Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832813

RESUMEN

Nanoplastics (NPs) are emerging contaminants having persistent nature, diverse ecological impacts, and potential food safety risks. Here, we examined the ecotoxicity of 80 nm polystyrene nanoplastics (PS-NPs) at environmentally relevant concentrations (ERCs, 10 and 100 µg/L), and sublethal concentrations (SLCs, 500 and 2500 µg/L) in Magallana hongkongensis. Results showed that SLCs significantly (p < 0.05) increased superoxide dismutase (SOD), catalase (CAT), and alkaline phosphatase (AKP) activities and altered tnfα, cat, gst, sod, and se-gpx genetic expressions. Further, PS-NP exposure at both levels reduced beneficial bacteria and increased potentially pathogenic bacteria in the gut. In transcriptomic analysis, 5118 and 4180 differentially expressed genes (DEGs) were identified at ERCs, while 5665 and 4817 DEGs were found at SLCs, respectively. Upregulated DEGs enriched lysosomes, ABC transporters, and apoptosis pathways, while downregulated DEGs enriched ribosomal pathways. Overall, ERCs significantly altered gut microbiota and transcriptomic responses, while SLCs, in addition, also impacted the antioxidant and immune systems.

2.
Sci Total Environ ; 932: 172864, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697532

RESUMEN

The increasing interfacial impacts of polystyrene nanoplastics (PS) and per- and polyfluoroalkyl substances (PFAS) complex aquatic environments are becoming more evident, drawing attention to the potential risks to aquatic animal health and human seafood safety. This study aims to investigate the relative impacts following exposure (7 days) of Crassostrea hongkongensis oysters to the traditional PFAS congener, perfluorooctanoic acid (PFOA) at 50 µg/L, and its novel alternative, hexafluoropropylene oxide dimer acid (HFPO-DA), also known as GenX at 50 µg/L, in conjunction with fluorescent polystyrene nanoplastics (PS, 80 nm) at 1 mg/L. The research focuses on assessing the effects of combined exposure on oxidative stress responses and gut microbiota in the C. hongkongensis. Comparing the final results of PS + GenX (PG) and PS + PFOA (PF) groups, we observed bioaccumulation of PS in both groups, with the former causing more pronounced histopathological damage to the gills and intestines. Furthermore, the content of antioxidant enzymes induced by PG was higher than that of PF, including Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR) and Glutathione Peroxidase (GSH). Additionally, in both PG and PF groups, the expression levels of several immune-related genes were significantly upregulated, including tnfα, cat, stat, tlr-4, sod, and ß-gbp, with no significant difference between these two groups (p > 0.05). Combined exposure induced significant changes in the gut microbiota of C. hongkongensis at its genus level, with a significant increase in Legionella and a notable decrease in Endozoicomonas and Lactococcus caused by PG. These shifts led to beneficial bacteria declining and pathogenic microbes increasing. Consequently, the microbial community structure might be disrupted. In summary, our findings contribute to a deeper understanding of the comparative toxicities of marine bivalves under combined exposure of traditional and alternative PFAS.


Asunto(s)
Caprilatos , Crassostrea , Fluorocarburos , Microbioma Gastrointestinal , Estrés Oxidativo , Poliestirenos , Contaminantes Químicos del Agua , Animales , Fluorocarburos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Crassostrea/efectos de los fármacos , Crassostrea/microbiología , Contaminantes Químicos del Agua/toxicidad , Caprilatos/toxicidad , Poliestirenos/toxicidad , Microplásticos/toxicidad
3.
Sci Total Environ ; 927: 172213, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580116

RESUMEN

In the environment, sunlight or ultraviolet (UV) radiation is considered to be the primary cause of plastic aging, leading to their fragmentation into particles, including micro(nano)plastics (MNPs). Photoaged MNPs possess diverse interactive properties and ecotoxicological implications substantially different from those of pristine plastic particles. This review aims to highlight the mechanisms and implications of UV-induced photoaging of MNPs, with an emphasis on various UV sources and their interactions with co-occurring organic and inorganic chemicals, as well as the associated ecological and health impacts and factors affecting those interactions. Compared to UV-B, UV-A and UV-C were more widely used in laboratory studies for MNP degradation. Photoaged MNPs act as vectors for the transportation of organic pollutants, organic matter, and inorganic chemicals in the environment. Literature showed that photoaged MNPs exhibit a higher sorption capacity for PPCPs, PAHs, PBDEs, pesticides, humic acid, fulvic acid, heavy metals, and metallic nanoparticles than pristine MNPs, potentially causing significant changes in associated ecological and health impacts. Combined exposure to photoaged MNPs and organic and inorganic pollutants significantly altered mortality rate, decreased growth rate, histological alterations, neurological impairments, reproductive toxicity, induced oxidative stress, thyroid disruption, hepatotoxicity, and genotoxicity in vivo, both in aquatic and terrestrial organisms. Limited studies were reported in vitro and found decreased cellular growth and survival, induced oxidative stress, and compromised the permeability and integrity of the cell membrane. In addition, several environmental factors (temperature, organic matter, ionic strength, time, and pH), MNP properties (polymer types, sizes, surface area, shapes, colour, and concentration), and chemical properties (pollutant type, concentration, and physiochemical properties) can influence the photoaging of MNPs and associated impacts. Lastly, the research gaps and prospects of MNP photoaging and associated implications were also summarized. Future research should focus on the photoaging of MNPs under environmentally relevant conditions, exploiting the polydisperse characteristics of environmental plastics, to make this process more realistic for mitigating plastic pollution.


Asunto(s)
Contaminantes Ambientales , Contaminantes Ambientales/toxicidad , Rayos Ultravioleta , Plásticos , Nanopartículas/toxicidad
4.
J Gastrointest Oncol ; 14(6): 2373-2383, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38196541

RESUMEN

Background: Currently, the survival benefits of combining neoadjuvant chemotherapy with programmed death 1 (PD-1) antibody immunotherapy in advanced gastric adenocarcinoma remain controversial. Emerging evidence suggests that the survival benefits of neoadjuvant therapy in advanced gastric adenocarcinoma hinge upon the attainment of pathological complete response (pCR). Therefore, the prediction of pCR in patients undergoing neoadjuvant chemotherapy combined with PD-1 antibody immunotherapy holds significant importance and is beneficial for the individualized treatment of gastric cancer (GC) patients. Methods: Clinical and pathological characteristics of patients with GC who received neoadjuvant chemotherapy combined with PD-1 inhibitor (camrelizumab) therapy and radical gastrectomy between January 2019 and December 2020 at the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital were retrospectively analyzed. A total of 52 patients were enrolled in the study, with all subjects assigned to the training set. The neoadjuvant regimen consisted of a combination of PD-1 inhibitor and fluorouracil analogues plus oxaliplatin, comprising two drugs. The patients were divided into a pCR group and a non-pCR group according to pCR occurrence. Multifactor logistic regression analysis was applied to determine the correlation between each factor and pCR. A prediction model was developed based on the results of the logistic regression analysis. The predictive performance of the model was evaluated using the receiver operating characteristic curves. Internal verification was completed via the bootstrapping method. Results: The pCR was observed in 10 out of 52 patients (19.2%). The results of binary logistic regression multivariate analysis showed that cN stage [odds ratio (OR): 0.215; P=0.03], combined positive score (CPS) (OR: 6.364; P=0.026), and tumor diameter (OR: 0.112; P=0.026) were independent predictors of pCR. The nomogram prediction model for the pCR was plotted with a concordance index of 0.923 [95% confidence interval (CI): 0.8441-1]. Conclusions: Neoadjuvant chemotherapy combined with PD-1 antibodies may be the preferred option for patients with advanced gastric adenocarcinoma who have a small tumor diameter, no or few lymph node metastases, and high CPS. The presented nomogram model exhibits the potential to predict pCR in advanced gastric adenocarcinoma patients, showcasing satisfactory predictive performance and potentially facilitating the implementation of personalized treatment strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA