Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(2): 103076, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38768030

RESUMEN

Conventional colony-forming unit assay to measure cell viability is laborious and results in large experimental variability, which prohibits accurate quantification of microbial viability. Here, we present a microscopy-based protocol for the quantification of cells viability for temperature-sensitive S. pombe. We describe steps for growing and treating yeast cells and visualization of individual cells viability based on Phloxine B staining. We then detail procedures for data processing using Nikon NIS Elements Advanced Research (AR) software. For complete details on the use and execution of this protocol, please refer to Lim et al.1.


Asunto(s)
Schizosaccharomyces , Temperatura , Schizosaccharomyces/citología , Supervivencia Celular/fisiología , Microscopía/métodos , Viabilidad Microbiana , Microscopía Fluorescente/métodos
2.
Nucleic Acids Res ; 52(8): 4198-4214, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38442274

RESUMEN

Precise positioning of the histone-H3 variant, CENP-A, ensures centromere stability and faithful chromosomal segregation. Mislocalization of CENP-A to extra-centromeric loci results in aneuploidy and compromised cell viability associated with formation of ectopic kinetochores. The mechanism that retargets mislocalized CENP-A back to the centromere is unclarified. We show here that the downregulation of the histone H3 lysine 36 (H3K36) methyltransferase Set2 can preserve centromere localization of a temperature-sensitive mutant cnp1-1 Schizosaccharomyces pombe CENP-A (SpCENP-A) protein and reverse aneuploidy by redirecting mislocalized SpCENP-A back to centromere from ribosomal DNA (rDNA) loci, which serves as a sink for the delocalized SpCENP-A. Downregulation of set2 augments Swc2 (SWR1 complex DNA-binding module) expression and releases histone chaperone Ccp1 from the centromeric reservoir. Swc2 and Ccp1 are directed to the rDNA locus to excavate the SpCENP-Acnp1-1, which is relocalized to the centromere in a manner dependent on canonical SpCENP-A loaders, including Mis16, Mis17 and Mis18, thereby conferring cell survival and safeguarding chromosome segregation fidelity. Chromosome missegregation is a severe genetic instability event that compromises cell viability. This mechanism thus promotes CENP-A presence at the centromere to maintain genomic stability.


Asunto(s)
Proteína A Centromérica , Centrómero , Proteínas Cromosómicas no Histona , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Aneuploidia , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Histonas/genética , Cinetocoros/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Chaperonas de Histonas/metabolismo
3.
Biomedicines ; 11(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37893202

RESUMEN

Edge effect denotes better growth of microbial organisms situated at the edge of the solid agar media. Although the precise reason underlying edge effect is unresolved, it is generally attributed to greater nutrient availability with less competing neighbors at the edge. Nonetheless, edge effect constitutes an unavoidable confounding factor that results in misinterpretation of cell fitness, especially in high-throughput screening experiments widely employed for genome-wide investigation using microbial gene knockout or mutant libraries. Here, we visualize edge effect in high-throughput high-density pinning arrays and report a normalization approach based on colony growth rate to quantify drug (hydroxyurea)-hypersensitivity in fission yeast strains. This normalization procedure improved the accuracy of fitness measurement by compensating cell growth rate discrepancy at different locations on the plate and reducing false-positive and -negative frequencies. Our work thus provides a simple and coding-free solution for a struggling problem in robotics-based high-throughput screening experiments.

4.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445861

RESUMEN

5-Fluorouracil (5-FU) is a conventional chemotherapeutic drug widely used in clinics worldwide, but development of resistance that compromises responsiveness remains a major hurdle to its efficacy. The mechanism underlying 5-FU resistance is conventionally attributed to the disruption of nucleotide synthesis, even though research has implicated other pathways such as RNA processing and chromatin dysregulation. Aiming to clarify resistance mechanisms of 5-FU, we tested the response of a collection of fission yeast (Schizosaccharomyces pombe) null mutants, which confer multiple environmental factor responsiveness (MER). Our screen identified disruption of membrane transport, chromosome segregation and mitochondrial oxidative phosphorylation to increase cellular susceptibility towards 5-FU. Conversely, we revealed several null mutants of Ino80 complex factors exhibited resistance to 5-FU. Furthermore, attenuation of Ino80 function via deleting several subunit genes reversed loss of chromosome-segregation fidelity in 5-FU in the loss-of-function mutant of the Argonaute protein, which regulates RNA interference (RNAi)-dependent maintenance of pericentromeric heterochromatin. Our study thus uncovered a critical role played by chromatin remodeling Ino80 complex factors in 5-FU resistance, which may constitute a possible target to modulate in reversing 5-FU resistance.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Interferencia de ARN , Heterocromatina/metabolismo , Fluorouracilo/farmacología , Fluorouracilo/metabolismo , Factores de Transcripción/metabolismo
5.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36574952

RESUMEN

Fission yeast Schizosaccharomyces pombe (S. pombe) is renowned as a powerful genetic model for deciphering cellular and molecular biological phenomena, including cell division, chromosomal events, stress responses, and human carcinogenesis. Traditionally, Africans use S. pombe to ferment the beer called 'Pombe', which continues to be consumed in many parts of Africa. Although not as widely utilized as the baker's yeast Saccharomyces cerevisiae, S. pombe has secured several niches in the food industry for human nutrition because of its unique metabolism. This review will explore three specific facets of human nutrition where S. pombe has made a significant impact: namely, in wine fermentation, animal husbandry and neutraceutical supplementation coenzyme Q10 production. Discussions focus on the current gaps in these areas, and the potential research advances useful for addressing future challenges. Overall, gaining a better understanding of S. pombe metabolism will strengthen production in these areas and potentially spearhead novel future applications.


Asunto(s)
Schizosaccharomyces , Vino , Animales , Humanos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Vino/análisis , Fermentación
6.
Genes (Basel) ; 13(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36292582

RESUMEN

Precise chromosome segregation is essential for maintaining genomic stability, and its proper execution centers on the centromere, a chromosomal locus that mounts the kinetochore complex to mediate attachment of chromosomes to the spindle microtubules. The location of the centromere is epigenetically determined by a centromere-specific histone H3 variant, CENP-A. Many human cancers exhibit overexpression of CENP-A, which correlates with occurrence of aneuploidy in these malignancies. Centromeric targeting of CENP-A depends on its histone fold, but recent studies showed that the N-terminal tail domain (NTD) also plays essential roles. Here, we investigated implications of NTD in conferring aneuploidy formation when CENP-A is overexpressed in fission yeast. A series of mutant genes progressively lacking one amino acid of the NTD have been constructed for overexpression in wild-type cells using the intermediate strength nmt41 promoter. Constructs hosting disrupted GRANT (Genomic stability-Regulating site within CENP-A N-Terminus) motif in NTD results in growth retardation, aneuploidy, increased localization to the centromere, upregulated RNA polymerase II accessibility and transcriptional derepression of the repressive centromeric chromatin, suggesting that GRANT residues fine-tune centromeric CENP-A incorporation and restrict RNA polymerase II accessibility. This work highlighted the importance of CENP-A NTD, particularly the GRANT motif, in aneuploidy formation of overexpressed CENP-A in fission yeast.


Asunto(s)
Histonas , Schizosaccharomyces , Humanos , Aminoácidos/genética , Aneuploidia , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Inestabilidad Genómica , Histonas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
7.
Epigenetics Chromatin ; 15(1): 17, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35581654

RESUMEN

The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.


Asunto(s)
Histonas , Procesamiento Proteico-Postraduccional , Cromatina , Histonas/metabolismo , Humanos , Metilación , Nucleosomas
8.
Int J Biochem Cell Biol ; 144: 106155, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34990836

RESUMEN

Epigenetic dysregulation is an important contributor to carcinogenesis. This is not surprising, as chromatin-genomic DNA organized around structural histone scaffolding-serves as the template on which occurs essential nuclear processes, such as transcription, DNA replication and DNA repair. Histone H3 lysine 36 (H3K36) methyltransferases, such as the SET-domain 2 protein (SETD2), have emerged as critical tumor suppressors. Previous work on mammalian SETD2 and its counterpart in model organisms, Set2, has highlighted the role of this protein in governing genomic stability through transcriptional elongation and splicing, as well as in DNA damage response processes and cell cycle progression. A compendium of SETD2 mutations have been documented, garnered from sequenced cancer patient genome data, and these findings underscore the cancer-driving properties of SETD2 loss-of-function. In this review, we consolidate the molecular mechanisms regulated by SETD2/Set2 and discuss evidence of its dysregulation in tumorigenesis. Insight into the genetic interactions that exist between SETD2 and various canonical intracellular signaling pathways has not only empowered pharmacological intervention by taking advantage of synthetic lethality but underscores SETD2 as a druggable target for precision cancer therapy.


Asunto(s)
Histonas , Neoplasias , Animales , Carcinogénesis/genética , Cromatina , Inestabilidad Genómica , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Metilación , Neoplasias/genética
9.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440639

RESUMEN

Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in the folate metabolic pathway, and its loss of function through polymorphisms is often associated with human conditions, including cancer, congenital heart disease, and Down syndrome. MTHFR is also required in the maintenance of heterochromatin, a crucial determinant of genomic stability and precise chromosomal segregation. Here, we characterize the function of a fission yeast gene met11+, which encodes a protein that is highly homologous to the mammalian MTHFR. We show that, although met11+ is not essential for viability, its disruption increases chromosome missegregation and destabilizes constitutive heterochromatic regions at pericentromeric, sub-telomeric and ribosomal DNA (rDNA) loci. Transcriptional silencing at these sites were disrupted, which is accompanied by the reduction in enrichment of histone H3 lysine 9 dimethylation (H3K9me2) and binding of the heterochromatin protein 1 (HP1)-like Swi6. The met11 null mutant also dominantly disrupts meiotic fidelity, as displayed by reduced sporulation efficiency and defects in proper partitioning of the genetic material during meiosis. Interestingly, the faithful execution of these meiotic processes is synergistically ensured by cooperation among Met11, Rec8, a meiosis-specific cohesin protein, and the shugoshin protein Sgo1, which protects Rec8 from untimely cleavage. Overall, our results suggest a key role for Met11 in maintaining pericentromeric heterochromatin for precise genetic inheritance during mitosis and meiosis.


Asunto(s)
Segregación Cromosómica , Meiosis , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Mitosis , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Alelos , Biomarcadores , Genotipo , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Meiosis/genética , Mitosis/genética , Mutación , Fenotipo
10.
BMC Med Genomics ; 13(Suppl 10): 150, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33087126

RESUMEN

BACKGROUND: Understanding the mechanisms underlying the malignant progression of cancer cells is crucial for early diagnosis and therapeutic treatment for cancer. Mutational heterogeneity of breast cancer suggests that about a dozen of cancer genes consistently mutate, together with many other genes mutating occasionally, in patients. METHODS: Using the whole-exome sequences and clinical information of 468 patients in the TCGA project data portal, we analyzed mutated protein domains and signaling pathway alterations in order to understand how infrequent mutations contribute aggregately to tumor progression in different stages. RESULTS: Our findings suggest that while the spectrum of mutated domains was diverse, mutations were aggregated in Pkinase, Pkinase Tyr, Y-Phosphatase and Src-homology 2 domains, highlighting the genetic heterogeneity in activating the protein tyrosine kinase signaling pathways in invasive ductal breast cancer. CONCLUSIONS: The study provides new clues to the functional role of infrequent mutations in protein domain regions in different stages for invasive ductal breast cancer, yielding biological insights into metastasis for invasive ductal breast cancer.


Asunto(s)
Carcinoma Ductal de Mama/genética , Análisis Mutacional de ADN , Mutación , Proteínas de Neoplasias/genética , Biomarcadores de Tumor/genética , Carcinoma Ductal de Mama/patología , Progresión de la Enfermedad , Femenino , Humanos , Estadificación de Neoplasias , Secuenciación del Exoma
11.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859127

RESUMEN

Centromere integrity underlies an essential framework for precise chromosome segregation and epigenetic inheritance. Although centromeric DNA sequences vary among different organisms, all eukaryotic centromeres comprise a centromere-specific histone H3 variant, centromeric protein A (CENP-A), on which other centromeric proteins assemble into the kinetochore complex. This complex connects chromosomes to mitotic spindle microtubules to ensure accurate partitioning of the genome into daughter cells. Overexpression of CENP-A is associated with many cancers and is correlated with its mistargeting, forming extra-centromeric kinetochore structures. The mislocalization of CENP-A can be counteracted by proteolysis. The amino (N)-terminal domain (NTD) of CENP-A has been implicated in this regulation and shown to be dependent on the proline residues within this domain in Saccharomyces cerevisiae CENP-A, Cse4. We recently identified a proline-rich GRANT motif in the NTD of Schizosaccharomyces pombe CENP-A (SpCENP-A) that regulates the centromeric targeting of CENP-A via binding to the CENP-A chaperone Sim3. Here, we investigated whether the NTD is required to confer SpCENP-A turnover (i.e., counter stability) using various truncation mutants of SpCENP-A. We show that sequential truncation of the NTD did not improve the stability of the protein, indicating that the NTD of SpCENP-A does not drive turnover of the protein. Instead, we reproduced previous observations that heterochromatin integrity is important for SpCENP-A stability, and showed that this occurs in an NTD-independent manner. Cells bearing the null mutant of the histone H3 lysine 9 methyltransferase Clr4 (Δclr4), which have compromised constitutive heterochromatin integrity, showed reductions in the proportion of SpCENP-A in the chromatin-containing insoluble fraction of the cell extract, suggesting that heterochromatin may promote SpCENP-A chromatin incorporation. Thus, a disruption in heterochromatin may result in the delocalization of SpCENP-A from chromatin, thus exposing it to protein turnover. Taken together, we show that the NTD is not required to confer SpCENP-A protein turnover.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/química , N-Metiltransferasa de Histona-Lisina/genética , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sitios de Unión , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Mutación , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Schizosaccharomyces/química , Schizosaccharomyces/genética
12.
Oncotarget ; 11(30): 2930-2955, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32774773

RESUMEN

The host innate immunity offers the first line of defense against infection. However, recent evidence shows that the host innate immunity is also critical in sensing the presence of cytoplasmic DNA derived from genomic instability events, such as DNA damage and defective cell cycle progression. This is achieved through the cyclic GMP-AMP synthase (cGAS)/Stimulator of interferon (IFN) genes (STING) pathway. Here we discuss recent insights into the regulation of this pathway in cancer immunosurveillance, and the downstream signaling cascades that coordinate immune cell recruitment to the tumor microenvironment to destroy transformed cells through cellular senescence or cell death programs. Its central role in immunosurveillance positions the cGAS-STING pathway as an attractive anti-cancer immunotherapeutic drug target for chemical agonists or vaccine adjuvants and suggests a key node to be targeted in a synthetic lethal approach. We also discuss adaptive mechanisms used by cancer cells to circumvent cGAS-STING signaling and present evidence linking chronic cGAS-STING activation to inflammation-induced carcinogenesis, cautioning against the use of activating the cGAS-STING pathway as an anti-tumor immunotherapy. A deeper mechanistic understanding of the cGAS-STING pathway will aid in the identification of potentially efficacious anti-cancer therapeutic targets.

13.
Curr Genet ; 65(4): 829-836, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30963244

RESUMEN

Constitutive heterochromatin packages long stretches of repetitive DNA sequences at the centromere and telomere, and ensures genomic integrity at these loci by preventing aberrant recombination and transcription. The chromatin scaffold of heterochromatin is dynamically regulated in the cell cycle, and inheritance of the epigenetically silenced state is dependent on a transcriptional event imposed on the underlying non-coding RNA in conjunction with the DNA replicative phase. Heterochromatin becomes transiently loosened in response to a reduction in the binding of Swi6, a heterochromatin protein, and this allows RNA polymerase II access to the underlying sequence. The derived transcripts, in turn, drive heterochromatin formation via the recruitment of other silencing factors. It remains unclear how heterochromatin becomes decompacted in a cell cycle-specific manner. Here, we describe a mechanism of heterochromatin decompaction initiated by a novel histone modification, histone H3 tyrosine 41 phosphorylation (H3Y41p). We will discuss how H3Y41p cooperates with other regulatory pathways to enforce cell cycle-dependent regulation of constitutive heterochromatin.


Asunto(s)
Centrómero/genética , Heterocromatina/genética , Histonas/genética , Tirosina/genética , Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética/genética , Fosforilación/genética , ARN Polimerasa II/genética , ARN no Traducido/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
14.
PeerJ ; 6: e5377, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30280012

RESUMEN

Proteins of the DUF866 superfamily are exclusively found in eukaryotic cells. A member of the DUF866 superfamily, C1ORF123, is a human protein found in the open reading frame 123 of chromosome 1. The physiological role of C1ORF123 is yet to be determined. The only available protein structure of the DUF866 family shares just 26% sequence similarity and does not contain a zinc binding motif. Here, we present the crystal structure of the recombinant human C1ORF123 protein (rC1ORF123). The structure has a 2-fold internal symmetry dividing the monomeric protein into two mirrored halves that comprise of distinct electrostatic potential. The N-terminal half of rC1ORF123 includes a zinc-binding domain interacting with a zinc ion near to a potential ligand binding cavity. Functional studies of human C1ORF123 and its homologue in the fission yeast Schizosaccharomyces pombe (SpEss1) point to a role of DUF866 protein in mitochondrial oxidative phosphorylation.

15.
Cell Mol Life Sci ; 75(18): 3381-3392, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30003270

RESUMEN

Technological breakthroughs in genomics have had a significant impact on clinical therapy for human diseases, allowing us to use patient genetic differences to guide medical care. The "synthetic lethal approach" leverages on cancer-specific genetic rewiring to deliver a therapeutic regimen that preferentially targets malignant cells while sparing normal cells. The utility of this system is evident in several recent studies, particularly in poor prognosis cancers with loss-of-function mutations that become "treatable" when two otherwise discrete and unrelated genes are targeted simultaneously. This review focuses on the chemotherapeutic targeting of epigenetic alterations in cancer cells and consolidates a network that outlines the interplay between epigenetic and genetic regulators in DNA damage repair. This network consists of numerous synergistically acting relationships that are druggable, even in recalcitrant triple-negative breast cancer. This collective knowledge points to the dawn of a new era of personalized medicine.


Asunto(s)
Epigénesis Genética , Neoplasias/patología , Medicina de Precisión , Cromatina/metabolismo , Reparación del ADN , Redes Reguladoras de Genes/genética , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Poli(ADP-Ribosa) Polimerasas/metabolismo
16.
Exp Cell Res ; 370(2): 283-291, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29959912

RESUMEN

Chemotherapy remains the most prescribed anti-cancer therapy, despite patients suffering severe side effects and frequently developing chemoresistance. These complications can be partially overcome by combining different chemotherapeutic agents that target multiple biological pathways. However, selecting efficacious drug combinations remains challenging. We previously used fission yeast Schizosaccharomycespombe as a surrogate model to predict drug combinations, and showed that suberoylanilide hydroxamic acid (SAHA) and cisplatin can sensitise gastric adenocarcinoma cells toward the cytotoxic effects of doxorubicin. Yet, how this combination undermines cell viability is unknown. Here, we show that SAHA and doxorubicin markedly enhance the cleavage of two apoptosis markers, caspase 3 and poly-ADP ribose polymerase (PARP-1), and increase the phosphorylation of γH2AX, a marker of DNA damage. Further, we found a prominent reduction in Ser485 phosphorylation of AMP-dependent protein kinase (AMPK), and reductions in its target mTOR and downstream ribosomal protein S6 phosphorylation. We show that SAHA contributes most of the effect, as confirmed using another histone deacetylase inhibitor, trichostatin A. Overall, our results show that the combination of SAHA and doxorubicin can induce apoptosis in gastric adenocarcinoma in a synthetically lethal manner, and that fission yeast offers an efficient tool for identifying potent drug combinations against human cancer cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Vorinostat/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico
17.
Chem Biol Interact ; 289: 81-89, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29705079

RESUMEN

Gold nanoparticles (AuNPs) have emerging applications in biomedicine and the industry. Exposure to AuNPs has previously been shown to alter the transcriptional activity of nuclear factor kappa B (NF-kB), which is known to mediate physiological and pathological processes. This study seeks to provide mechanistic insights into AuNP-induced NF-kB activation in Small Airway Epithelial Cells (SAECs) in vitro. Increased NF-kB transcriptional activity (quantified by the luciferase reporter assay) was observed in AuNP-treated SAECs. Transcriptomic analysis revealed differential expression of 42 genes, which regulate functional processes that include cellular response to stimulus, chemicals and stress as well as immune response. Notably, the gene expression of serum amyloid A1 (SAA1), an acute phase protein and Toll-like receptor 2 (TLR2) were found to be up-regulated. As TLR2 is known to be a functional receptor of SAA1, a co-immunoprecipitation assay was performed. SAA1 was observed to be co-immunoprecipitated with the TLR2 protein and this protein-protein interaction was further supported by in silico computer based protein modeling. The present study suggests that AuNPs may potentially induce SAA1-TLR2-mediated NF-kB transcription factor activation in lung epithelial cells, highlighting that nano-bio interactions could result in biological effects that may affect cells.


Asunto(s)
Oro/química , Pulmón/metabolismo , Nanopartículas del Metal/química , FN-kappa B/metabolismo , Proteína Amiloide A Sérica/metabolismo , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Perfilación de la Expresión Génica , Humanos , Nanopartículas del Metal/ultraestructura , Modelos Biológicos , Unión Proteica
18.
Nucleic Acids Res ; 46(10): 5061-5074, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635344

RESUMEN

The Set2 methyltransferase and its target, histone H3 lysine 36 (H3K36), affect chromatin architecture during the transcription and repair of DNA double-stranded breaks. Set2 also confers resistance against the alkylating agent, methyl methanesulfonate (MMS), through an unknown mechanism. Here, we show that Schizosaccharomyces pombe (S. pombe) exhibit MMS hypersensitivity when expressing a set2 mutant lacking the catalytic histone methyltransferase domain or a H3K36R mutant (reminiscent of a set2-null mutant). Set2 acts synergistically with base excision repair factors but epistatically with nucleotide excision repair (NER) factors, and determines the timely nuclear accumulation of the NER initiator, Rhp23, in response to MMS. Set2 facilitates Rhp23 recruitment to chromatin at the brc1 locus, presumably to repair alkylating damage and regulate the expression of brc1+ in response to MMS. Set2 also show epistasis with DNA damage checkpoint proteins; regulates the activation of Chk1, a DNA damage response effector kinase; and acts in a similar functional group as proteins involved in homologous recombination. Consistently, Set2 and H3K36 ensure the dynamicity of Rhp54 in DNA repair foci formation after MMS treatment. Overall, our results indicate a novel role for Set2/H3K36me in coordinating the recruitment of DNA repair machineries to timely manage alkylating damage.


Asunto(s)
Alquilantes/farmacología , Reparación del ADN/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epistasis Genética , Regulación Fúngica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Lisina/metabolismo , Metilmetanosulfonato/farmacología , Metilación/efectos de los fármacos , Dominios Proteicos , Proteínas de Schizosaccharomyces pombe/genética
19.
Bio Protoc ; 8(18): e3012, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34395802

RESUMEN

Histone post-translational modifications (PTMs) regulate numerous cellular processes, including gene transcription, cell division, and DNA damage repair. Most histone PTMs affect the recruitment or exclusion of reader proteins from chromatin. Here, we present a protocol to measure affinity and interaction kinetics between histone peptides and the recombinant protein using Bio-layer interferometry.

20.
Bio Protoc ; 8(24): e3117, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34532559

RESUMEN

DNA damage repair proteins form foci in response to DNA damaging agents. The efficiency and integrity of the DNA repair pathway of a particular eukaryotic (mutant) strain is usually determined by the number of foci formed compared with their wild-type counterpart. Conventionally, focus number is determined visually, and this low accuracy may obscure the identification of a weaker phenotype, particularly when the output is low. Here, using the homologous recombination protein Rhp54 as an example, we present a protocol that can increase the consistency of foci identification among samples and can significantly improve the efficiency of foci quantification for large sample sizes. A similar method can be applied to other foci-forming proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA