Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 24: 292-305, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38681133

RESUMEN

Sepsis, a life-threatening medical condition, manifests as new or worsening organ failures due to a dysregulated host response to infection. Many patients with sepsis have manifested a hyperinflammatory phenotype leading to the identification of inflammatory modulation by corticosteroids as a key treatment modality. However, the optimal use of corticosteroids in sepsis treatment remains a contentious subject, necessitating a deeper understanding of their physiological and pharmacological effects. Our study conducts a comprehensive review of randomized controlled trials (RCTs) focusing on traditional corticosteroid treatment in sepsis, alongside an analysis of evolving clinical guidelines. Additionally, we explore the emerging role of artificial intelligence (AI) in medicine, particularly in diagnosing, prognosticating, and treating sepsis. AI's advanced data processing capabilities reveal new avenues for enhancing corticosteroid therapeutic strategies in sepsis. The integration of AI in sepsis treatment has the potential to address existing gaps in knowledge, especially in the application of corticosteroids. Our findings suggest that combining corticosteroid therapy with AI-driven insights could lead to more personalized and effective sepsis treatments. This approach holds promise for improving clinical outcomes and presents a significant advancement in the management of this complex and often fatal condition.

2.
Front Microbiol ; 14: 1308149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149270

RESUMEN

Tuberculous meningitis (TBM) is not only one of the most fatal forms of tuberculosis, but also a major public health concern worldwide, presenting grave clinical challenges due to its nonspecific symptoms and the urgent need for timely intervention. The severity and the rapid progression of TBM underscore the necessity of early and accurate diagnosis to prevent irreversible neurological deficits and reduce mortality rates. Traditional diagnostic methods, reliant primarily on clinical findings and cerebrospinal fluid analysis, often falter in delivering timely and conclusive results. Moreover, such methods struggle to distinguish TBM from other forms of neuroinfections, making it critical to seek advanced diagnostic solutions. Against this backdrop, magnetic resonance imaging (MRI) has emerged as an indispensable modality in diagnostics, owing to its unique advantages. This review provides an overview of the advancements in MRI technology, specifically emphasizing its crucial applications in the early detection and identification of complex pathological changes in TBM. The integration of artificial intelligence (AI) has further enhanced the transformative impact of MRI on TBM diagnostic imaging. When these cutting-edge technologies synergize with deep learning algorithms, they substantially improve diagnostic precision and efficiency. Currently, the field of TBM imaging diagnosis is undergoing a phase of technological amalgamation. The melding of MRI and AI technologies unquestionably signals new opportunities in this specialized area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA