Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Ecol Evol ; 13(8): e10382, 2023 Aug.
Article En | MEDLINE | ID: mdl-37554396

China is rich in goat breeding resources. Officially recognized local goat breeds are mainly distributed in agro-ecological regions. The population structure and matrilineal origin of native Chinese goats can be used to formulate protection and utilization strategies for these genetic resources. In this study, the genetic structure and maternal origin of native Chinese goats were investigated using mtDNA D-loop sequences. A total of 329 goat samples from 25 Chinese indigenous goat populations and five introduced goat breeds from abroad were collected; these populations were distributed in four ecogroups designated as Southwest, South-central, the North China Plain, and Foreign-ecogroup. A larger average number of nucleotide differences and richer nucleotide diversity were observed in South-central and Foreign-ecogroup, whereas these were lower in Southwest. The 216 haplotypes divided into several haplogroups, of which HapA contained 99 haplotypes distributed in Southwest, the North China Plain, and Foreign-ecogroup with high frequency (0.53-0.77), whereas the frequency of HapA in South-central was <0.09. HapB was mostly found in South-central (0.5538) and was distributed to the North China Plain (0.2667), while it was rare in Southwest (<0.08) and Foreign-ecogroup (<0.07). According to the estimation of kinship and ancestry, HapA had five ancestors (A2, A3, A5, A10, and A12), HapB had a single maternal ancestor (A8), and HapC had two maternal ancestors (A1 and A4). This study showed that native Chinese goat breeds were mainly divided into three haplogroups (HapA, HapB, and HapC) and goat populations have expanded in the ecological regions.

2.
Front Oncol ; 13: 1166877, 2023.
Article En | MEDLINE | ID: mdl-37519813

Objective: To investigate risk factors for advanced melanoma over 50 years of age and to develop and validate a new line chart and classification system. Methods: The SEER database was screened for patients diagnosed with advanced melanoma from 2010 to 2019 and Cox regression analysis was applied to select variables affecting patient prognosis. The area under curve (AUC), relative operating characteristic curve (ROC), Consistency index (C-index), decision curve analysis (DCA), and survival calibration curves were used to verify the accuracy and utility of the model and to compare it with traditional AJCC tumor staging. The Kaplan-Meier curve was applied to compare the risk stratification between the model and traditional AJCC tumor staging. Results: A total of 5166 patients were included in the study. Surgery, age, gender, tumor thickness, ulceration, the number of primary melanomas, M stage and N stage were the independent prognostic factors of CSS in patients with advanced melanoma (P<0.05). The predictive nomogram model was constructed and validated. The C-index values obtained from the training and validation cohorts were 0.732 (95%CI: 0.717-0.742) and 0.741 (95%CI: 0.732-0.751). Based on the observation and analysis results of the ROC curve, survival calibration curve, NRI, and IDI, the constructed prognosis model can accurately predict the prognosis of advanced melanoma and performs well in internal verification. The DCA curve verifies the practicability of the model. Compared with the traditional AJCC staging, the risk stratification in the model has a better identification ability for patients in different risk groups. Conclusion: The nomogram of advanced melanoma and the new classification system were successfully established and verified, which can provide a practical tool for individualized clinical management of patients.

3.
Indian J Dermatol ; 68(2): 156-160, 2023.
Article En | MEDLINE | ID: mdl-37275813

Nuclear factor of activated T-cells, cytoplasmic 4 (NFATC4) has been implicated in keratinocyte development and several types of cancer. A well-defined role for NFATC4 in cutaneous squamous cell carcinoma (CSCC) has not yet been established. In this study, NFATC4 gene function in CSCC development was examined. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to measure the mRNA expression of NFATC4 in CSCC tissues and controls. A431 and Colo16 cell proliferation, invasion, and apoptosis were measured by CCK-8 assay, transwell invasion, and flow cytometry, respectively, after an NFATC4 expression lentivirus infection. Animal models were applied to validate the function of the NFATC4 gene. (1) CSCC tissues showed a significant decrease in NFATC4 expression compared to controls. (2) Overexpression of NFATc4 suppresses A431 and Colo16 cell proliferation and invasion but promotes cell apoptosis. (3) Mouse models overexpressing NFATC4 showed reduced tumourigenesis. It was suggested that NFATC4 might be a tumour suppressor gene in CSCC.

4.
PeerJ ; 11: e15155, 2023.
Article En | MEDLINE | ID: mdl-37096063

Inactivated vaccines are one of the most effective strategies for controlling the coronavirus disease 2019 (COVID-19) pandemic. However, the response genes for the protective effect of inactivated vaccines are still unclear. Herein, we analysed the neutralization antibody responses elicited by vaccine serum and carried out transcriptome sequencing of RNAs isolated from the PBMCs of 29 medical staff receiving two doses of the CoronaVac vaccine. The results showed that SARS-CoV-2 neutralization antibody titers varied considerably among individuals, and revealed that many innate immune pathways were activated after vaccination. Furthermore, the blue module revealed that NRAS, YWHAB, SMARCA5, PPP1CC and CDC5L may be correlated with the protective effect of the inactivated vaccine. Additionally, MAPK1, CDC42, PPP2CA, EP300, YWHAZ and NRAS were demonstrated as the hub genes having a significant association with vaccines. These findings provide a basis for understanding the molecular mechanism of the host immune response induced by inactivated vaccines.


COVID-19 , Transcriptome , Humans , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Viral , Vaccines, Inactivated , RNA-Binding Proteins , Cell Cycle Proteins
5.
Poult Sci ; 102(5): 102150, 2023 May.
Article En | MEDLINE | ID: mdl-36989855

Fowl adenovirus serotype-4 (FAdV-4) is highly lethal to poultry, making it one of the leading causes of economic losses in the poultry industry. However, a small proportion of poultry can survive after FAdV-4 infection. It is unclear whether there are genetic factors that protect chickens from FAdV-4 infection. Therefore, the livers from chickens uninfected with FAdV-4 (Normal), dead after FAdV-4 infection (Dead) or surviving after FAdV-4 infection (Survivor) were collected for RNA-seq, and 2,649 differentially expressed genes (DEGs) were identified. Among these, many immune-related cytokines and chemokines were significantly upregulated in the Dead group compared with the Survivor group, which might indicate that death is related to an excessive inflammatory immune response (cytokine storm). Subsequently, the KEGG results for DEGs specifically expressed in each comparison group indicated that cell cycle and apoptosis-related DEGs were upregulated and metabolism-related DEGs were downregulated in the Dead group, which also validated the reliability of the samples. Furthermore, GO and KEGG results showed DEGs expressed in all three groups were mainly associated with cell cycle. Among them, BRCA1, CDK1, ODC1, and MCM3 were screened as factors that might influence FAdV-4 infection. The qPCR results demonstrated that these 4 factors were not only upregulated in the Dead group but also significantly upregulated in the LMH cells after 24 h infection by FAdV-4. Moreover, interfering with BRCA1, CDK1, ODC1, and MCM3 significantly attenuated viral replication of FAdV-4. And interfering of BRCA1, CDK1, and MCM3 had more substantial hindering effects. These results provided novel insights into the molecular changes following FAdV-4 infection but also shed light on potential factors driving the survival of FAdV-4 infection in chickens.


Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Animals , Adenoviridae Infections/veterinary , Serogroup , Reproducibility of Results , Chickens/genetics , Adenoviridae/genetics , Poultry/genetics , Gene Expression Profiling/veterinary , Aviadenovirus/genetics
6.
Mol Neurobiol ; 60(5): 2632-2643, 2023 May.
Article En | MEDLINE | ID: mdl-36692707

Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is involved in neural injury, neuroinflammation, microglia activation, and polarization, while its function in spinal cord injury (SCI) remains unclear. Thus, this study aimed to evaluate the role of MALT1 modification on SCI recovery and its underlying mechanism. SCI surgery or sham surgery was performed in Sprague-Dawley rats. Then, MALT1 knockdown or negative control lentivirus was injected into SCI rats. Subsequently, MALT1 expression, locomotor capability, neural injury, markers for microglia activation and polarization, inflammatory cytokine expressions, and nuclear factor (NF)-κB pathway were detected. SCI rats exhibited higher MALT1 expression, microglia activation and M1 polarization, neuroinflammation, and NF-κB pathway activation, while worse locomotor capacity compared to sham rats (all P < 0.05). In SCI rats, MALT1 knockdown alleviated Basso, Beattie, and Bresnahan score from 10 to 28 days and attenuated HE staining reflected neural injury (all P < 0.05). Besides, MALT1 knockdown declined the number of IBA1+ cells, IBA1+ iNOS+ cells, and IBA1+ CD86+ cells, while enhanced the number of IBA1+ Arg1+ cells and IBA1+ CD206+ cells in SCI rats (all P < 0.05). Meanwhile, MALT1 knockdown declined the expressions of IL-1ß, IL-6, and TNF-α in SCI (all P < 0.05), but did not affect IL-10 expression (P > 0.05). Furthermore, MALT1 knockdown suppressed NF-κB pathway activation validated by immunofluorescence staining and western blot assays (all P < 0.05). MALT1 knockdown improves functional recovery, attenuates microglia activation, M1 polarization, and neuroinflammation via inhibiting NF-κB pathway in SCI.


Microglia , Spinal Cord Injuries , Animals , Rats , Microglia/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , Rats, Sprague-Dawley , Spinal Cord/pathology , Spinal Cord Injuries/pathology
7.
Front Immunol ; 13: 990071, 2022.
Article En | MEDLINE | ID: mdl-36203574

Although immune response enhancement has been reported after primary and booster vaccines of CoronaVac, neutralization breadth of SARS-CoV-2 variants is still unclear. In the present study, we examined the neutralization magnitude and breadth of SARS-CoV-2 variants including Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529) in 33 convalescent COVID-19 patients and a cohort of 55 medical staff receiving primary CoronaVac vaccines and an additional homologous booster dose. Results showed that, as compared with the two-dose primary vaccination, the homologous booster dose achieved 2.24-, 3.98-, 4.58- and 2.90-fold increase in neutralization titer against wild-type, Beta, Delta, and Omicron, respectively. After booster dose, neutralization titer reduction for variants was less than that after the primary vaccine or that for convalescents. The proportion of recipients able to neutralize 2 or more variants increased from 36.36% post the primary vaccination to 87.27% after the booster. Significant increase in neutralization breadth of 1.24 (95% confidence interval (CI), 0.89-1.59) variants was associated with a log10 increase in neutralization titer against the wild-type. In addition, anti-RBD IgG level was identified as an excellent surrogate for positive neutralization of SARS-CoV-2 and neutralization breadth of variants. These findings highlight the value of an additional homologous CoronaVac dose in broadening the cross-neutralization against SARS-CoV-2 variants, and are critical for informing the booster dose vaccination efforts.


COVID-19 , SARS-CoV-2 , Antibody Formation , COVID-19 Vaccines , Humans , Immunoglobulin G , Neutralization Tests , Spike Glycoprotein, Coronavirus
8.
Sci Rep ; 12(1): 8230, 2022 05 17.
Article En | MEDLINE | ID: mdl-35581376

Lung adenocarcinoma is one of the most common malignant tumors worldwide. The purpose of this study was to construct a stable immune gene signature for prediction of prognosis (IGSPP) and response to immune checkpoint inhibitors (ICIs) therapy in LUAD patients. Five genes were screened by weighted gene coexpression network analysis, Cox regression and LASSO regression analyses and were used to construct the IGSPP. The survival rate of the IGSPP low-risk group was higher than that of the IGSPP high-risk group. Multivariate Cox regression analysis showed that IGSPP could be used as an independent prognostic factor for the overall survival of LUAD patients. IGSPP genes were enriched in cell cycle pathways. IGSPP gene mutation rates were higher in the high-risk group. CD4 memory-activated T cells, M0 and M1 macrophages had higher infiltration abundance in the high-risk group, which was associated with poor overall survival. In contrast, the abundance of resting CD4 memory T cells, monocytes, resting dendritic cells and resting mast cells associated with a better prognosis was higher in the low-risk group. TIDE scores and the expressions of different immune checkpoints showed that patients in the high-risk IGSPP group benefited more from ICIs treatment. In short, an IGSPP of LUAD was constructed and characterized. It could be used to predict the prognosis and benefits of ICIs treatment in LUAD patients.


Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Prognosis
9.
BMC Genomics ; 23(1): 373, 2022 May 17.
Article En | MEDLINE | ID: mdl-35581549

BACKGROUND: Runs of homozygosity (ROH) are continuous homozygous regions typically located in the DNA sequence of diploid organisms. Identifications of ROH that lead to reduced performance can provide valuable insight into the genetic architecture of complex traits. Here, we systematically investigated the population genetic structure of five Anhui indigenous pig breeds (AHIPs), and compared them to those of five Western commercial pig breeds (WECPs). Furthermore, we examined the occurrence and distribution of ROHs in the five AHIPs and estimated the inbreeding coefficients based on the ROHs (FROH) and homozygosity (FHOM). Finally, we identified genomic regions with high frequencies of ROHs and annotated candidate genes contained therein. RESULTS: The WECPs and AHIPs were clearly differentiated into two separate clades consistent with their geographical origins, as revealed by the population structure and principal component analysis. We identified 13,530 ROHs across all individuals, of which 4,555 and 8,975 ROHs were unique to AHIPs and WECPs, respectively. Most ROHs identified in our study were short (< 10 Mb) or medium (10-20 Mb) in length. WECPs had significantly higher numbers of short ROHs, and AHIPs generally had longer ROHs. FROH values were significantly lower in AHIPs than in WECPs, indicating that breed improvement and conservation programmes were successful in AHIPs. On average, FROH and FHOM values were highly correlated (0.952-0.991) in AHIPs and WECPs. A total of 27 regions had a high frequency of ROHs and contained 17 key candidate genes associated with economically important traits in pigs. Among these, nine candidate genes (CCNT2, EGR2, MYL3, CDH13, PROX1, FLVCR1, SETD2, FGF18, and FGF20) found in WECPs were related to muscular and skeletal development, whereas eight candidate genes (CSN1S1, SULT1E1, TJP1, ZNF366, LIPC, MCEE, STAP1, and DUSP) found in AHIPs were associated with health, reproduction, and fatness traits. CONCLUSION: Our findings provide a useful reference for the selection and assortative mating of pig breeds, laying the groundwork for future research on the population genetic structures of AHIPs, ultimately helping protect these local varieties.


Genome , Polymorphism, Single Nucleotide , Animals , Genotype , Homozygote , Inbreeding , Swine/genetics
10.
PLoS One ; 16(10): e0258498, 2021.
Article En | MEDLINE | ID: mdl-34662362

BACKGROUND: Lung cancer is the major cause of mortality in tumor patients. While its incidence rate has recently declined, it is still far from satisfactory and its potential modifiable risk factors should be explored. METHODS: We performed a two-sample Mendelian randomization (MR) study to investigate the causal relationship between potentially modifiable risk factors (namely smoking behavior, alcohol intake, anthropometric traits, blood pressure, lipidemic traits, glycemic traits, and fasting insulin) and lung cancer. Besides, a bi-directional MR analysis was carried out to disentangle the complex relationship between different risk factors. Inverse-variance weighted (IVW) was utilized to combine the estimation for each SNP. Cochrane's Q value was used to evaluate heterogeneity and two methods, including MR-Egger intercept and MR-PRESSO, were adopted to detect horizontal pleiotropy. RESULTS: Three kinds of smoking behavior were all causally associated with lung cancer. Overall, smokers were more likely to suffer from lung cancer compared with non-smokers (OR = 2.58 [1.95, 3.40], p-value = 2.07 x 10-11), and quitting smoking could reduce the risk (OR = 4.29[2.60, 7.07], p-value = 1.23 x 10-8). Furthermore, we found a dose-response relationship between the number of cigarettes and lung cancer (OR = 6.10 [5.35, 6.96], p-value = 4.43x10-161). Lower HDL cholesterol could marginally increase the risk of lung cancer, but become insignificant after Bonferroni correction (OR = 0.82 [0.68, 1.00], p-value = 0.045). In addition, we noted no direct causal relationship between other risk factors and lung cancer. Neither heterogeneity nor pleiotropy was observed in this study. However, when treating the smoking behavior as the outcome, we found the increased BMI could elevate the number of cigarettes per day (beta = 0.139[0.104, 0.175], p-value = 1.99x10-14) and a similar effect was observed for the waist circumference and hip circumference. Additionally, the elevation of SBP could also marginally increase the number of cigarettes per day (beta = 0.001 [0.0002, 0.002], p-value = 0.018). CONCLUSION: Smoking behavior might be the most direct and effective modifiable way to reduce the risk of lung cancer. Meanwhile, smoking behavior can be affected by other risk factors, especially obesity.


Mendelian Randomization Analysis , Genome-Wide Association Study , Humans , Risk Factors
11.
J Cancer Res Clin Oncol ; 147(12): 3591-3599, 2021 Dec.
Article En | MEDLINE | ID: mdl-34490583

PURPOSE: Recent Mendelian randomization (MR) studies derived inconsistent results of blood lipids' effect on colorectal cancer, and whether the blood lipids' effect on colon and rectal cancer is different is still unknown. Here, we sought to answer these questions. METHODS: Primarily, we employed univariable MR to explore the blood lipids' effect on colon and rectal cancer, including high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol and triglycerides. Then, multivariable MR was also employed to reassess each blood lipid's effect on the two cancers with adjustment of the other lipids. Reverse MR analysis was adopted to determine whether colon or rectal cancer could affect the levels of blood lipids. The Cochrane's Q value was used to evaluate the heterogeneity, and MR-PRESSO was used to appraise the pleiotropy. RESULTS: Generally, we did not find any significant result between blood lipids and the colon/rectal cancer after Bonferroni correction in the univariable MR analysis. The multivariable MR analysis also obtained the same results. However, it should be noted that higher total cholesterol level might increase the risk of colon cancer (OR = 1.15 [1.01, 1.31], IVW p value = 0.029) but not rectal cancer (OR = 1.02 [0.85, 1.21], IVW p value = 0.853). Such causal relationship turned insignificant in the multivariable MR. The reverse MR analysis suggested that either colon or rectal cancer could increase the levels of blood lipids. CONCLUSION: We found no association between blood lipids and risk of colon or rectal cancer, except for a positive association between total cholesterol and colon cancer risk.


Colorectal Neoplasms/blood , Lipids/blood , Humans , Mendelian Randomization Analysis , Risk Factors
12.
Environ Sci Pollut Res Int ; 28(34): 46319-46333, 2021 Sep.
Article En | MEDLINE | ID: mdl-34341925

With the industrial-level panel data on total output and wastewater discharge over the period of 1997 to 2018, this paper employs GIS and ESDA methods to empirically investigate the spatial relationship between industrial total output and wastewater discharge. In this paper, we empirically examine whether and how industrial wastewater discharge in a particular province may affect the wastewater discharge in its neighboring provinces. Results suggest that provinces (municipalities) with large-scale industrial sewage discharge are located along riversides and coastal areas and these discharges then gradually distribute to coastal, central, and western areas. Results also show a strong spatial autocorrelation of industrial wastewater discharge between the observed local province and its neighboring provinces which is increasing over time. In addition, there is also a significant spatial spillover effect of industrial wastewater discharge among neighboring provinces in China's eastern and central regions, indicating a structural convergence of high-pollution industries.


Industry , Wastewater , China , Cities , Economic Development , Wastewater/analysis
13.
Vaccines (Basel) ; 9(4)2021 Apr 16.
Article En | MEDLINE | ID: mdl-33923573

The ongoing coronavirus disease (COVID-19) pandemic is caused by a new coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) first reported in Wuhan City, China. From there, it has been rapidly spreading to many cities inside and outside China. Nowadays, more than 110 million cases with deaths surpassing 2 million have been recorded worldwide, thus representing a major health and economic issues. Rapid development of a protective vaccine against COVID-19 is therefore of paramount importance. Here, we demonstrated that the recombinantly expressed receptor-binding domain (RBD) of the spike protein can be coupled to immunologically optimized virus-like particles derived from cucumber mosaic virus (CuMVTT). The RBD displayed CuMVTT bound to ACE2, the viral receptor, demonstrating proper folding of RBD. Furthermore, a highly repetitive display of the RBD on CuMVTT resulted in a vaccine candidate that induced high levels of specific antibodies in mice, which were able to block binding of the spike protein to ACE2 and potently neutralize SARS-CoV-2 virus in vitro.

14.
Front Genet ; 11: 562855, 2020.
Article En | MEDLINE | ID: mdl-33240316

Wandong (WD) cattle has recently been identified as a new Chinese native cattle breed by the National Commission for Livestock and Poultry Genetic Resources. The population size of this breed is less than 10,000. WD cattle and Dabieshan (DB) cattle are sympatric but are raised in different ecological environments, on mountains and plains, respectively, and the body sizes of these two breeds are markedly different. Blood samples were obtained from 8 adult female WD cattle and 7 adult female DB cattle (24 months old). The total RNA was extracted from leukocyte cells, and sequencing experiments were conducted on the Illumina HiSeqTM 4000 platform. After the removal of one outlier sample from the WD cattle breed as determined by principal component analysis (PCA), phylogenetic and population structure analyses indicated that WD and DB cattle formed a distinct Central China cattle group and showed evidence of hybridization between Bos. taurus and Bos. indicus. The immune-regulator CD48 (P = 1.3E-6) was associated with breed-specific traits according to loss-of-function variant enrichment analysis. In addition, 113 differentially expressed genes were identified between the two breeds, many of which are associated with the regulation of body growth, which is the major difference between the two breeds. This study showed that WD cattle belong to the group of hybrids between Bos. Taurus and Bos. indicus, and one novel gene associated with breed traits and multiple differentially expressed genes between these two closely related breeds was identified. The results provide insights into the genetic mechanisms that underlie economically important traits, such as body size, in cattle.

16.
Anim Reprod Sci ; 218: 106506, 2020 Jul.
Article En | MEDLINE | ID: mdl-32507252

Activity of transcription factors affect synthesis of G-protein coupled receptor 54 (GPR54), an important factor in regulation of initiation of puberty. Expression of the GPR54 gene in cattle is associated with polymorphisms in the proximal regulatory region (PRR) of the GPR54 gene. Transcription resulting in production of GPR54 mRNA transcript occurs as a result of transcription factor (TF) interactions in the PRR. Polymorphisms in the PRR may be associated with extent of activity of these TFs. Folliculogenesis-specific BHLH TF (FIGLA), neurogenin 2 (NEUROG2), and early growth response 1 (EGR1) are important in modulation of ovarian follicle development and neurons synthesizing GnRH, thus, regulating biosynthesis of luteinizing hormone. The aim of this study, therefore, was to assess the transcription-activating potential of binding sites for FIGLA, NEUROG2, and EGR1 TFs in the GPR54 promoter of cattle. Two luciferase-based promoters, ATC and CCT, which contain three single nucleotide polymorphisms (SNPs), A/C-794, T/C-663, and C/T-601, in the GPR54 PRR, were analyzed to evaluate gene expression and activation of different promoters by FIGLA, NEUROG2, and EGR1. The FIGLA induced GPR54 transcription through the CCT, whereas NEUROG2 and EGR1 induced GPR54 transcription through the ATC promoter-binding site. The CCT-activating effects of FIGLA were greater (2.56-fold) than the ATC-activating effects (P < 0.05). The ATC-activating effects of NEUROG2 and EGR1 were markedly greater (12.91- and 8.41-fold; P < 0.01) than CCT-activating effects. The polymorphisms, CCT and ATC, of the cattle GPR54 affect the activity of transcription factors, therefore, have an important effect on production of GPR54 mRNA transcript.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Cattle/physiology , Early Growth Response Protein 1/metabolism , Nerve Tissue Proteins/metabolism , Polymorphism, Single Nucleotide , Receptors, Kisspeptin-1/metabolism , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Cattle/genetics , Early Growth Response Protein 1/genetics , Gene Expression Regulation , Nerve Tissue Proteins/genetics , Receptors, Kisspeptin-1/genetics , Regulatory Sequences, Nucleic Acid
17.
3 Biotech ; 10(6): 267, 2020 Jun.
Article En | MEDLINE | ID: mdl-32509500

Chinese and imported pig breeds differ in fat production potential, which is associated with the polymorphisms in the 5' proximal regulating region (5'PRR) of thyroid hormone responsive gene (THRSP). In three Chinese breeds (Dingyuan, CDY; Wannanhua, CWH; and Jixi, CJX) and one introduced breed (Yorkshire, YKS), three variant sites were located at T/C-400, A/G-376, and G/A-98 in the 5'PRR. Chinese pig breeds had higher C-400 allele frequencies than YKS. The frequencies of A-376 in CDY and G-376 in CWH were about 0.8. G-98 allele frequencies in CWH and YKS were 0.8617 and 0.8149, respectively. TGG was the dominant haplotype in YKS, CGG in CWH and CJX, and CAA in CDY. According to haplotype frequency, four breeds were clustered into three types, which was consistent with the geographical distribution of the breeds. In CDY, the average backfat thickness (BFT) was the highest with the CC-400 genotype, followed by CT-400 and TT-400 genotypes. In YKS, the pigs with CC-400 or CT-400 genotypes had higher BFT and average daily weight gain, whereas those with CC-400 or TT-400 genotypes had larger lion-eye area. No significant difference was observed in carcass traits among different genotypes at the A/G-376 and G/A-98 loci. The mRNA abundance of THRSP expression for the CCAGAG genotype was significantly higher than that for CTAGAG or TTAGAG genotype. These results indicated that the polymorphisms and genotype distribution of THRSP were closely related to the potential for fat production in pig breeds, which were the result of adaptation to artificial selection and natural selection.

18.
Int J Immunopathol Pharmacol ; 32: 2058738418795940, 2018.
Article En | MEDLINE | ID: mdl-30198366

MicroRNAs (miRNAs/miRs) play vital roles in various immune diseases including systemic lupus erythematosus (SLE). The current study aimed to assess the role of miR-145 in interleukin-6 (IL-6)-treated HaCaT cells under ultraviolet B (UVB) irradiation and further explore the potential regulatory mechanism. HaCaT cells were pretreated with IL-6 and then exposed to UVB to assess the effect of IL-6 on sensitivity of HaCaT cells to UVB irradiation. The levels of miR-145 and MyD88 were altered by transfection and the transfected efficiency was verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR)/western blot analysis. Cell viability, percentage of apoptotic cells and expression levels of apoptosis-related factors were measured by trypan blue assay, flow cytometry assay, and western blot analysis, respectively. In addition, the levels of c-Jun N-terminal kinases (JNK) and nuclear factor-κB (NF-κB) signaling pathway-related factors were assessed by western blot analysis. IL-6 treatments significantly aggravated the reduction of cell viability and promotion of cell apoptosis caused by UVB irradiation in HaCaT cells. Interestingly, miR-145 level was augmented by UVB exposure and miR-145 mimic alleviated IL-6-induced increase of sensitivity to UVB irradiation in HaCaT cells, as dramatically increased cell viability and reduced cell apoptosis. Opposite effects were observed in miR-145 inhibitor-transfected cells. Meanwhile, MyD88 was negatively regulated by miR-145 and MyD88 mediated the regulatory effect of miR-145 on IL-6- and UVB-treated cells. In addition, miR-145 mimic inhibited the JNK and NF-κB pathways by down-regulating MyD88. In conclusion, the present study demonstrated that miR-145 alleviated IL-6-induced increase of sensitivity to UVB irradiation by down-regulating MyD88 in HaCaT cells.


Interleukin-6/pharmacology , Keratinocytes/drug effects , Keratinocytes/radiation effects , MicroRNAs/metabolism , Myeloid Differentiation Factor 88/metabolism , Radiation-Sensitizing Agents/pharmacology , Ultraviolet Rays , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Down-Regulation , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Lupus Erythematosus, Systemic/therapy , MicroRNAs/genetics , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Radiation Tolerance , Signal Transduction/drug effects , Signal Transduction/radiation effects
19.
Am J Physiol Cell Physiol ; 315(5): C675-C686, 2018 11 01.
Article En | MEDLINE | ID: mdl-30067384

Metastatic cutaneous squamous cell carcinoma (CSCC) is a major cause of death associated with nonmelanoma skin cancer. The involvement of homeobox B7 ( HOXB7) in cancers has been reported. Thus, the current study intends to explore the effect of HOXB7 on CSCC and its relationship with the Wnt/ß-catenin signaling pathway. Initially, microarray-based gene expression profiling of CSCC was performed, and HOXB7 was identified as an upregulated gene based on the microarray data of GSE66359 . Following this, the experimental results indicated that HOXB7 and ß-catenin formed a composite, demonstrating that endogenous HOXB7 binds to ß-catenin. Subsequently, CSCC cells were treated with siRNA against HOXB7 or an inhibitor of the Wnt/ß-catenin signaling pathway to analyze any underlying regulatory mechanism of HOXB7 on the CSCC cells. Tumor growth involving xenografts in nude mice was also observed so as to explore whether or not HOXB7 could regulate subcutaneous tumor growth through in vivo culturing. To investigate the potential effects of HOXB7 on the Wnt/ß-catenin signaling pathway, we determined the expression of HOXB7 and downstream genes of the Wnt/ß-catenin signaling pathway. Notably, siRNA-mediated knockdown of HOXB7 inhibited the activation of the Wnt/ß-catenin signaling pathway, thereby impeding the progression of cell viability, migration, and invasion as well as of the tumor growth, although contrarily facilitating cell apoptosis. Taken together, silencing of the HOXB7 has the mechanism of inactivating the Wnt/ß-catenin signaling pathway, thereby accelerating cell apoptosis and suppressing cell migration and invasion in CSCC, which could provide a candidate target for the CSCC treatment.


Carcinoma, Squamous Cell/genetics , Cell Movement/genetics , Homeodomain Proteins/genetics , Skin Neoplasms/genetics , Animals , Apoptosis/genetics , Carcinoma, Squamous Cell/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Homeodomain Proteins/antagonists & inhibitors , Humans , Mice , Microarray Analysis , Neoplasm Invasiveness/genetics , Skin Neoplasms/pathology , Wnt Signaling Pathway , Xenograft Model Antitumor Assays , beta Catenin/genetics
20.
Int J Biochem Cell Biol ; 100: 22-29, 2018 07.
Article En | MEDLINE | ID: mdl-29727714

OBJECTIVE: Skin squamous cell carcinoma (SCC) is a common, morbid, and frequently lethal malignancy and ranks as the sixth most deadly cancer worldwide. Hence, this study aims to explore the effect of microRNA-154 (miR-154) targeting WHSC1 on proliferation and apoptosis of SCC cells via the P53 signaling pathway. METHODS: The targeting relationship between WHSC1 and miR-154 was validated using dual-luciferase reporter assay. Normal human epidermal keratinocytes (NHEK) were included, and SCC A431 and SCC-15 cell lines were cultured and transfected with miR-154 mimic, miR-154 inhibitor or siRNA-WHSC1. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used for the miR-154 expression and levels of WHSC1, P53 signaling pathway- and apoptosis-related genes. MTT assay and flow cytometry were applied to determine the cell viability and apoptosis. RESULTS: WHSC1 is a target gene of miR-154. MiR-154 negatively regulated WHSC1 expression and inhibited the activation of P53 signaling pathway. In response to miR-154 mimic or siRNA-WHSC1, SCC A431 and SCC-15 cell lines exhibited increased expression of P73, P16 and Bax, decreased expression of WHSC1, P53, c-myc and Bcl-2, as well as attenuated cell viability and enhanced cell apoptosis. The treatment of miR-154 inhibitor reversed the tendency. CONCLUSION: These results demonstrate that up-regulation of miR-154 inhibits proliferation and induces apoptosis of human skin SCC cells by down-regulating WHSC1 and blocking the P53 signaling pathway.


Carcinoma, Squamous Cell/pathology , Histone-Lysine N-Methyltransferase/genetics , MicroRNAs/genetics , Repressor Proteins/genetics , Signal Transduction/genetics , Skin Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Apoptosis/genetics , Base Sequence , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Humans
...