of the CO2RR. Herein, we conducted a quantitative analysis on the plasmon-generated photopotential (Ehv) of a Cu nanowire array (NA) photocathode and found that Ehv exclusively reduced the apparent activation energy (Ea) of reducing CO2 to CO without affecting the competitive hydrogen evolution reaction (HER). As a result, the CO production rate was enhanced by 52.6% under plasmon excitation when compared with that under dark conditions. On further incorporation with a polycrystalline Si photovoltaic device, the Cu NA photocathode exhibits good stability in terms of photocurrent and syngas production (CO : H2 = 2 : 1) within 10 h. This work validates the crucial role of the plasmonic effect of Cu on modulating the activity and selectivity of the CO2RR.

13.
Org Lett ; 26(3): 757-762, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38231886

RESUMEN

A dual nickel- and iridium-photocatalyzed radical cascade bicyclization reaction for the synthesis of highly complex molecular structures in an atom- and step-economic manner has been described. A series of radical precursors are utilized for the divergent synthesis of diversely substituted fluorenes and indenoazepinones bearing quaternary carbons by using cascade cyclization reactions of 1,5-enynes. This reaction is characterized by its mild conditions, broad substrate scope, excellent selectivity, and satisfactory yield including facile scale-up synthesis.

14.
Angew Chem Int Ed Engl ; 63(4): e202316218, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38069527

RESUMEN

High-efficient photoelectrocatalytic direct ammonia oxidation reaction (AOR) conducted on semiconductor photoanodes remains a substantial challenge. Herein, we develop a strategy of simply introducing ppm levels of Cu ions (0.5-10 mg/L) into NH3 solutions to significantly improve the AOR photocurrent of bare BiVO4 photoanodes from 3.4 to 6.3 mA cm-2 at 1.23 VRHE , being close to the theoretical maximum photocurrent of BiVO4 (7.5 mA cm-2 ). The surface charge-separation efficiency has reached 90 % under a low bias of 0.8 VRHE . This AOR exhibits a high Faradaic efficiency (FE) of 93.8 % with the water oxidation reaction (WOR) being greatly suppressed. N2 is the main AOR product with FEs of 71.1 % in aqueous solutions and FEs of 100 % in non-aqueous solutions. Through mechanistic studies, we find that the formation of Cu-NH3 complexes possesses preferential adsorption on BiVO4 surfaces and efficiently competes with WOR. Meanwhile, the cooperation of BiVO4 surface effect and Cu-induced coordination effect activates N-H bonds and accelerates the first rate-limiting proton-coupled electron transfer for AOR. This simple strategy is further extended to other photoanodes and electrocatalysts.

15.
Environ Sci Technol ; 57(49): 20781-20791, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010203

RESUMEN

Methyl halides play important roles in stratospheric ozone depletion, but their formation mechanisms are not well defined. This study demonstrated that iron-based photochemistry significantly enhanced alkyl halide production by promoting the reaction of the representative monomer of lignin with halide ions in saline water under solar light irradiation. The methyl chloride (CH3Cl) emission from the light/Fe(III) process was 2 orders of magnitude higher than dark treatment and in the absence of iron. In addition, bromide and iodide showed better reactivity in the formation of the corresponding methyl bromide (CH3Br) and methyl iodide (CH3I). Alkyl halides identified from seawater, brackish water, and salt pan water under sunlight irradiation were positively correlated with the Fe(III) concentrations, indicating that iron-based photochemistry is ubiquitous. This work suggested that the photoinduced formation of methyl radical and redox cycling of iron triggered by the Fenton-like reaction are responsible for the enhanced release of alkyl halides. This study represents an abiotic formation pathway of alkyl halides, which accounts for a portion of the unidentified sources of halocarbons in the ocean.


Asunto(s)
Hidrocarburos Halogenados , Hierro , Fotoquímica , Agua de Mar , Compuestos Férricos
16.
J Am Chem Soc ; 145(43): 23849-23858, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37861695

RESUMEN

Accelerating proton transfer has been demonstrated as key to boosting water oxidation on semiconductor photoanodes. Herein, we study proton-coupled electron transfer (PCET) of water oxidation on five typical photoanodes [i.e., α-Fe2O3, BiVO4, TiO2, plasmonic Au/TiO2, and nickel-iron oxyhydroxide (Ni1-xFexOOH)-modified silicon (Si)] by combining the rate law analysis of H2O molecules with the H/D kinetic isotope effect (KIE) and operando spectroscopic studies. An unexpected and universal half-order kinetics is observed for the rate law analysis of H2O, referring to a sequential proton-electron transfer pathway, which is the rate-limiting factor that causes the sluggish water oxidation performance. Surface modification of the Ni1-xFexOOH electrocatalyst is observed to break this limitation and exhibits a normal first-order kinetics accompanied by much enhanced H/D KIE values, facilitating the turnover frequency of water oxidation by 1 order of magnitude. It is the first time that Ni1-xFexOOH is found to be a PCET modulator. The rate law analysis illustrates an effective strategy for modulating PCET kinetics of water oxidation on semiconductor surfaces.

17.
J Dent Sci ; 18(4): 1453-1466, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799910

RESUMEN

Oral infection is a common clinical symptom. While antibiotics are widely employed as the primary treatment for oral diseases, the emergence of drug-resistant bacteria has necessitated the exploration of alternative therapeutic approaches. One such modality is antimicrobial photodynamic therapy (aPDT), which utilizes light and photosensitizers. Indeed, aPDT has been used alone or in combination with other treatment options dealing with periodontal disease for the elimination of biofilms from bacterial community to achieve bone formation and/or tissue regeneration. In this review article, in addition to factors affecting the efficacy of aPDT, various photosensitizers, the latest technology and perspectives on aPDT are discussed in detail. More importantly, the article emphasizes the novel design and clinical applications of photosensitizers, as well as the synergistic effects of chemical and biomolecules with aPDT to achieve the complete eradication of biofilms and even enhance the biological performance of tissues surrounding the treated oral area.

19.
Environ Sci Technol ; 57(34): 12922-12930, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37580903

RESUMEN

FeOCl is a highly effective candidate material for advanced oxidation process (AOP) catalysts, but there remain enormous uncertainties about the essence of its outstanding activity. Herein, we clearly elucidate the mechanism involved in the FeOCl-catalyzed perdisulfate (PDS) activation, and the role of surface hydroxyls in bridging the electron transfer between Fe sites and PDS onto the FeOCl/H2O interface is highlighted. ATR-FTIR and Raman analyses reveal that phosphate could suppress the activity of FeOCl via substituting its surface hydroxyls, demonstrating the essential role of hydroxyl in PDS activation. By the use of X-ray absorption fine structure and density functional theory calculations, we found that the polar surface of FeOCl experienced prominent hydrolyzation, which enriched abundant electrons within the microarea around the Fe site, leading to a stronger attraction between FeOCl and PDS. As a result, PDS adsorption onto the FeOCl/H2O interface was obviously enhanced, the bond length of O-O in adsorbed PDS was lengthened, and the electron transfer from Fe atoms to O-O was also promoted. This work proposed a new strategy for PDS-based AOP development and a hint of building efficient heterogeneous AOP catalysts via regulating the hydroxylation of active sites.


Asunto(s)
Electrones , Radical Hidroxilo , Transporte de Electrón , Oxidación-Reducción
20.
Environ Sci Technol ; 57(30): 11144-11151, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37462617

RESUMEN

Photosensitized renoxification of HNO3 is found to produce HONO in an unexpectedly high yield, which has been considered an important source for atmospheric HONO. Conventionally, the production of HONO is ascribed to the secondary photolysis of the primarily formed NO2. In this study, by using humic acid (HA) as a model environmental photosensitizer, we provide evidence of the direct formation of NO2 in its electronic excited state (NO2*) as a key intermediate during the photosensitizing renoxification of HNO3. Moreover, the high HONO yield originates from the heterogeneous reaction of the primarily formed NO2* with the co-adsorbed water molecules on HA. Such a mechanism is supported by the increase of the product selectivity of HONO with relative humidity. Further luminescence measurements demonstrate clearly the occurrence of an electronic excited state (NO2*) from photolysis of adsorbed HNO3 on HA. This work deepens our understanding of the formation of atmospheric HONO and gives insight into the transformation of RNS.


Asunto(s)
Dióxido de Nitrógeno , Ácido Nitroso , Sustancias Húmicas , Fotólisis , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...