Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Virol ; 98(3): e0000724, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38305153

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which is responsible for enormous economic losses to the global pig industry. Although vaccination has been used to prevent PRV infection, the effectiveness of vaccines has been greatly diminished with the emergence of PRV variants. Therefore, there is an urgent need to develop anti-PRV drugs. Polyethylenimine (PEI) is a cationic polymer and has a wide range of antibacterial and antiviral activities. This study found that a low dose of 1 µg/mL of the 25-kDa linear PEI had significantly specific anti-PRV activity, which became more intense with increasing concentrations. Mechanistic studies revealed that the viral adsorption stage was the major target of PEI without affecting viral entry, replication stages, and direct inactivation effects. Subsequently, we found that cationic polymers PEI and Polybrene interfered with the interaction between viral proteins and cell surface receptors through electrostatic interaction to exert the antiviral function. In conclusion, cationic polymers such as PEI can be a category of options for defense against PRV. Understanding the anti-PRV mechanism also deepens host-virus interactions and reveals new drug targets for anti-PRV.IMPORTANCEPolyethylenimine (PEI) is a cationic polymer that plays an essential role in the host immune response against microbial infections. However, the specific mechanisms of PEI in interfering with pseudorabies virus (PRV) infection remain unclear. Here, we found that 25-kDa linear PEI exerted mechanisms of antiviral activity and the target of its antiviral activity was mainly in the viral adsorption stage. Correspondingly, the study demonstrated that PEI interfered with the virus adsorption stage by electrostatic adsorption. In addition, we found that cationic polymers are a promising novel agent for controlling PRV, and its antiviral mechanism may provide a strategy for the development of antiviral drugs.


Antiviral Agents , Herpesvirus 1, Suid , Polyethyleneimine , Static Electricity , Animals , Adsorption/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Herpesvirus 1, Suid/drug effects , Herpesvirus 1, Suid/metabolism , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Pseudorabies/drug therapy , Pseudorabies/virology , Swine/virology , Swine Diseases/virology
2.
J Anim Ecol ; 92(2): 454-465, 2023 02.
Article En | MEDLINE | ID: mdl-36477808

The ecological stoichiometry theory provides a framework to understand organism fitness and population dynamics based on stoichiometric mismatch between organisms and their resources. Recent studies have revealed that different soil animals occupy distinct multidimensional stoichiometric niches (MSNs), which likely determine their specific stoichiometric mismatches and population responses facing resource changes. The goals of the present study are to examine how long-term forest plantations affect multidimensional elemental contents of litter and detritivores and the population size of detritivores that occupy distinct MSNs. We evaluated the contents of 10 elements of two detritivore taxa (lumbricid earthworms and julid millipedes) and their litter resources, quantified their MSNs and the multidimensional stoichiometric mismatches, and examined how such mismatch patterns influence the density and total biomass of detritivores across three forest types spanning from natural forests (oak forest) to plantations (pine and larch forests). Sixty-year pine plantations changed the multidimensional elemental contents of litter, but did not influence the elemental contents of the two detritivore taxa. Earthworms and millipedes exhibited distinct patterns of MSNs and stoichiometric mismatches, but they both experienced severer stoichiometric mismatches in pine plantations than in oak forests and larch plantations. Such stoichiometric mismatches led to lower density and biomass of both earthworms and millipedes in pine plantations. In other words, under conditions of low litter quality and severe stoichiometric mismatches in pine plantations, detritivores maintained their body elemental contents but decreased their population biomass. Our study illustrates the success in using the multidimensional stoichiometric framework to understand the impact of forest plantations on animal population dynamics, which may serve as a useful tool in addressing ecosystem responses to global environmental changes.


Arthropods , Oligochaeta , Pinus , Animals , Biomass , Ecosystem , Forests , Soil
3.
Fish Shellfish Immunol ; 130: 194-205, 2022 Nov.
Article En | MEDLINE | ID: mdl-36087819

Vibrio is an important conditional pathogen in shrimp aquaculture. This research reported a dominant bacteria strain E1 isolated from a shrimp tank with the method of biofloc culture, which was further identified as Vibrio owensii. To understand the interaction between V. owensii and the host shrimp, we studied the pathogenicity of the V. owensii and the molecular mechanisms of the Fenneropenaeus merguiensis immunity during the Vibrio invasion. Drug susceptibility tests showed that V. owensii was resistant to antibiotics streptomycin oxacillin, tetracycline, minocycline, and aztreonam, but highly sensitive to cefazolin, cefotaxime, and ciprofloxacin, and moderately sensitive to cefotaxime, ampicillin, and piperacillin. Lethal concentration 50 (LC50) test was performed to evaluate the toxicity of V. owensii to F. merguiensis. The LC50 of V. owensii infected F. merguiensis after 24, 48, 72, 96, 120, 144 and 168 h were 1.21 × 107, 1.68 × 106, 6.36 × 105, 2.15 × 105, 7.58 × 104, 5.55 × 104 and 4.33 × 104 CFU/mL. In order to explore the molecular response mechanism of F. merguiensis infected with V. owensii, the hepatopancreas of F. merguiensis were sequenced at 24 hpi and 48 hpi, and a total 40,181 of unigenes were obtained. Through comparative transcriptomic analysis, 86 differentially expressed genes (DEGs) (including 38 up-regulated DEGs, and 48 down-regulated DEGs) and 305 DEGs (including 150 up-regulated DEGs, and 155 down-regulated DEGs) were identified at 24 hpi and 48 hpi, respectively. Annotation and classification analysis of these 391 DEGs showed that most of the DEGs were annotated to metableolic and immune pathways, which indicated that F. merguiensis responded to the invasion through the regulation of material metableolism and immune system genes during V. owensii infection. In the KEGG enrichment analysis, some pathways related to immune response were significantly influenced by V. owensii infection, including phagosome, MAPK signalling pathway and PI3K-Akt signalling pathway. In addition, some pathways related to the warburg effect were also significantly enriched after V. owensii infection, including pyruvate metableolism, glycolysis/gluconeogenesis, and citrate cycle (TAC cycle). Further analysis showed that C-type lectins and ficolin were also play important roles in the immune response of F. merguiensis against V. owensii infection. The current research preliminarily revealed the immune response of F. merguiensis to V. owensii infection at the molecular level, which provided valuable information to further understand the disease control and the interaction between shrimp and Vibrio.


Penaeidae , Vibrio , Ampicillin , Animals , Anti-Bacterial Agents , Aztreonam , Cefazolin , Cefotaxime , Ciprofloxacin , Citrates , Gene Expression Profiling/veterinary , Immunity, Innate/genetics , Lectins, C-Type/genetics , Minocycline , Oxacillin , Phosphatidylinositol 3-Kinases/genetics , Piperacillin , Proto-Oncogene Proteins c-akt/genetics , Pyruvates , Streptomycin , Transcriptome , Vibrio/physiology , Virulence
4.
Ecology ; 103(9): e3741, 2022 09.
Article En | MEDLINE | ID: mdl-35524916

The ecological niche is a fundamental concept to understand species' coexistence in natural communities. The recently developed framework of the multidimensional stoichiometric niche (MSN) characterizes species' niches using chemical elements in living organisms. Despite the fact that living organisms are composed of multiple elements, stoichiometric studies have so far mostly focused on carbon (C), nitrogen (N), and phosphorus (P), and therefore a quantitative analysis of the dimensionality of the MSN in living organisms is still lacking, particularly for animals. Here we quantified 10 elements composing the biomass of nine soil animal taxa (958 individuals) from three trophic groups. We found that all 10 elements exhibited large variation among taxa, which was partially explained by their phylogeny. Overlaps of MSNs among the nine soil animal taxa were relatively smaller based on 10 elements, compared with those based on only C, N, and P. Discriminant analysis using all 10 elements successfully differentiated among the nine taxa (accuracy: 90%), whereas that using only C, N, and P resulted in a lower accuracy (60%). Our findings provide new evidence for MSN differentiation in soil fauna and demonstrate the high dimensionality of organismal stoichiometric niches beyond C, N, and P.


Phosphorus , Soil , Animals , Biomass , Carbon/analysis , Nitrogen/analysis , Phosphorus/analysis , Soil/chemistry
5.
Ecol Lett ; 25(2): 555-569, 2022 Feb.
Article En | MEDLINE | ID: mdl-34854529

Three decades of research have demonstrated that biodiversity can promote the functioning of ecosystems. Yet, it is unclear whether the positive effects of biodiversity on ecosystem functioning will persist under various types of global environmental change drivers. We conducted a meta-analysis of 46 factorial experiments manipulating both species richness and the environment to test how global change drivers (i.e. warming, drought, nutrient addition or CO2 enrichment) modulated the effect of biodiversity on multiple ecosystem functions across three taxonomic groups (microbes, phytoplankton and plants). We found that biodiversity increased ecosystem functioning in both ambient and manipulated environments, but often not to the same degree. In particular, biodiversity effects on ecosystem functioning were larger in stressful environments induced by global change drivers, indicating that high-diversity communities were more resistant to environmental change. Using a subset of studies, we also found that the positive effects of biodiversity were mainly driven by interspecific complementarity and that these effects increased over time in both ambient and manipulated environments. Our findings support biodiversity conservation as a key strategy for sustainable ecosystem management in the face of global environmental change.


Biodiversity , Ecosystem , Droughts , Nutrients , Phytoplankton
6.
Front Microbiol ; 12: 710845, 2021.
Article En | MEDLINE | ID: mdl-34512588

As a new type of shrimp lethal virus, decapod iridescent virus 1 (DIV1) has caused huge economic losses to shrimp farmers in China. Up to now, DIV1 has been detected in a variety of shrimps, but there is no report in Marsupenaeus japonicus. In the current study, we calculated the LC50 to evaluate the toxicity of DIV1 to M. japonicus and determined through nested PCR that M. japonicus can be the host of DIV1. Through enzyme activity study, it was found that DIV1 can inhibit the activities of superoxide dismutase, catalase, lysozyme, and phenoloxidase, which could be a way for DIV1 to achieve immune evasion. In a comprehensive study on the transcriptomic changes of M. japonicus in response to DIV1 infection, a total of 52,287 unigenes were de novo assembled, and 20,342 SSR markers associated with these unigenes were obtained. Through a comparative transcriptomic analysis, 6,900 differentially expressed genes were identified, including 3,882 upregulated genes and 3,018 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that some GO terms related to virus invasion, replication, and host antiviral infection were promoted under DIV1 infection, such as carbohydrate binding, chitin binding, chitin metabolic process, and DNA replication initiation, and some KEGG pathways related to immune response were significantly influenced by DIV1 infection, including Toll and IMD signaling pathway, JAK-STAT signaling pathway, IL-17 signaling pathway, C-type lectin receptor signaling pathway, complement and coagulation cascades, antigen processing and presentation, necroptosis, apoptosis, NOD-like receptor signaling pathway, apoptosis-multiple species, and TNF signaling pathway. Further analysis showed that STAT, Dorsal, Relish, heat shock protein 70 (HSP70), C-type lectins, and caspase play an important role in DIV1 infection. This is the first detailed study of DIV1 infection in M. japonicus, which initially reveals the molecular mechanism of DIV1 infection in M. japonicus by using the transcriptome analysis of hemocytes combined with enzyme activity study.

...