Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
MedComm (2020) ; 5(6): e560, 2024 Jun.
Article En | MEDLINE | ID: mdl-38812572

White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.

2.
Infect Drug Resist ; 17: 2053-2068, 2024.
Article En | MEDLINE | ID: mdl-38813527

Purpose: Pseudomonas aeruginosa is a common causative bacteria in nosocomial infections. This study aims to describe the structure and evolutionary characteristics of mobile genetic elements (MGEs) carrying antibiotic resistance genes (ARGs) from P. aeruginosa and to conduct bioinformatics and comparative genomic analysis to provide a deeper understanding of the genetic characteristics and diversity of MGEs in P. aeruginosa. Methods: Fifteen clinical isolates of P. aeruginosa from China were collected and sequenced in this study, and 15 novel MGEs were identified. Together with four MGEs from GenBank, a total of 19 MGEs were used to perform detailed modular structure dissection and sequence comparison. Then, the biological experiments were carried out to verify the biological characteristics of these isolates and MEGs. Results: The novel MGEs identified in this study displayed diversification in modular structures, which showed complex mosaic natures. The seven types of 19 MGEs included in this study were divided into three groups: i) novel MGEs (firstly identified in this study): four IncpSE5381-aadB plasmids and three Tn7495-related integrative and mobilizable elements (IMEs); ii) newly defined MGEs (firstly designated in this study, but with previously determined sequences): four Tn7665-related IMEs; iii) novel transposons with reference prototypes identified in this study: two Tn6417-related integrative and conjugative elements (ICEs), two IS-based transposition units, two Tn501-related unit transposons, two Tn1403-related unit transposons. At least 36 ARGs involved in resistance to 11 different classes of antimicrobials and heavy metals were identified. Additionally, three novel blaOXA variants were identified. Antimicrobial susceptibility testing showed that these variants were resistant to some ß-lactamase antibiotics and blaOXA-1204 was additionally resistant to cephalosporins. Conclusion: The continuous evolution of ARG-carrying MGEs during transmission, leading to the emergence of novel MGEs or ARGs, which facilitates the spread of antibiotic resistance in P. aeruginosa and enhances the diversity of transmission modes of bacterial resistance.

3.
Small ; : e2400142, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38676334

Complex temporal molecular signals play a pivotal role in the intricate biological pathways of living organisms, and cells exhibit the ability to transmit and receive information by intricately managing the temporal dynamics of their signaling molecules. Although biomimetic molecular networks are successfully engineered outside of cells, the capacity to precisely manipulate temporal behaviors remains limited. In this study, the catalysis activity of isothermal DNA polymerase (DNAP) through combined use of molecular dynamics simulation analysis and fluorescence assays is first characterized. DNAP-driven delay in signal strand release ranged from 100 to 102 min, which is achieved through new strategies including the introduction of primer overhangs, utilization of inhibitory reagents, and alteration of DNA template lengths. The results provide a deeper insight into the underlying mechanisms of temporal control DNAP-mediated primer extension and DNA strand displacement reactions. Then, the regulated DNAP catalysis reactions are applied in temporal modulation of downstream DNA-involved reactions, the establishment of dynamic molecular signals, and the generation of barcodes for multiplexed detection of target genes. The utility of DNAP-based signal delay as a dynamic DNA nanotechnology extends beyond theoretical concepts and achieves practical applications in the fields of cell-free synthetic biology and bionic sensing.

4.
Adv Sci (Weinh) ; 11(17): e2309624, 2024 May.
Article En | MEDLINE | ID: mdl-38408124

Mild-heat photothermal antibacterial therapy avoids heat-induced damage to normal tissues but causes bacterial tolerance. The use of photothermal therapy in synergy with chemodynamic therapy is expected to address this issue. Herein, two pseudo-conjugated polymers PM123 with photothermal units and PFc with ferrocene (Fc) units are designed to co-assemble with DSPE-mPEG2000 into nanoparticle NPM123/Fc. NPM123/Fc under 1064 nm laser irradiation (NPM123/Fc+NIR-II) generates mild heat and additionally more toxic ∙OH from endogenous H2O2, displaying a strong synergistic photothermal and chemodynamic effect. NPM123/Fc+NIR-II gives >90% inhibition rates against MDR ESKAPE pathogens in vitro. Metabolomics analysis unveils that NPM123/Fc+NIR-II induces bacterial metabolic dysregulation including inhibited nucleic acid synthesis, disordered energy metabolism, enhanced oxidative stress, and elevated DNA damage. Further, NPM123/Fc+NIR-II possesses >90% bacteriostatic rates at infected wounds in mice, resulting in almost full recovery of infected wounds. Immunodetection and transcriptomics assays disclose that the therapeutic effect is mainly dependent on the inhibition of inflammatory reactions and the promotion of wound healing. What is more, thioketal bonds in NPM123/Fc are susceptible to ROS, making it degradable with highly favorable biosafety in vitro and in vivo. NPM123/Fc+NIR-II with a unique synergistic antibacterial strategy would be much less prone to select bacterial resistance and represent a promising antibiotics-alternative anti-infective measure.


Anti-Bacterial Agents , Disease Models, Animal , Nanoparticles , Photothermal Therapy , Polymers , Wound Infection , Animals , Mice , Nanoparticles/chemistry , Polymers/chemistry , Polymers/pharmacology , Wound Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Photothermal Therapy/methods
5.
Eur. j. psychol. appl. legal context (Internet) ; 16(1): 37-48, Jan. 2024. tab, graf
Article En | IBECS | ID: ibc-230854

Background: There are serious doubts as to whether parental strictness, one of the two main dimensions of parental style, can be a negative or positive component of parenting in traditional societies. Method: Parenting style (authoritarian, authoritative, indulgent, and neglectful) was captured from strictness and warmth dimensions and child maladjustment was assessed with problems of self-esteem and self-concept (academic, social, emotional, family, and physical) studied worldwide. The sample was composed of 1,282 Chinese participants (676 females, 52.7%), 581 adolescent children (age ranging from 12-18 years, 45.3%), and 701 young adult children (age ranging from 19-31 years, 54.7%). A 4 × 2 × 2 factorial MANOVA was applied for all outcomes using parenting style, sex, and age as the independent variables. Results: The statistical analysis plainly indicated that authoritarian (strictness but not warmth) and neglectful (neither strictness nor warmth) parenting styles were associated with higher maladjustment in terms of lower self-esteem and self-concept scores. Indulgent (not strictness but warmth) and authoritative (strictness and warmth) parenting were positive parenting styles acting as protective factors against self-esteem and self-concept problems. The authoritative style (strictness and warmth), but not the authoritarian parenting style (strictness but not warmth), was the most positive parenting for academic self-concept, but only among adolescents. Conclusions: Interestingly, completely contrary to expectations that authoritarian parenting might be a positive parenting in traditional societies, present findings suggest that the authoritarian style might be a negative parenting related to child maladjustment. (AU)


Antecedentes: Existen serias dudas sobre si la severidad parental, una de las dos dimensiones principales del estilo parental, puede ser un componente negativo o positivo de la socialización en las sociedades tradicionales. Método: El estilo parental (autoritario, autorizativo, indulgente y negligente) se evaluó a partir de las dimensiones de severidad y afecto, y el desajuste de los hijos por medio de problemas de autoestima y autoconcepto (académicos, sociales, emocionales, familiares y físicos) estudiados en todo el mundo. La muestra estaba compuesta por 1,282 participantes chinos (676 mujeres, 52.7%), 581 hijos adolescentes (de 12 a 18 años, 45.3%) y 701 hijos adultos jóvenes (de 19 a 31 años, 54.7%). Se aplicó un MANOVA factorial 4 × 2 × 2 para todos los criterios utilizando el estilo parental, el sexo y la edad como variables independientes. Resultados: El análisis estadístico indicó claramente que el estilo parental autoritario (severidad sin afecto) y el negligente (ni severidad ni afecto) estaban relacionados con un mayor desajuste, como indican las menores puntuaciones de autoestima y autoconcepto. El estilo indulgente (afecto sin severidad) y el autorizativo (severidad y afecto) fueron estilos parentales positivos que actuaron como factores protectores contra los problemas de autoestima y autoconcepto. El estilo autorizativo (severidad y afecto), pero no el autoritario (severidad sin afecto), fue el más positivo para el autoconcepto académico, pero sólo en los adolescentes. Conclusiones: En contra de las expectativas de que el estilo parental autoritario podría ser positivo para la socialización en las sociedades tradicionales, los presentes resultados sugieren que la socialización autoritaria es un estilo parental negativo relacionado con problemas de desajuste de los hijos. (AU)


Humans , Male , Female , Adolescent , Young Adult , Child Rearing/psychology , Parent-Child Relations , Authoritarianism , Affect , Child Abuse , Self Concept , China
6.
Virulence ; 14(1): 2271688, 2023 12.
Article En | MEDLINE | ID: mdl-37848422

The emergence of antibiotic-resistant Aeromonas strains in clinical settings has presented an escalating burden on human and public health. The dissemination of antibiotic resistance in Aeromonas is predominantly facilitated by chromosome-borne accessory genetic elements, although the existing literature on this subject remains limited. Hence, the primary objective of this study is to comprehensively investigate the genomic characteristics of chromosome-borne accessory genetic elements in Aeromonas. Moreover, the study aims to uncover novel genetic environments associated with antibiotic resistance on these elements. Aeromonas were screened from nonduplicated strains collected from two tertiary hospitals in China. Complete sequencing and population genetics analysis were performed. BLAST analysis was employed to identify related elements. All newly identified elements were subjected to detailed sequence annotation, dissection, and comparison. We identified and newly designated 19 chromosomal elements, including 18 integrative and mobilizable elements (IMEs) that could be classified into four categories: Tn6737-related, Tn6836-related, Tn6840-related, and Tn6844a-related IMEs. Each class exhibited a distinct pattern in the types of resistance genes carried by the IMEs. Several novel antibiotic resistance genetic environments were uncovered in these elements. Notably, we report the first identification of the blaOXA-10 gene and blaVEB-1 gene in clinical A. veronii genome, the first presence of a tetA(E)-tetR(E) resistance gene environment within the backbone region in IMEs, and a new mcr-3.15 resistance gene environment. The implications of these findings are substantial, as they provide new insights into the evolution, structure, and dissemination of chromosomal-borne accessory elements.


Aeromonas , Humans , Aeromonas/genetics , Drug Resistance, Microbial , Anti-Bacterial Agents/pharmacology , Chromosomes , China
7.
Clin Exp Dermatol ; 48(12): 1317-1327, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-37566911

Heterogeneous dermal fibroblasts are the main components that constitute the dermis. Distinct fibroblast subgroups show specific characteristics and functional plasticity that determine dermal structure during skin development and wound healing. Although researchers have described the roles of fibroblast subsets, this is not completely understood. We review recent evidence supporting understanding about the heterogeneity of fibroblasts. We summarize the origins and the identified profiles of fibroblast subpopulations. The characteristics of fibroblast subpopulations in both healthy and diseased states are highlighted, and the potential of subpopulations to be involved in wound healing in different ways was discussed. Additionally, we review the plasticity of subpopulations and the underlying signalling mechanisms. This review may provide greater insights into potential novel therapeutic targets and tissue regeneration strategies for the future.


Dermis , Skin , Humans , Wound Healing , Fibroblasts , Signal Transduction
8.
Genes Dis ; 10(5): 2097-2108, 2023 Sep.
Article En | MEDLINE | ID: mdl-37492739

Osteoarthritis (OA) has been considered non-reversible as articular cartilage wears down with limited repair capacity. Enhanced chondrocyte hypertrophy and increased type X collagen gene (COL10A1) expression have been associated with OA. Therefore, regulators controlling collagen X expression and chondrocyte hypertrophy may play a role in OA intervention. Here, we investigated how Distal-less homeobox 5 (DLX5), the distal-less homeobox family member, controls murine Col10a1 gene expression and chondrocyte hypertrophy in chondrogenic cell models and its role in a murine OA model. Through qRT-PCR and Western blot analyses, we detected significantly increased levels of COL10A1 and DLX5 in hypertrophic MCT and ATDC5 cells compared to their proliferative stage. Forced expression of Dlx5 further increases, while knockdown of Dlx5 decreases COL10A1 expression in hypertrophic MCT cells. We have performed dual-luciferase reporter and ChIP assays and demonstrated that DLX5 promotes reporter activity through direct interaction with Col10a1 cis-enhancer. We established a murine OA model and detected markedly increased COL10A1 and DLX5 in the articular cartilage and subchondral bone of the OA mice compared with the controls. Notably, forced overexpression of DLX5 in hypertrophic MCT cells up-regulates RUNX2, and adjacent DLX5 and RUNX2 binding sites have previously been found within the Col10a1 cis-enhancer. Together, our data suggest that DLX5 may cooperate with RUNX2 to control cell-specific Col10a1 expression and chondrocyte hypertrophy and is involved in OA pathogenesis.

9.
Ann Clin Microbiol Antimicrob ; 22(1): 51, 2023 Jun 29.
Article En | MEDLINE | ID: mdl-37386463

OBJECTIVES: Pseudomonas aeruginosa has intrinsic antibiotic resistance and the strong ability to acquire additional resistance genes. However, a limited number of investigations provide detailed modular structure dissection and evolutionary analysis of accessory genetic elements (AGEs) and associated resistance genes (ARGs) in P. aeruginosa isolates. The objective of this study is to reveal the prevalence and transmission characteristics of ARGs by epidemiological investigation and bioinformatics analysis of AGEs of P. aeruginosa isolates taken from a Chinese hospital. METHODS: Draft-genome sequencing was conducted for P. aeruginosa clinical isolates (n = 48) collected from a single Chinese hospital between 2019 and 2021. The clones of P. aeruginosa isolates, type 3 secretion system (T3SS)-related virulotypes, and the resistance spectrum were identified using multilocus sequence typing (MLST), polymerase chain reaction (PCR), and antimicrobial susceptibility tests. In addition, 17 of the 48 isolates were fully sequenced. An extensive modular structure dissection and genetic comparison was applied to AGEs of the 17 sequenced P. aeruginosa isolates. RESULTS: From the draft-genome sequencing, 13 STs were identified, showing high genetic diversity. BLAST search and PCR detection of T3SS genes (exoT, exoY, exoS, and exoU) revealed that the exoS+/exoU- virulotype dominated. At least 69 kinds of acquired ARGs, involved in resistance to 10 different categories of antimicrobials, were identified in the 48 P. aeruginosa isolates. Detailed genetic dissection and sequence comparisons were applied to 25 AGEs from the 17 isolates, together with five additional prototype AGEs from GenBank. These 30 AGEs were classified into five groups -- integrative and conjugative elements (ICEs), unit transposons, IncpPBL16 plasmids, Incp60512-IMP plasmids, and IncpPA7790 plasmids. CONCLUSION: This study provides a broad-scale and deeper genomics understanding of P. aeruginosa isolates taken from a single Chinese hospital. The isolates collected are characterized by high genetic diversity, high virulence, and multiple drug resistance. The AGEs in P. aeruginosa chromosomes and plasmids, as important genetic platforms for the spread of ARGs, contribute to enhancing the adaptability of P. aeruginosa in hospital settings.


Anti-Infective Agents , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing , Drug Resistance, Bacterial/genetics , Glycation End Products, Advanced
10.
J Plast Reconstr Aesthet Surg ; 83: 198-206, 2023 08.
Article En | MEDLINE | ID: mdl-37279632

INTRODUCTION: Autologous fat grafting is still an evolving technique. Researchers have attempted to increase the survival rate of grafts by concentrating adipose-derived stem cells (ASCs). In this study, we investigate a novel method that combines ultrasonic processing and centrifugation to generate small fat particles termed concentrated ultrasound-processed fat (CUPF) for grafting. METHODS: The standard approach for obtaining CUPF is described. The properties of processed fat, including CUPF, microfat, centrifuged fat, and nanofat, were investigated using histological observation. Comparative analyses were conducted on the cell number, viability, and immunophenotypic profile of stromal vascular fraction cells (SVFs). Cultured ASCs were evaluated for cell proliferation and adipogenic, osteogenic, and chondrogenic potential. The processed fats were transplanted and evaluated using in vivo and histological studies. RESULTS: Compared with microfat, centrifuged fat, and nanofat, CUPF had a condensed tissue content and higher concentration of viable cells in a small tissue structure and could smoothly pass through a 27-gauge cannula. In the CUPF group, SVFs were isolated in great numbers, with high viability and a high proportion of CD29- and CD105-positive cells. ASCs from the CUPF group exhibited high proliferation and multilineage differentiation potential. The grafts from the CUPF group were well preserved, and histological quantification revealed an increase in the abundance of Ki67- and CD31-positive cells in the tissue. CONCLUSIONS: Our study established a new fat processing strategy that combines ultrasonic processing and centrifugation to harvest small particle grafts named CUPF. CUPF concentrated a large number of ASCs and has great potential for regenerative therapy.


Lipectomy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Adipose Tissue/transplantation , Adipocytes/transplantation , Lipectomy/methods , Graft Survival
11.
Microbiol Spectr ; 11(3): e0498622, 2023 06 15.
Article En | MEDLINE | ID: mdl-37092959

Three novel imipenemase (IMP)-type metallo-ß-lactamases (MBLs), referred to as IMP-89, IMP-91, and IMP-96, were detected in three clinical isolates from China. Antimicrobial susceptibility tests indicated these novel enzymes were resistant to most ß-lactams, and IMP-96 with a Ser262Gly mutation had higher activity against meropenem than its point mutant. We then collected sequence data on all 91 available IMP variants for phylogenetic analysis. To further analyze the genetic environment of blaIMP, an extensive comparison was applied to nine accessory genetic elements (AGEs), including six sequenced blaIMP-carrying AGEs in this study and three others from GenBank. These nine AGEs were divided into three groups: three IncpJBCL41 plasmids, Tn6417 and its two derivatives, and three Tn6879-related integrative and conjugative elements (ICEs). All blaIMP genes in this study were captured by class 1 integrons. In the integrons, blaIMP genes usually coexisted with other resistance genes, which further impeded clinical antibacterial treatment. The emergence of new IMP variants and the diversity and complexity of their genetic environment make the prevention and control of drug-resistant strains critical, requiring serious attention from clinical and public health management departments. IMPORTANCE The spread of IMP-type MBLs has increased dramatically in recent years. We discovered three novel IMP variants from three clinical isolates in China. We summarized the classification and evolutionary relationship of all available IMP variants. Moreover, we detailed the genetic characteristics of blaIMP-carrying accessory genetic elements in five clinical isolates. Given the risk of rapid and extensive spread of blaIMP genes, we suggest that continuous surveillance is crucial to combat the acquisition and transmission of blaIMP genes by bacteria, which can impede clinical therapy effectiveness.


Carbapenems , beta-Lactamases , Humans , beta-Lactamases/genetics , Glycation End Products, Advanced , Phylogeny , China
12.
Materials (Basel) ; 16(4)2023 Feb 17.
Article En | MEDLINE | ID: mdl-36837312

Nickel base superalloys are widely used to manufacture turbine blades, and overheating poses a serious threat to the safe service of turbine blades. In this study, a second-generation nickel base single crystal superalloy was taken as the research object, and we carried out the overheating treatment at 1100 °C and 1300 °C, and then tested the creep properties at 1000 °C/300 MPa and 1100 °C/130 MPa. Through systematic analysis of creep properties, γ/γ' phases, and creep voids, the effects of overheating on the microstructures and creep properties of the experimental superalloy were revealed. The results demonstrate that the effect of overheating at 1100 °C on the microstructure of the experimental superalloy can be ignored, and the effect on the creep property is limited. The degree of γ' dissolution is gradually increased and the creep property is reduced with overheating time extending at the overheating temperature of 1300 °C.

13.
Materials (Basel) ; 16(1)2023 Jan 03.
Article En | MEDLINE | ID: mdl-36614786

In this paper, the residual stresses with a nanoscale depth resolution at TSV-Cu/TiW/SiO2/Si interfaces under different thermal loadings are characterized using the ion-beam layer removal (ILR) method. Moreover, the correlations of residual stress, microstructure, and the failure modes of the interfaces are discussed. The residual stresses at the interfaces of TSV-Cu/TiW, TiW/SiO2, and SiO2/Si are in the form of small compressive stress at room temperature, then turn into high-tensile stress after thermal cycling or annealing. In addition, the maximum residual stress inside the TSV-Cu is 478.54 MPa at room temperature, then decreases to 216.75 MPa and 90.45 MPa, respectively, after thermal cycling and annealing. The microstructural analysis indicates that thermal cycling causes an increase in the dislocation density and a decrease in the grain diameter of TSV-Cu. Thus, residual stress accumulates constantly in the TSV-Cu/TiW interface, resulting in the cracking of the interface. Furthermore, annealing leads to the cracking of more interfaces, relieving the residual stress as well as increasing the grain diameter of TSV-Cu. Besides this, the applicability of the ILR method is verified by finite element modeling (FEM). The influence of the geometric errors of the micro-cantilever beam and the damage to the materials introduced by the focused ion beam (FIB) in the experimental results are discussed.

14.
Anim Biotechnol ; 34(5): 1807-1814, 2023 Nov.
Article En | MEDLINE | ID: mdl-35593671

Rotaviruses are rising as zoonotic viruses worldwide, causing the lethal dehydrating diarrhea in children, piglets, and other livestock of economic importance. A simple, swift, cost-effective, highly specific, and sensitive antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed for detection of porcine rotavirus-A (PoRVA) by employing rabbit (capture antibody) and murine polyclonal antibodies (detector antibody) produced against VP6 of PoRVA (RVA/Pig-tc/CHN/TM-a/2009/G9P23). Reactivity of the both polyclonal antibodies was confirmed by using an indirect ELISA, western-blot analysis and indirect fluorescence assay against rVP6 protein and PoRVA. The detection limit of AC-ELISA was found 50 ng/ml of PoRVA protein. The relative sensitivity and specificity of this in-house AC-ELISA were evaluated for detection of PoRVA from 295 porcine diarrhea samples, and results were compared with that of RT-PCR and TaqMan RT-qPCR. The relative sensitivity and specificity of AC-ELISA compared with those of TaqMan RT-qPCR were found as 94.4 and 99.2%, respectively, with the strong agreement (κ -0.58) between these two techniques. Furthermore, AC-ELISA could not detect any cross-reactivity with porcine epidemic diarrhea virus, transmissible gastro-enteritis virus, pseudo rabies virus and porcine circovirus-2. This in-house AC-ELISA efficiently detected PoRVA from clinical samples, which suggests that this technique can be used for large-scale surveillance and timely detection of rotavirus infection in the porcine farms.


In this study, we used a Chinese porcine rotavirus-A (PoRVA) strain containing the I5, a dominant VP6-genotype in pigs, for production of VP6 (most conserved) protein based polyclonal antibodies (pAb) in rabbits (as capture Ab) and mouse (as detector Ab) for development of simple, cost effective, highly specific and sensitive AC-ELISA for detection of PoRVA. Furthermore, there is no any previous published report on application of rabbit and mouse pAb against VP6 for developing an AC-ELISA against PoRVA.


Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Swine , Rabbits , Mice , Rotavirus Infections/diagnosis , Rotavirus Infections/veterinary , Diarrhea , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Viral , Sensitivity and Specificity , Swine Diseases/diagnosis
15.
Behav Sci (Basel) ; 12(11)2022 Nov 14.
Article En | MEDLINE | ID: mdl-36421744

Although parental socialization has an influence on child development, current research is questioning which combination of parental strictness and warmth acts as protective or risk factors, especially during adolescence when the child is more vulnerable. The sample was 2125 participants, 58.7% female, divided into four age groups: adolescents (28.57%), young adults (28.38%), middle-aged adults (23.95%), and older adults (19.11%). The families were classified into four parenting styles: neglectful, indulgent, authoritative, and authoritarian according to their warmth and strictness scores. The psychosocial adjustment was measured by children's scores on academic/professional self-concept, self-esteem, delinquency during adolescence, and benevolence values. A MANOVA 4 × 2 × 4 was applied with parenting styles, sex, and age group as independent variables. The results showed that, for adolescents and adult children, only parenting styles characterized by warmth (i.e., indulgent, and authoritative) were found to factor against delinquency during adolescence and benefit greater academic/professional self-concept, self-esteem, and benevolence values, while parenting without warmth (i.e., authoritarian, and neglectful) were identified as risk factors. Contrary to classical research, the present findings seriously question the universal benefits of strict parenting as the only optimal strategy to protect not only against delinquency, but also to foster an adequate self and the internalization of social values.

16.
Front Vet Sci ; 9: 936781, 2022.
Article En | MEDLINE | ID: mdl-36204298

African swine fever (ASF) is a highly lethal and contagious disease caused by African swine fever virus (ASFV). Whole-genome sequencing of ASFV is necessary to study its mutation, recombination, and trace its transmission. Uncultured samples have a considerable amount of background DNA, which causes waste of sequencing throughput, storage space, and computing resources. Sequencing methods attempted for uncultured samples have various drawbacks. In this study, we improved C18 spacer MDA (Multiple Displacement Amplification)-combined host DNA exhaustion strategy to remove background DNA and fit NGS and TGS sequencing. Using this workflow, we successfully sequenced two uncultured ASFV positive samples. The results show that this method can significantly reduce the percentage of background DNA. We also developed software that can perform real-time base call and analyses in set intervals of ASFV TGS sequencing reads on a cloud server.

17.
Front Cell Infect Microbiol ; 12: 973901, 2022.
Article En | MEDLINE | ID: mdl-36093205

As a newly emerging Klebsiella pathogen, more and more Klebsiella michiganensis drug resistant strains have been reported in recent years, which posed serious threats to public health. Here we first reported a multidrug-resistant K. michiganensis strain 12084 with two bla SIM-1 and one mcr-9.2 genes isolated from the sputum specimen of a patient in the Second Affiliated Hospital of Zhejiang University School of Medicine and analyzed its genetic basis and drug-resistance phenotypes. Genetic analysis showed that this strain harbored three different incompatibility groups (IncHI2, IncHI5, and IncFIIpKPHS2:IncFIB-4.1) of plasmids (p12084-HI2, p12084-HI5, and p12084-FII). A total of 26 drug-resistance genes belonging to 12 classes of antibiotics were identified, most of which (24) were located on two plasmids (p12084-HI2 and p12084-HI5). Interestingly, two bla SIM-1 genes were identified to locate on p12084-HI2 and p12084-HI5, respectively, both of which were embedded in In630, indicating their genetic homogeny. It was noting that one bla SIM-1 gene was situated in a novel unit transposon (referred to as Tn6733) on the p12084-HI5 plasmid. We also discovered an mcr-9.2 gene on the p12084-HI2 plasmid. To the best of our knowledge, this is the first report of a bla SIM-1 and mcr-9.2 harboring K. michiganensis strain. We then investigated the population structure/classification, and antibiotic resistance for all 275 availably global K. michiganensis genomes. Population structure revealed that K. michiganensis could be divided into two main clades (Clade 1 and Clade 2); the most popular ST29 was located in Clade 1, while other common STs (such as ST50, ST27, and ST43) were located in Clade 2. Drug-resistance analysis showed 25.5% of the K. michiganensis strains (70/275) harboring at least one carbapenemase gene, indicating severe drug resistance of K. michiganensis beyond our imagination; this is a dangerous trend and should be closely monitored, especially for ST27 K. michiganensis with the most drug-resistant genes among all the STs. Overall, we reported a bla SIM-1 and mcr-9.2 harboring K. michiganensis strain, and further revealed the population structure/classification, and drug-resistance of K. michiganensis, which provided an important framework, reference, and improved understanding of K. michiganensis.


Colistin , Drug Resistance, Multiple, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Humans , Klebsiella/genetics
18.
Ann Clin Microbiol Antimicrob ; 21(1): 10, 2022 Mar 09.
Article En | MEDLINE | ID: mdl-35264204

BACKGROUND: The carbapenem-resistance genes blaVIM are widely disseminated in Pseudomonas, and frequently harbored within class 1 integrons that reside within various mobile genetic elements (MGEs). However, there are few reports on detailed genetic dissection of blaVIM-carrying MGEs in Pseudomonas. METHODS: This study presented the complete sequences of five blaVIM-2/-4-carrying MGEs, including two plasmids, two chromosomal integrative and mobilizable elements (IMEs), and one chromosomal integrative and conjugative element (ICE) from five different Pseudomonas isolates. RESULTS: The two plasmids were assigned to a novel incompatibility (Inc) group IncpSTY, which included only seven available plasmids with determined complete sequences and could be further divided into three subgroups IncpSTY-1/2/3. A detailed sequence comparison was then applied to a collection of 15 MGEs belonging to four different groups: three representative IncpSTY plasmids, two Tn6916-related IMEs, two Tn6918-related IMEs, and eight Tn6417-related ICEs and ten of these 15 MGEs were first time identified. At least 22 genes involving resistance to seven different categories of antibiotics and heavy metals were identified within these 15 MGEs, and most of these resistance genes were located within the accessory modules integrated as exogenous DNA regions into these MGEs. Especially, eleven of these 15 MGEs carried the blaVIM genes, which were located within 11 different concise class 1 integrons. CONCLUSION: These blaVIM-carrying integrons were further integrated into the above plasmids, IMEs/ICEs with intercellular mobility. These MGEs could transfer between Pseudomonas isolates, which resulted in the accumulation and spread of blaVIM among Pseudomonas and thus was helpful for the bacteria to survival from the stress of antibiotics. Data presented here provided a deeper insight into the genetic diversification and evolution of VIM-encoding MGEs in Pseudomonas.


Conjugation, Genetic , Integrons , Plasmids , Pseudomonas , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Chromosomes, Bacterial , Integrons/genetics , Plasmids/genetics , Pseudomonas/drug effects , Pseudomonas/genetics , beta-Lactamases/genetics
19.
Adv Sci (Weinh) ; 9(16): e2200732, 2022 05.
Article En | MEDLINE | ID: mdl-35343113

Photothermal therapy based on conjugated polymers represents a promising antibacterial strategy but still possesses notable limitations. Herein, degradable pseudo conjugated polymers (PCPs) containing photothermal molecular backbones and reactive oxygen species (ROS)-sensitive thioketal bonds are designed. Triphenylphosphine (PPh3 ) is introduced into PCPs to generate phosphonium-based PCPs (pPCPs), which further assembled with hyaluronic acid into pPCP nanoparticles (pPCP-NPs). pPCP-NPs with quaternary phosphonium cations selectively anchor on and destroy bacterial cell membranes through electrostatic action. Under 1064 nm laser irradiation, pPCP-NPs (pPCP-NPs/+L) produce near-infrared-II (NIR-II) photothermal antibacterial effect, thereby killing bacteria in a sustained manner. pPCP-NPs are readily degraded upon ROS abundant at infection sites, therefore exhibiting enough biosafety. pPCP-NPs/+L display an almost 100% bacterial inhibition rate in vitro and resultin a nearly complete recovery of bacteria-induced mouse wounds. A further metabolomics analysis denotes that pPCP-NPs/+L work in a concerted way to induce bacterial DNA damage, inhibit bacterial carbon/nitrogen utilization and amino acid/nucleotide synthesis. Taken together, degradable pPCP-NPs with both NIR-II photothermal effect and cationic phosphonium structural bacteriostasis provide a new avenue for antibiotics-alternative anti-infection therapy.


Nanoparticles , Polymers , Animals , Anti-Bacterial Agents/pharmacology , Cations , Mice , Nanoparticles/therapeutic use , Polymers/chemistry , Reactive Oxygen Species
20.
Bioact Mater ; 12: 246-256, 2022 Jun.
Article En | MEDLINE | ID: mdl-35310377

Pathogenic bacteria pose a devastating threat to public health. However, because of the growing bacterial antibiotic resistance, there is an urgent need to develop alternative antibacterial strategies to the established antibiotics. Herein, iron-doped carbon dots (Fe-CDs, ∼3 nm) nanozymes with excellent photothermal conversion and photoenhanced enzyme-like properties are developed through a facile one-pot pyrolysis approach for synergistic efficient antibacterial therapy and wound healing. In particular, Fe doping endows CDs with photoenhanced peroxidase (POD)-like activity, which lead to the generation of heat and reactive oxygen species (ROS) for Gram-positive and Gram-negative bacteria killing. This study demonstrates Fe-CDs have significant wound healing efficiency of Fe-CDs by preventing infection, promoting fibroblast proliferation, angiogenesis, and collagen deposition. Furthermore, the ultrasmall size of Fe-CDs possesses good biocompatibility favoring clinical translation. We believe that the nanozyme-mediated therapeutic platform presented here is expected to show promising applications in antibacterial.

...