Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Trends Plant Sci ; 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38521698

Strigolactones (SLs) act as regulators of plant architecture as well as signals in rhizospheric communications. Reduced availability of minerals, particularly phosphorus, leads to an increase in the formation and release of SLs that enable adaptation of root and shoot architecture to nutrient limitation and, simultaneously, attract arbuscular mycorrhizal fungi (AMF) for establishing beneficial symbiosis. Based on their chemical structure, SLs are designated as either canonical or non-canonical; however, the question of whether the two classes are also distinguished in their biological functions remained largely elusive until recently. In this review we summarize the latest advances in SL biosynthesis and highlight new findings pointing to rhizospheric signaling as the major function of canonical SLs.

2.
FEBS Lett ; 598(5): 571-578, 2024 Mar.
Article En | MEDLINE | ID: mdl-38373744

Strigolactones (SLs) play a crucial role in regulating plant architecture and mediating rhizosphere interactions. They are synthesized from all-trans-ß-carotene converted into the intermediate carlactone (CL) via the intermediate 9-cis-ß-apo-10'-carotenal. Recent studies indicate that plants can also synthesize 3-OH-CL from all-trans-ß-zeaxanthin via the intermediate 9-cis-3-OH-ß-apo-10'-carotenal. However, the question of whether plants can form bioactive SLs from 9-cis-3-OH-ß-apo-10'-carotenal remains elusive. In this study, we supplied the 13 C-labeled 9-cis-3-OH-ß-apo-10'-carotenal to rice seedlings and monitored the synthesis of SLs using liquid chromatography-mass spectrometry (LC-MS) and Striga bioassay. We further validated the biological activity of 9-cis-3-OH-ß-apo-10'-carotenal-derived SLs using the ccd7/d17 SL-deficient mutant, which demonstrated increased Striga seed-germinating activity and partial rescue of tiller numbers and plant height. Our results establish 9-cis-3-OH-ß-apo-10'-carotenal as a significant SL biosynthetic intermediate with implications for understanding plant hormonal functions and potential applications in agriculture.


Heterocyclic Compounds, 3-Ring , Oryza , Oryza/genetics , Carotenoids/chemistry , beta Carotene , Lactones
3.
Plant J ; 117(5): 1305-1316, 2024 Mar.
Article En | MEDLINE | ID: mdl-38169533

Seeds of the root parasitic plant Striga hermonthica undergo a conditioning process under humid and warm environments before germinating in response to host-released stimulants, particularly strigolactones (SLs). The plant hormone abscisic acid (ABA) regulates different growth and developmental processes, and stress response; however, its role during Striga seed germination and early interactions with host plants is under-investigated. Here, we show that ABA inhibited Striga seed germination and that hindering its biosynthesis induced conditioning and germination in unconditioned seeds, which was significantly enhanced by treatment with the SL analog rac-GR24. However, the inhibitory effect of ABA remarkably decreased during conditioning, confirming the loss of sensitivity towards ABA in later developmental stages. ABA measurement showed a substantial reduction of its content during the early conditioning stage and a significant increase upon rac-GR24-triggered germination. We observed this increase also in released seed exudates, which was further confirmed by using the Arabidopsis ABA-reporter GUS marker line. Seed exudates of germinated seeds, containing elevated levels of ABA, impaired the germination of surrounding Striga seeds in vitro and promoted root growth of a rice host towards germinated Striga seeds. Application of ABA as a positive control caused similar effects, indicating its function in Striga/Striga and Striga/host communications. In summary, we show that ABA is an essential player during seed dormancy and germination processes in Striga and acts as a rhizospheric signal likely to support host infestation.


Arabidopsis , Striga , Abscisic Acid/pharmacology , Germination , Striga/physiology , Plant Growth Regulators/pharmacology , Seeds
4.
Proc Natl Acad Sci U S A ; 120(42): e2306263120, 2023 10 17.
Article En | MEDLINE | ID: mdl-37819983

Strigolactones (SLs) regulate many developmental processes, including shoot-branching/tillering, and mediate rhizospheric interactions. SLs originate from carlactone (CL) and are structurally diverse, divided into a canonical and a noncanonical subfamily. Rice contains two canonical SLs, 4-deoxyorobanchol (4DO) and orobanchol (Oro), which are common in different plant species. The cytochrome P450 OsMAX1-900 forms 4DO from CL through repeated oxygenation and ring closure, while the homologous enzyme OsMAX1-1400 hydroxylates 4DO into Oro. To better understand the biological function of 4DO and Oro, we generated CRISPR/Cas9 mutants disrupted in OsMAX1-1400 or in both OsMAX1-900 and OsMAX1-1400. The loss of OsMAX1-1400 activity led to a complete lack of Oro and an accumulation of its precursor 4DO. Moreover, Os1400 mutants showed shorter plant height, panicle and panicle base length, but no tillering phenotype. Hormone quantification and transcriptome analysis of Os1400 mutants revealed elevated auxin levels and changes in the expression of auxin-related, as well as of SL biosynthetic genes. Interestingly, the Os900/1400 double mutant lacking both Oro and 4DO did not show the observed Os1400 architectural phenotypes, indicating their being a result of 4DO accumulation. Treatment of wild-type plants with 4DO confirmed this assumption. A comparison of the Striga seed germinating activity and the mycorrhization of Os900, Os900/1400, and Os1400 loss-of-function mutants demonstrated that the germination activity positively correlates with 4DO content while disrupting OsMAX1-1400 has a negative impact on mycorrhizal symbiosis. Taken together, our paper deciphers the biological function of canonical SLs in rice and reveals their particular contributions to establishing architecture and rhizospheric communications.


Oryza , Plant Growth Regulators , Plant Growth Regulators/metabolism , Oryza/genetics , Oryza/metabolism , Plants/metabolism , Lactones/metabolism , Cytochrome P-450 Enzyme System/metabolism , Indoleacetic Acids/metabolism
5.
Biomolecules ; 13(8)2023 08 01.
Article En | MEDLINE | ID: mdl-37627271

The apocarotenoid zaxinone is a recently discovered regulatory metabolite required for proper rice growth and development. In addition, zaxinone and its two mimics (MiZax3 and MiZax5) were shown to have a remarkable growth-promoting activity on crops and a capability to reduce infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production, suggesting their potential for application in agriculture and horticulture. In the present study, we developed a new series of MiZax via structural modification of the two potent zaxinone mimics (MiZax3 and MiZax5) and evaluated their effect on plant growth and Striga infestation. In general, the structural modifications to MiZax3 and MiZax5 did not additionally improve their overall performance but caused an increase in certain activities. In conclusion, MiZax5 and especially MiZax3 remain the likely most efficient zaxinone mimics for controlling Striga infestation.


Oryza , Research , Agriculture , Crops, Agricultural , Horticulture
6.
J Plant Physiol ; 287: 154057, 2023 Aug.
Article En | MEDLINE | ID: mdl-37531662

Strigolactones (SLs) inhibit shoot branching/tillering and are secreted by plant roots as a signal to attract symbiotic mycorrhizal fungi in the rhizosphere, particularly under phosphate starvation. However, SLs are also hijacked by root parasitic weeds as inducer for the germination of their seeds. There are around 35 natural SLs divided, based on their structures, into canonical and non-canonical SLs. Cytochrome P450 enzymes of the 711 clade, such as MORE AXILLARY GROWTH1 (MAX1) in Arabidopsis, are a major driver of SL structural diversity. Monocots, such as rice, contain several MAX1 homologs that participate in SL biosynthesis. To investigate the function of OsMAX1-1900 in planta, we generated CRISPR/Cas9 mutants disrupted in the corresponding gene. Characterizing of the generated mutants at metabolite and phenotype level suggests that OsMAX1-1900 loss-of-function does neither affect the SL pattern nor rice architecture, indicating functional redundancy among rice MAX1 homologs.


Arabidopsis , Oryza , Oryza/genetics , Oryza/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Lactones/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
7.
Front Plant Sci ; 13: 1062107, 2022.
Article En | MEDLINE | ID: mdl-36507392

Strigolactones (SLs) are a plant hormone regulating different processes in plant development and adjusting plant's architecture to nutrition availability. Moreover, SLs are released by plants to communicate with beneficial fungi in the rhizosphere where they are, however, abused as chemical cues inducing seed germination of root parasitic weeds, e.g. Striga spp., and guiding them towards host plants in their vicinity. Based on their structure, SLs are divided into canonical and non-canonical SLs. In this perspective, we describe the metabolism of root-released SLs and SL pattern in rice max1-900 mutants, which are affected in the biosynthesis of canonical SLs, and show the accumulation of two putative non-canonical SLs, CL+30 and CL+14. Using max1-900 and SL-deficient d17 rice mutants, we further investigated the metabolism of non-canonical SLs and their possible biological roles. Our results show that the presence and further metabolism of canonical and non-canonical SLs are particularly important for their role in rhizospheric interactions, such as that with root parasitic plants. Hence, we proposed that the root-released SLs are mainly responsible for rhizospheric communications and have low impact on plant architecture, which makes targeted manipulation of root-released SLs an option for rhizospheric engineering.

8.
Sci Adv ; 8(44): eadd1278, 2022 11 04.
Article En | MEDLINE | ID: mdl-36322663

Strigolactones (SLs) are a plant hormone inhibiting shoot branching/tillering and a rhizospheric, chemical signal that triggers seed germination of the noxious root parasitic plant Striga and mediates symbiosis with beneficial arbuscular mycorrhizal fungi. Identifying specific roles of canonical and noncanonical SLs, the two SL subfamilies, is important for developing Striga-resistant cereals and for engineering plant architecture. Here, we report that rice mutants lacking canonical SLs do not show the shoot phenotypes known for SL-deficient plants, exhibiting only a delay in establishing arbuscular mycorrhizal symbiosis, but release exudates with a significantly decreased Striga seed-germinating activity. Blocking the biosynthesis of canonical SLs by TIS108, a specific enzyme inhibitor, significantly lowered Striga infestation without affecting rice growth. These results indicate that canonical SLs are not the determinant of shoot architecture and pave the way for increasing crop resistance by gene editing or chemical treatment.

9.
Planta ; 256(5): 88, 2022 Sep 24.
Article En | MEDLINE | ID: mdl-36152118

MAIN CONCLUSION: 13C-isotope feeding experiments demonstrate that the apocarotenoid 9-cis-ß-apo-10'-carotenal is the precursor of several strigolactones in rice, providing a direct, in planta evidence for its role in strigolactone biosynthesis. Strigolactones (SLs) are plant hormone that regulates plant architecture and mediates rhizospheric communications. Previous in vitro studies using heterogously produced enzymes unraveled the conversion of all-trans-ß-carotene via the intermediate 9-cis-ß-apo-10'-carotenal into the SL precursor carlactone. However, a direct evidence for the formation of SLs from 9-cis-ß-apo-10'-carotenal is still missing. To provide this evidence, we supplied rice seedlings with 13C-labeled 9-cis-ß-apo-10'-carotenal and analyzed their SLs by LC-MS. Our results show that 9-cis-ß-apo-10'-carotenal is the SL precursor in planta and reveal, for the first time, the application of labeled long-chain apocarotenoids as a promising approach to investigate apocarotenoid metabolism and the genesis of carotenoid-derived growth regulators and signaling molecules.


Oryza , beta Carotene , Carotenoids/metabolism , Heterocyclic Compounds, 3-Ring , Lactones , Oryza/metabolism , Plant Growth Regulators/metabolism , beta Carotene/metabolism
10.
Front Plant Sci ; 13: 874858, 2022.
Article En | MEDLINE | ID: mdl-35783933

Global food security is a critical concern that needs practical solutions to feed the expanding human population. A promising approach is the employment of biostimulants to increase crop production. Biostimulants include compounds that boost plant growth. Recently, mimics of zaxinone (MiZax) were shown to have a promising growth-promoting effect in rice (Oryza sativa). In this study, we investigated the effect of MiZax on the growth and yield of three dicot horticultural plants, namely, tomato (Solanum lycopersicum), capsicum (Capsicum annuum), and squash (Cucurbita pepo) in different growth environments, as well as on the growth and development of the monocot date palm (Phoenix dactylifera), an important crop in the Middle East. The application of MiZax significantly enhanced plant height, flower, and branch numbers, fruit size, and total fruit yield in independent field trials from 2020 to 2021. Importantly, the amount of applied MiZax was far less than that used with the commercial compound humic acid, a widely used biostimulant in horticulture. Our results indicate that MiZax have significant application potential to improve the performance and productivity of horticultural crops.

11.
STAR Protoc ; 3(2): 101352, 2022 06 17.
Article En | MEDLINE | ID: mdl-35620066

The plant hormone strigolactones (SLs) are secreted by plant roots to act as rhizospheric signals. Here, we present a protocol for characterizing plant-released SLs. We first outline all necessary steps required for collection, processing, and analysis of plant root exudates using the C18 column for SL extraction, followed by liquid chromatography-mass spectrometry (LC-MS) for SL quantification. We then describe image processing by SeedQuant, an open-source artificial-intelligence-based software, for measuring the biological activity of SLs in inducing root parasitic plant seed germination. For complete details on the use and execution of this protocol, please refer to Wang et al. (2019) and Braguy et al. (2021).


Lactones , Plant Roots , Chromatography, Liquid , Heterocyclic Compounds, 3-Ring/analysis , Lactones/analysis , Plant Roots/chemistry , Plants/chemistry
12.
Plants (Basel) ; 11(6)2022 Mar 18.
Article En | MEDLINE | ID: mdl-35336692

Striga hermonthica, a member of the Orobanchaceae family, is an obligate root parasite of staple cereal crops, which poses a tremendous threat to food security, contributing to malnutrition and poverty in many African countries. Depleting Striga seed reservoirs from infested soils is one of the crucial approaches to minimize subterranean damage to crops. The dependency of Striga germination on the host-released strigolactones (SLs) has prompted the development of the "Suicidal Germination" strategy to reduce the accumulated seed bank of Striga. The success of aforementioned strategy depends not only on the activity of the applied SL analogs, but also requires suitable application protocol with simple, efficient, and handy formulation for rain-fed African agriculture. Here, we developed a new formulation "Emulsifiable Concentration (EC)" for the two previously field-assessed SL analogs Methyl phenlactonoate 3 (MP3) and Nijmegen-1. The new EC formulation was evaluated for biological activities under lab, greenhouse, mini-field, and field conditions in comparison to the previously used Atlas G-1086 formulation. The EC formulation of SL analogs showed better activities on Striga germination with lower EC50 and high stability under Lab conditions. Moreover, EC formulated SL analogs at 1.0 µM concentrations reduced 89-99% Striga emergence in greenhouse. The two EC formulated SL analogs showed also a considerable reduction in Striga emergence in mini-field and field experiments. In conclusion, we have successfully developed a desired formulation for applying SL analogs as suicidal agents for large-scale field application. The encouraging results presented in this study pave the way for integrating the suicidal germination approach in sustainable Striga management strategies for African agriculture.

...