Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(23): 6838-6843, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38825784

RESUMEN

Moiré superlattices, constituted by two-dimensional materials, demonstrate a variety of strongly correlated and topological phenomena including correlated insulators, superconductivity, and integer/fractional Chern insulators. In the realm of topological nontrivial Chern insulators within specific moiré superlattices, previous studies usually observe a single Chern number at a given filling factor in a device. Here we present the observation of gate-tunable Chern numbers within the Chern insulator state of an ABC-stacked trilayer graphene/hexagonal boron nitride moiré superlattice device. Near quarter filling, the moiré superlattice exhibits spontaneous valley polarization and distinct ferromagnetism associated with the Chern insulator states over a range of the displacement field. Surprisingly we find a transition of the Chern number from C = 3 to 4 as the displacement field is increased. Our observation of gate-tunable correlated Chern insulators suggests new ways to control and manipulate topological states in a moiré superlattice device.

2.
Science ; 384(6694): 414-419, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662836

RESUMEN

Degeneracies in multilayer graphene, including spin, valley, and layer degrees of freedom, can be lifted by Coulomb interactions, resulting in rich broken-symmetry states. Here, we report a ferromagnetic state in charge-neutral ABCA-tetralayer graphene driven by proximity-induced spin-orbit coupling from adjacent tungsten diselenide. The ferromagnetic state is identified as a Chern insulator with a Chern number of 4; its maximum Hall resistance reaches 78% quantization at zero magnetic field and is fully quantized at either 0.4 or -1.5 tesla. Three distinct broken-symmetry insulating states, layer-antiferromagnet, Chern insulator, and layer-polarized insulator, along with their transitions, can be continuously tuned by the vertical displacement field. In this system, the magnetic order of the Chern insulator can be switched by three knobs, including magnetic field, electrical doping, and vertical displacement field.

3.
Nat Mater ; 23(5): 703-710, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38671161

RESUMEN

Brownian motion allows microscopically dispersed nanoparticles to be stable in ferrofluids, as well as causes magnetization relaxation and prohibits permanent magnetism. Here we decoupled the particle Brownian motion from colloidal stability to achieve a permanent fluidic magnet with high magnetization, flowability and reconfigurability. The key to create such permanent fluidic magnets is to maintain a stable magnetic colloidal fluid by using non-Brownian magnetic particles to self-assemble a three-dimensional oriented and ramified magnetic network structure in the carrier fluid. This structure has high coercivity and permanent magnetization, with long-term magnetization stability. We establish a scaling theory model to decipher the permanent fluid magnet formation criteria and formulate a general assembly guideline. Further, we develop injectable and retrievable permanent-fluidic-magnet-based liquid bioelectronics for highly sensitive, self-powered wireless cardiovascular monitoring. Overall, our findings highlight the potential of permanent fluidic magnets as an ultrasoft material for liquid devices and systems, from bioelectronics to robotics.

4.
Nature ; 628(8009): 758-764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538800

RESUMEN

Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices1-4. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA'-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm2 V-1 s-1 and on-off ratios of up to 106. This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials.

5.
Sci Adv ; 10(1): eadj8567, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181088

RESUMEN

Future exploitation of marine resources in a sustainable and eco-friendly way requires autonomous underwater robotics with human-like perception. However, the development of such intelligent robots is now impeded by the lack of adequate underwater haptic sensing technology. Inspired by the populational coding strategy of the human tactile system, we harness the giant magnetoelasticity in soft polymer systems as an innovative platform technology to construct a multimodal underwater robotic skin for marine object recognition with intrinsic waterproofness and a simple configuration. The bioinspired magnetoelastic artificial skin enables multiplexed tactile modality in each single taxel and obtains an impressive classification rate of 95% in identifying seven types of marine creatures and marine litter. By introducing another degree of freedom in underwater haptic sensing, this work represents a milestone toward sustainable marine resource exploitation.


Asunto(s)
Robótica , Piel Artificial , Humanos , Tecnología Háptica , Inteligencia , Polímeros
7.
Nat Nanotechnol ; 19(2): 188-195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37996516

RESUMEN

Interactions among charge carriers in graphene can lead to the spontaneous breaking of multiple degeneracies. When increasing the number of graphene layers following rhombohedral stacking, the dominant role of Coulomb interactions becomes pronounced due to the significant reduction in kinetic energy. In this study, we employ phonon-polariton-assisted near-field infrared imaging to determine the stacking orders of tetralayer graphene devices. Through quantum transport measurements, we observe a range of spontaneous broken-symmetry states and their transitions, which can be finely tuned by carrier density n and electric displacement field D. Specifically, we observe a layer-antiferromagnetic insulator at n = D = 0 with a gap of approximately 15 meV. Increasing D allows for a continuous phase transition from a layer-antiferromagnetic insulator to a layer-polarized insulator. By simultaneously tuning n and D, we observe isospin-polarized metals, including spin-valley-polarized and spin-polarized metals. These transitions are associated with changes in the Fermi surface topology and are consistent with the Stoner criteria. Our findings highlight the efficient fabrication of specially stacked multilayer graphene devices and demonstrate that crystalline multilayer graphene is an ideal platform for investigating a wide range of broken symmetries driven by Coulomb interactions.

8.
Nat Mater ; 23(2): 271-280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37957270

RESUMEN

Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency. Solid-state nuclear magnetic resonance and femtosecond transient absorption spectroscopy reveal that the photogenerated hot electrons are rapidly cooled down within picoseconds via electron-phonon coupling in the nanomachine. We find that the nanomachine remains structurally and functionally intact in mammalian cells and in vivo. A single dose of near-infrared irradiation can effectively ablate tumours without recurrence in tumour-bearing mice, which shows promise in the development of nanomachine-based theranostics.


Asunto(s)
Nanopartículas , Neoplasias , Estilbenos , Animales , Ratones , Fototerapia/métodos , Nanopartículas/química , Oro/química , Mamíferos
9.
Nano Lett ; 23(15): 7023-7028, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474137

RESUMEN

ABC-stacked trilayer graphene on boron nitride (ABC-TLG/hBN) moiré superlattices provides a tunable platform for exploring Wigner crystal states in which the electron correlation can be controlled by electric and magnetic fields. Here we report the observation of magnetic field-stabilized Wigner crystal states in a ABC-TLG/hBN. We show that correlated insulating states emerge at multiple fractional and integer fillings corresponding to ν = 1/3, 2/3, 1, 4/3, 5/3, and 2 electrons per moiré lattice site under a magnetic field. These correlated insulating states can be attributed to generalized Mott states for the integer fillings and generalized Wigner crystal states for the fractional fillings. The generalized Wigner crystal states are stabilized by a vertical magnetic field and are strongest at one magnetic flux quantum per three moiré superlattices. The ν = 2 insulating state persists up to 30 T, which can be described by a Mott-Hofstadter transition at a high magnetic field.

10.
Small ; 19(51): e2207600, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36759957

RESUMEN

Triboelectric nanogenerators (TENGs) have gained significant traction in recent years in the bioengineering community. With the potential for expansive applications for biomedical use, many individuals and research groups have furthered their studies on the topic, in order to gain an understanding of how TENGs can contribute to healthcare. More specifically, there have been a number of recent studies focusing on implantable triboelectric nanogenerators (I-TENGs) toward self-powered cardiac systems healthcare. In this review, the progression of implantable TENGs for self-powered cardiovascular healthcare, including self-powered cardiac monitoring devices, self-powered therapeutic devices, and power sources for cardiac pacemakers, will be systematically reviewed. Long-term expectations of these implantable TENG devices through their biocompatibility and other utilization strategies will also be discussed.


Asunto(s)
Corazón , Prótesis e Implantes , Humanos , Bioingeniería , Ingeniería Biomédica , Suministros de Energía Eléctrica
11.
Biosens Bioelectron ; 222: 114999, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36521206

RESUMEN

Electronic textiles are fundamentally changing the way we live. However, the inability to effectively recycle them is a considerable burden to the environment. In this study, we developed a cotton fiber-based piezoresistive textile (CF p-textile) for biomonitoring which is biocompatible, biodegradable, and environmentally friendly. These CF p-textiles were fabricated using a scalable dip-coating method to adhere MXene flakes to porous cotton cellulose fibers. The adhesion is made stronger by strong hydrogen bonding between MXene flakes and hierarchically porous cotton cellulose fibers. This cotton-fiber system provides a high sensitivity of 17.73 kPa-1 in a wide pressure range (100 Pa-30 kPa), a 2 Pa subtle pressure detection limit, fast response/recovery time (80/40 ms), and good cycle stability (over 5, 000 cycles). With its compelling sensing performance, the CF p-textile can detect various human biomechanical activities, including pulsation, muscle movement, and swallowing, while still being comfortable to wear. Moreover, the cotton cellulose is decomposed into low-molecular weight cellulose or glucose as a result of the 1,4-glycosidic bond breakage when exposed to acid or during natural degradation, which allows the electronic textile to be biodegradable. This work offers an ecologically-benign, cost-effective and facile approach to fabricating high-performance wearable bioelectronics.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Humanos , Fibra de Algodón , Monitoreo Biológico , Textiles , Celulosa
12.
ACS Nano ; 16(9): 13301-13313, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35969207

RESUMEN

At the forefront of the smart textile community, healthcare and sustainability are the two crucial objectives targeted by researchers. The development of such powerful devices has been driven by innovative fabrications of breathable, skin-conformable technologies through the use of functional and programmable materials and device structures. This Perspective focuses on the current smart textiles available in the research field, categorized into personalized healthcare, including diagnostics and therapeutics, and sustainability, including energy harvesting and conservation─personalized thermoregulation. These categories are further broken down into their platform structural technologies and performances. Furthermore, we give a comprehensive overview and highlight a few examples of current studies. Finally, we provide an outlook on these technologies for future researchers to participate. We envision that the next generation of smart textiles will revolutionize wearable technology for healthcare and sustainability.


Asunto(s)
Textiles , Dispositivos Electrónicos Vestibles , Atención a la Salud
13.
Adv Mater ; 34(38): e2204238, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35918815

RESUMEN

The current energy crises and imminent danger of global warming severely limit the ability to scale societal development sustainably. As such, there is a pressing need for utilizing renewable, green energy sources, such as wind energy, which is ubiquitously available on Earth. In this work, a fundamentally new wind-energy-harvesting technology is reported, which is based on the giant magnetoelastic effect in a soft composite system, namely, magnetoelastic generators. Its working principle is based on wind-induced mechanical deformation, which alters the magnetic field in a soft system converting the wind energy into electricity via electromagnetic induction from arbitrary directions. The wind-energy-harvesting system features a low internal impedance of 68 Ω, a high current density of 1.17 mA cm-2 , and a power density of 0.82 mW cm-2 under ambient natural wind. The system is capable of sustainably driving small electronics and electrolytically splitting water. The system can generate hydrogen at a rate of 7.5 × 10-2 mL h-1 with a wind speed of 20 m s-1 . Additionally, since magnetic fields can penetrate water molecules, the magnetoelastic generators are intrinsically waterproof and work stably in harsh environments. This work paves a new way for wind-energy harvesting with compelling features, which can contribute largely to the hydrogen economy and the sustainability of human civilization.

14.
Nat Commun ; 13(1): 4867, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982033

RESUMEN

Polymer-ceramic piezoelectric composites, combining high piezoelectricity and mechanical flexibility, have attracted increasing interest in both academia and industry. However, their piezoelectric activity is largely limited by intrinsically low crystallinity and weak spontaneous polarization. Here, we propose a Ti3C2Tx MXene anchoring method to manipulate the intermolecular interactions within the all-trans conformation of a polymer matrix. Employing phase-field simulation and molecular dynamics calculations, we show that OH surface terminations on the Ti3C2Tx nanosheets offer hydrogen bonding with the fluoropolymer matrix, leading to dipole alignment and enhanced net spontaneous polarization of the polymer-ceramic composites. We then translated this interfacial bonding strategy into electrospinning to boost the piezoelectric response of samarium doped Pb (Mg1/3Nb2/3)O3-PbTiO3/polyvinylidene fluoride composite nanofibers by 160% via Ti3C2Tx nanosheets inclusion. With excellent piezoelectric and mechanical attributes, the as-electrospun piezoelectric nanofibers can be easily integrated into the conventional shoe insoles to form a foot sensor network for all-around gait patterns monitoring, walking habits identification and Metatarsalgi prognosis. This work utilizes the interfacial coupling mechanism of intermolecular anchoring as a strategy to develop high-performance piezoelectric composites for wearable electronics.


Asunto(s)
Nanofibras , Polímeros
15.
J Phys Chem Lett ; 13(15): 3369-3376, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35404049

RESUMEN

Modifying the wide band gap semiconductor hexagonal boron nitride (hBN) can bring new chances in photonics. By virtue of the solvothermal/hydrothermal oxidation or functionalization, hBN can be converted into fluorescent nanodots. Until now, it has been a big challenge to drily oxidize hBN and turn it into bright fluorescent structures due to its superior chemical stability. Here, we report the oxidation of multilayer hBN into fluorescent structures by ultraviolet (UV, λ = 172 nm) photodissociated directional oxygen radical [O(3P)] in a gradient magnetic field. The paramagnetic O(3P), produced in a low-pressure O2 atmosphere, drifts toward hBN and then converts it into boron nitride oxide (BNO) micro/nanometer structures constituted by BO, BO2, and O-doped hBN. For a properly oxidized BNO substance, bright and photostable wide-band photoluminescence is realized with nanosecond-scaled lifetimes under the excitation of UV and visible lights.

16.
ACS Nano ; 16(4): 6013-6022, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35417654

RESUMEN

Interfacing with the human body, wearable and implantable bioelectronics are a compelling platform technology for healthcare monitoring and medical therapeutics. However, clinical adoption of these devices is largely shadowed by their weakness in humidity resistance, stretchability, durability, and biocompatibility. In this work, we report a self-powered waterproof biomechanical sensor with stretchability up to 440% using the giant magnetoelastic effect in a soft polymer system. By manipulating the magnetic dipole alignment, the sensor achieved a particularly broad sensing range from 3.5 Pa to 2000 kPa, with a response time of ∼3 ms. To validate the excellent performance of the magnetoelastic sensor in biomonitoring, both ex vivo porcine heart testing and in vivo rat model testing were performed for cardiovascular monitoring and heart disease diagnosis. With the obtained sensing data, we have successfully detected ventricular arrhythmia and ventricular fibrillation in the Sprague-Dawley rat model. Holding a collection of compelling features, including minimal hysteresis, ultrawide sensing range, waterproofness, and biocompatibility, the magnetoelastic sensor represents a unique platform technology for self-powered biomonitoring in both wearable and implantable manners.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Porcinos , Ratas , Animales , Monitoreo Biológico , Ratas Sprague-Dawley , Monitoreo Fisiológico , Polímeros
17.
Chem Soc Rev ; 51(9): 3380-3435, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35352069

RESUMEN

The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare. After a brief introduction to the fundamental physical science of the piezoelectric effect, material engineering strategies, device structural designs, and human-body centered energy harvesting, sensing, and therapeutics applications are also systematically discussed. In addition, the challenges and opportunities of utilizing piezoelectric nanogenerators for self-powered bioelectronics and personalized healthcare are outlined in detail.


Asunto(s)
Electricidad , Ingeniería , Atención a la Salud , Humanos
18.
Science ; 375(6586): 1295-1299, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35298267

RESUMEN

ABC-stacked trilayer graphene/hexagonal boron nitride moiré superlattice (TLG/hBN) has emerged as a playground for correlated electron physics. We report spectroscopy measurements of dual-gated TLG/hBN using Fourier transform infrared photocurrent spectroscopy. We observed a strong optical transition between moiré minibands that narrows continuously as a bandgap is opened by gating, indicating a reduction of the single-particle bandwidth. At half-filling of the valence flat band, a broad absorption peak emerges at ~18 milli-electron volts, indicating direct optical excitation across an emerging Mott gap. Similar photocurrent spectra are observed in two other correlated insulating states at quarter- and half-filling of the first conduction band. Our findings provide key parameters of the Hubbard model for the understanding of electron correlation in TLG/hBN.

19.
Small Methods ; 6(2): e2101051, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35174985

RESUMEN

Electrode microfabrication technologies such as lithography and deposition have been widely applied in wearable electronics to boost interfacial coupling efficiency and device performance. However, a majority of these approaches are restricted by expensive and complicated processing techniques, as well as waste discharge. Here, helium plasma irradiation is employed to yield a molybdenum microstructured electrode, which is constructed into a flexible piezoresistive pressure sensor based on a Ti3 C2 Tx nanosheet-immersed polyurethane sponge. This electrode engineering strategy enables the smooth transition between sponge deformation and MXene interlamellar displacement, giving rise to high sensitivity (1.52 kPa-1 ) and good linearity (r2  = 0.9985) in a wide sensing range (0-100 kPa) with a response time of 226 ms for pressure detection. In addition, both the experimental characterization and finite element simulation confirm that the hierarchical structures modulated by pore size, plasma bias, and MXene concentration play a crucial role in improving the sensing performance. Furthermore, the as-developed flexible pressure sensor is demonstrated to measure human radial pulse, detect finger tapping, foot stomping, and perform object identification, revealing great feasibility in wearable biomonitoring and health assessment.


Asunto(s)
Diseño de Equipo/métodos , Determinación de la Frecuencia Cardíaca/instrumentación , Dispositivos Electrónicos Vestibles , Análisis de Elementos Finitos , Humanos , Microtecnología , Poliuretanos/química , Titanio/química , Tacto
20.
Adv Mater ; 34(21): e2109357, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35044014

RESUMEN

Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long-term and real-time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion.


Asunto(s)
Dispositivos Electrónicos Vestibles , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Monitoreo Fisiológico , Pulso Arterial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...