Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 95(7): 662-675, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37573005

RESUMEN

BACKGROUND: Genetic variation in the TCF4 (transcription factor 4) gene is associated with risk for a variety of developmental and psychiatric conditions, which includes a syndromic form of autism spectrum disorder called Pitt-Hopkins syndrome (PTHS). TCF4 encodes an activity-dependent transcription factor that is highly expressed during cortical development and in animal models has been shown to regulate various aspects of neuronal development and function. However, our understanding of how disease-causing mutations in TCF4 confer pathophysiology in a human context is lacking. METHODS: To model PTHS, we differentiated human cortical neurons from human induced pluripotent stem cells that were derived from patients with PTHS and neurotypical individuals. To identify pathophysiology and disease mechanisms, we assayed cortical neurons with whole-cell electrophysiology, Ca2+ imaging, multielectrode arrays, immunocytochemistry, and RNA sequencing. RESULTS: Cortical neurons derived from patients with TCF4 mutations showed deficits in spontaneous synaptic transmission, network excitability, and homeostatic plasticity. Transcriptomic analysis indicated that these phenotypes resulted in part from altered expression of genes involved in presynaptic neurotransmission and identified the presynaptic binding protein RIMBP2 as the most differentially expressed gene in PTHS neurons. Remarkably, TCF4-dependent deficits in spontaneous synaptic transmission and network excitability were rescued by increasing RIMBP2 expression in presynaptic neurons. CONCLUSIONS: Taken together, these results identify TCF4 as a critical transcriptional regulator of human synaptic development and plasticity and specifically identifies dysregulation of presynaptic function as an early pathophysiology in PTHS.


Asunto(s)
Trastorno del Espectro Autista , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , Animales , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación , Neuronas/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
2.
Mol Psychiatry ; 28(11): 4679-4692, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770578

RESUMEN

Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor that is implicated in a variety of psychiatric disorders including autism spectrum disorder (ASD), major depression, and schizophrenia. Autosomal dominant mutations in TCF4 are causal for a specific ASD called Pitt-Hopkins Syndrome (PTHS). However, our understanding of etiological and pathophysiological mechanisms downstream of TCF4 mutations is incomplete. Single cell sequencing indicates TCF4 is highly expressed in GABAergic interneurons (INs). Here, we performed cell-type specific expression analysis (CSEA) and cellular deconvolution (CD) on bulk RNA sequencing data from 5 different PTHS mouse models. Using CSEA we observed differentially expressed genes (DEGs) were enriched in parvalbumin expressing (PV+) INs and CD predicted a reduction in the PV+ INs population. Therefore, we investigated the role of TCF4 in regulating the development and function of INs in the Tcf4+/tr mouse model of PTHS. In Tcf4+/tr mice, immunohistochemical (IHC) analysis of subtype-specific IN markers and reporter mice identified reductions in PV+, vasoactive intestinal peptide (VIP+), and cortistatin (CST+) expressing INs in the cortex and cholinergic (ChAT+) INs in the striatum, with the somatostatin (SST+) IN population being spared. The reduction of these specific IN populations led to cell-type specific alterations in the balance of excitatory and inhibitory inputs onto PV+ and VIP+ INs and excitatory pyramidal neurons within the cortex. These data indicate TCF4 is a critical regulator of the development of specific subsets of INs and highlight the inhibitory network as an important source of pathophysiology in PTHS.


Asunto(s)
Trastorno del Espectro Autista , Animales , Ratones , Corteza Cerebral/metabolismo , Interneuronas/metabolismo , Mutación , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
3.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36712024

RESUMEN

Genetic variation in the transcription factor 4 ( TCF4) gene is associated with risk for a variety of developmental and psychiatric conditions, which includes a syndromic form of ASD called Pitt Hopkins Syndrome (PTHS). TCF4 encodes an activity-dependent transcription factor that is highly expressed during cortical development and in animal models is shown to regulate various aspects of neuronal development and function. However, our understanding of how disease-causing mutations in TCF4 confer pathophysiology in a human context is lacking. Here we show that cortical neurons derived from patients with TCF4 mutations have deficits in spontaneous synaptic transmission, network excitability and homeostatic plasticity. Transcriptomic analysis indicates these phenotypes result from altered expression of genes involved in presynaptic neurotransmission and identifies the presynaptic binding protein, RIMBP2 as the most differentially expressed gene in PTHS neurons. Remarkably, TCF4-dependent deficits in spontaneous synaptic transmission and network excitability were rescued by increasing RIMBP2 expression in presynaptic neurons. Together, these results identify TCF4 as a critical transcriptional regulator of human synaptic development and plasticity and specifically identifies dysregulation of presynaptic function as an early pathophysiology in PTHS.

4.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35017298

RESUMEN

Neurons derived from human induced pluripotent stem cells (hiPSCs) have been used to model basic cellular aspects of neuropsychiatric disorders, but the relationship between the emergent phenotypes and the clinical characteristics of donor individuals has been unclear. We analyzed RNA expression and indices of cellular function in hiPSC-derived neural progenitors and cortical neurons generated from 13 individuals with high polygenic risk scores (PRSs) for schizophrenia (SCZ) and a clinical diagnosis of SCZ, along with 15 neurotypical individuals with low PRS. We identified electrophysiological measures in the patient-derived neurons that implicated altered Na+ channel function, action potential interspike interval, and gamma-aminobutyric acid-ergic neurotransmission. Importantly, electrophysiological measures predicted cardinal clinical and cognitive features found in these SCZ patients. The identification of basic neuronal physiological properties related to core clinical characteristics of illness is a potentially critical step in generating leads for novel therapeutics.


Asunto(s)
Cognición/fisiología , Fenómenos Electrofisiológicos , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Esquizofrenia/fisiopatología , Animales , Línea Celular , Reprogramación Celular , Corteza Cerebral/patología , Humanos , Activación del Canal Iónico , Cinética , Masculino , Fenotipo , Ratas , Esquizofrenia/diagnóstico , Canales de Sodio/metabolismo
5.
Dev Neurosci ; 43(3-4): 159-167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34134113

RESUMEN

Transcription factor 4 (TCF4, also known as ITF2 or E2-2) is a type I basic helix-loop-helix transcription factor. Autosomal dominant mutations in TCF4 cause Pitt-Hopkins syndrome (PTHS), a rare syndromic form of autism spectrum disorder. In this review, we provide an update on the progress regarding our understanding of TCF4 function at the molecular, cellular, physiological, and behavioral levels with a focus on phenotypes and therapeutic interventions. We examine upstream and downstream regulatory networks associated with TCF4 and discuss a range of in vitro and in vivo data with the aim of understanding emerging TCF4-specific mechanisms relevant for disease pathophysiology. In conclusion, we provide comments about exciting future avenues of research that may provide insights into potential new therapeutic targets for PTHS.


Asunto(s)
Facies , Hiperventilación , Discapacidad Intelectual/genética , Factor de Transcripción 4 , Trastorno del Espectro Autista/genética , Humanos , Hiperventilación/genética , Factor de Transcripción 4/genética
6.
Biol Psychiatry ; 88(7): 554-565, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32560963

RESUMEN

BACKGROUND: Context fear memory dysregulation is a hallmark symptom of several neuropsychiatric disorders, including generalized anxiety disorder and posttraumatic stress disorder. The hippocampus (HC) and prelimbic (PrL) subregion of the medial prefrontal cortex have been linked with context fear memory retrieval in rodents, but the mechanisms by which HC-PrL circuitry regulates this process remain poorly understood. METHODS: Spatial and genetic targeting of HC-PrL circuitry was used for RNA sequencing (n = 31), chemogenetic stimulation (n = 44), in vivo calcium imaging (n = 20), ex vivo electrophysiology (n = 8), and molecular regulation of plasticity cascades during fear behavior (context fear retrieval) (n = 16). RESULTS: We showed that ventral HC (vHC) neurons with projections to the PrL cortex (vHC-PrL projectors) are a transcriptomically distinct subpopulation compared with adjacent nonprojecting neurons, and we showed complementary enrichment for diverse neuronal processes and central nervous system-related clinical gene sets. We further showed that stimulation of this population of vHC-PrL projectors suppresses context fear memory retrieval and impairs the ability of PrL neurons to dynamically distinguish between distinct phases of fear learning. Using transgenic and circuit-specific molecular targeting approaches, we demonstrated that unique patterns of activity-dependent gene transcription associated with brain-derived neurotrophic factor signaling within vHC-PrL projectors causally regulated activity in excitatory and inhibitory PrL neurons during context fear memory retrieval. CONCLUSIONS: Together, our data show that activity-dependent brain-derived neurotrophic factor release from molecularly distinct vHC-PrL projection neurons modulates postsynaptic signaling in both inhibitory and excitatory PrL neurons, modifying activity in discrete populations of PrL neurons to suppress freezing during context fear memory retrieval.


Asunto(s)
Miedo , Corteza Prefrontal , Hipocampo , Memoria , Dinámica Poblacional
7.
Neuron ; 105(3): 398-399, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32027827

RESUMEN

In this issue of Neuron, Dong et al. (2020) finds that deficiency of the psychiatric risk gene Cul3, which encodes an E3 ubiquitin ligase, leads to an upregulation of Cap-dependent protein translation. The resulting imbalance in protein synthesis and degradation is found to disrupt glutamatergic transmission and excitability in networks that underlie sociability and anxiety.


Asunto(s)
Proteínas Cullin , Trastornos Mentales , Ansiedad , Humanos , Ubiquitina-Proteína Ligasas
8.
Nat Neurosci ; 23(3): 375-385, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015540

RESUMEN

Autism spectrum disorder (ASD) is genetically heterogeneous with convergent symptomatology, suggesting common dysregulated pathways. In this study, we analyzed brain transcriptional changes in five mouse models of Pitt-Hopkins syndrome (PTHS), a syndromic form of ASD caused by mutations in the TCF4 gene, but not the TCF7L2 gene. Analyses of differentially expressed genes (DEGs) highlighted oligodendrocyte (OL) dysregulation, which we confirmed in two additional mouse models of syndromic ASD (Ptenm3m4/m3m4 and Mecp2tm1.1Bird). The PTHS mouse models showed cell-autonomous reductions in OL numbers and myelination, functionally confirming OL transcriptional signatures. We also integrated PTHS mouse model DEGs with human idiopathic ASD postmortem brain RNA-sequencing data and found significant enrichment of overlapping DEGs and common myelination-associated pathways. Notably, DEGs from syndromic ASD mouse models and reduced deconvoluted OL numbers distinguished human idiopathic ASD cases from controls across three postmortem brain data sets. These results implicate disruptions in OL biology as a cellular mechanism in ASD pathology.


Asunto(s)
Trastorno del Espectro Autista/genética , Dermatoglifia del ADN , Hiperventilación/genética , Discapacidad Intelectual/genética , Vaina de Mielina/genética , Transcriptoma/genética , Envejecimiento , Animales , Recuento de Células , Facies , Regulación de la Expresión Génica , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados , Oligodendroglía/metabolismo , Fosfohidrolasa PTEN/genética , Cultivo Primario de Células , Transducción de Señal/genética , Factor de Transcripción 4/genética
9.
Nat Commun ; 11(1): 462, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974374

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are a powerful model of neural differentiation and maturation. We present a hiPSC transcriptomics resource on corticogenesis from 5 iPSC donor and 13 subclonal lines across 9 time points over 5 broad conditions: self-renewal, early neuronal differentiation, neural precursor cells (NPCs), assembled rosettes, and differentiated neuronal cells. We identify widespread changes in the expression of both individual features and global patterns of transcription. We next demonstrate that co-culturing human NPCs with rodent astrocytes results in mutually synergistic maturation, and that cell type-specific expression data can be extracted using only sequencing read alignments without cell sorting. We lastly adapt a previously generated RNA deconvolution approach to single-cell expression data to estimate the relative neuronal maturity of iPSC-derived neuronal cultures and human brain tissue. Using many public datasets, we demonstrate neuronal cultures are maturationally heterogeneous but contain subsets of neurons more mature than previously observed.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Células-Madre Neurales/fisiología , Transcriptoma , Algoritmos , Animales , Astrocitos/citología , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo , Bases de Datos Genéticas , Regulación de la Expresión Génica , Humanos , Modelos Neurológicos , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/fisiología , Ratas
10.
Brain Struct Funct ; 224(1): 471-483, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30377803

RESUMEN

Signaling of brain-derived neurotrophic factor (BDNF) via tropomyosin receptor kinase B (TrkB) plays a critical role in the maturation of cortical inhibition and controls expression of inhibitory interneuron markers, including the neuropeptide cortistatin (CST). CST is expressed exclusively in a subset of cortical and hippocampal GABAergic interneurons, where it has anticonvulsant effects and controls sleep slow-wave activity (SWA). We hypothesized that CST-expressing interneurons play a critical role in regulating excitatory/inhibitory balance, and that BDNF, signaling through TrkB receptors on CST-expressing interneurons, is required for this function. Ablation of CST-expressing cells caused generalized seizures and premature death during early postnatal development, demonstrating a critical role for these cells in providing inhibition. Mice in which TrkB was selectively deleted from CST-expressing interneurons were hyperactive, slept less and developed spontaneous seizures. Frequencies of spontaneous excitatory post-synaptic currents (sEPSCs) on CST-expressing interneurons were attenuated in these mice. These data suggest that BDNF, signaling through TrkB receptors on CST-expressing cells, promotes excitatory drive onto these cells. Loss of excitatory drive onto CST-expressing cells that lack TrkB receptors may contribute to observed hyperexcitability and epileptogenesis.


Asunto(s)
Conducta Animal , Ondas Encefálicas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Hipercinesia/metabolismo , Interneuronas/metabolismo , Locomoción , Glicoproteínas de Membrana/metabolismo , Neuropéptidos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Convulsiones/metabolismo , Transmisión Sináptica , Animales , Encéfalo/fisiopatología , Potenciales Postsinápticos Excitadores , Hipercinesia/fisiopatología , Hipercinesia/prevención & control , Hipercinesia/psicología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural , Neuropéptidos/deficiencia , Neuropéptidos/genética , Proteínas Tirosina Quinasas/deficiencia , Proteínas Tirosina Quinasas/genética , Convulsiones/fisiopatología , Convulsiones/prevención & control , Convulsiones/psicología , Sueño
11.
Development ; 143(15): 2741-52, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385014

RESUMEN

The polarity and organization of radial glial cells (RGCs), which serve as both stem cells and scaffolds for neuronal migration, are crucial for cortical development. However, the cytoskeletal mechanisms that drive radial glial outgrowth and maintain RGC polarity remain poorly understood. Here, we show that the Arp2/3 complex - the unique actin nucleator that produces branched actin networks - plays essential roles in RGC polarity and morphogenesis. Disruption of the Arp2/3 complex in murine RGCs retards process outgrowth toward the basal surface and impairs apical polarity and adherens junctions. Whereas the former is correlated with an abnormal actin-based leading edge, the latter is consistent with blockage in membrane trafficking. These defects result in altered cell fate, disrupted cortical lamination and abnormal angiogenesis. In addition, we present evidence that the Arp2/3 complex is a cell-autonomous regulator of neuronal migration. Our data suggest that Arp2/3-mediated actin assembly might be particularly important for neuronal cell motility in a soft or poorly adhesive matrix environment.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Células Ependimogliales/citología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Animales , Apoptosis/genética , Apoptosis/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Polaridad Celular/genética , Polaridad Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Ependimogliales/metabolismo , Ratones , Morfogénesis/genética , Morfogénesis/fisiología , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/citología , Neuronas/metabolismo
12.
J Neurosci ; 35(3): 873-7, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25609607

RESUMEN

The plasma membrane Ca(2+)-ATPase (PMCA) is found near postsynaptic NMDARs. This transporter is a Ca(2+)-H(+) exchanger that raises cell surface pH. We tested whether the PMCA acts in an autocrine fashion to boost pH-sensitive, postsynaptic NMDAR currents. In mouse hippocampal slices, NMDAR EPSCs in a singly activated CA1 pyramidal neuron were reduced when buffering was augmented by exogenous carbonic anhydrase (XCAR). This effect was blocked by the enzyme inhibitor benzolamide and mimicked by the addition of HEPES buffer. Similar EPSC reduction occurred when PMCA activation was prevented by dialysis of BAPTA or the PMCA inhibitor carboxyeosin. Using HEPES, BAPTA, or carboxyeosin, the effect of XCAR was completely occluded. XCAR similarly curtailed NMDAR EPSCs of minimal amplitude, but had no effect on small AMPAR responses. These results indicate that a significant fraction of the postsynaptic NMDAR current is reliant on a perisynaptic extracellular alkaline shift generated by the PMCA.


Asunto(s)
Comunicación Autocrina/fisiología , Región CA1 Hipocampal/fisiología , Potenciales Postsinápticos Excitadores/fisiología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Comunicación Autocrina/efectos de los fármacos , Benzolamida/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Anhidrasas Carbónicas/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Concentración de Iones de Hidrógeno , Masculino , Ratones , Células Piramidales/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
13.
Neurosci Lett ; 548: 44-9, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23684982

RESUMEN

The zinc finger-containing gene Nolz-1/Zfp503 is a developmentally regulated striatum-enriched gene. In the present study, we characterized the cell type-selective expression pattern of Nolz-1 protein in the developing mouse striatum. Nolz-1 immunoreactivity was present in Isl-1-positive ventral LGE (vLGE, striatal primordia), but absent in Pax6-positive dorsal LGE (dLGE, non-striatal primordia). In the vLGE, Nolz-1 immunoreactivity was detected in early differentiating TuJ1-positive neurons, but not in Ki67-positive proliferating progenitor cells. Moreover, many Nolz-1-immunoreactive cells co-expressed Foxp1 or Foxp2, markers for striatal projection neurons. To further characterize Nolz-1 expression with respect to D1R-containing striatonigral and D2R-containing striatopallidal projection neurons, we used the Drd1-EGFP and Drd2-EGFP transgenic mice. Nolz-1 and EGFP double labeled neurons were found in the developing striatum of Drd1-EGFP and Drd2-EGFP mice, indicating Nolz-1 expression in both populations of striatal projection neurons. Notably, Nolz-1 protein was not expressed in Nkx2.1-positive interneuron progenitors, Lhx8-positive cholinergic interneuron progenitors, nNOS and calretinin-positive interneurons in E18.5 striatum. In the developing nucleus accumbens and olfactory tubercles of ventral striatum, many Nolz-1-positive cells co-expressed Sox1, an important transcriptional regulator for ventral striatum, suggesting a role of Nolz-1 in regulating development of the ventral striatum. Finally, in contrast to postnatal down-regulation of Nolz-1 in the dorsal striatum, Nolz-1 protein was persistently expressed in the olfactory tubercle from E15.5 to adulthood. Taken together, our study suggests that Nolz-1 serves as a marker for early differentiating striatal projection neurons and that Nolz-1 may regulate development of striatal projection neurons.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Proteínas Portadoras/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Distribución Tisular , Dedos de Zinc/fisiología
14.
J Neurosci ; 32(47): 16754-62, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23175829

RESUMEN

In the hippocampus, extracellular carbonic anhydrase (Car) speeds the buffering of an activity-generated rise in extracellular pH that impacts H(+)-sensitive NMDA receptors (NMDARs). We studied the role of Car14 in this brain structure, in which it is expressed solely on neurons. Current-clamp responses were recorded from CA1 pyramidal neurons in wild-type (WT) versus Car14 knock-out (KO) mice 2 s before (control) and after (test) a 10 pulse, 100 Hz afferent train. In both WT and KO, the half-width (HW) of the test response, and its number of spikes, were augmented relative to the control. An increase in presynaptic release was not involved, because AMPAR-mediated EPSCs were depressed after a train. The increases in HW and spike number were both greater in the Car14 KO. In 0 Mg(2+) saline with picrotoxin (using a 20 Hz train), the HW measures were still greater in the KO. The Car inhibitor benzolamide (BZ) enhanced the test response HW in the WT but had no effect on the already-prolonged HW in the KO. With intracellular MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d]-cyclohepten-5,10-imine maleate], the curtailed WT and KO responses were indistinguishable, and BZ caused no change. In contrast, the extracellular alkaline changes evoked by the train were not different between WT and KO, and BZ amplified these alkalinizations similarly. These data suggest that Car14 regulates pH transients in the perisynaptic microenvironment and govern their impact on NMDARs but plays little role in buffering pH shifts in the broader, macroscopic, extracellular space.


Asunto(s)
Anhidrasas Carbónicas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Benzodiazepinas/farmacología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Anhidrasas Carbónicas/efectos de los fármacos , Anhidrasas Carbónicas/genética , Interpretación Estadística de Datos , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Antagonistas del GABA/farmacología , Moduladores del GABA/farmacología , Hipocampo/fisiología , Concentración de Iones de Hidrógeno , Magnesio/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microelectrodos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Sinapsis/fisiología
15.
J Neurosci ; 31(19): 6997-7004, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21562261

RESUMEN

Numerous studies have documented the mechanisms that regulate intracellular pH (pH(i)) in hippocampal neurons in response to an acid load. Here, we studied the response of pH(i) to depolarization in cultured hippocampal neurons. Elevation of external K+ (6-30 mm) elicited an acid transient followed by a large net alkaline shift. Similar responses were observed in acutely dissociated hippocampal neurons. In Ca2+ -free media, the acid response was curtailed and the alkaline shift enhanced. DIDS blocked the alkaline response and revealed a prolonged underlying acidification that was highly dependent on Ca2+ entry. Similar alkaline responses could be elicited by AMPA, indicating that this rise in pH(i) was a depolarization-induced alkalinization (DIA). The DIA was found to consist of Cl- -dependent and Cl- -independent components, each accounting for approximately one-half of the peak amplitude. The Cl- -independent component was postulated to arise from operation of the electrogenic Na+ -HCO3- cotransporter NBCe1. Quantitative PCR and single-cell multiplex reverse transcription-PCR demonstrated message for NBCe1 in our hippocampal neurons. In neurons cultured from Slc4a4 knock-out (KO) mice, the DIA was reduced by approximately one-half compared with wild type, suggesting that NBCe1 was responsible for the Cl- -independent DIA. In Slc4a4 KO neurons, the remaining DIA was virtually abolished in Cl- -free media. These data demonstrate that DIA of hippocampal neurons occurs via NBCe1, and a parallel DIDS-sensitive, Cl- -dependent mechanism. Our results indicate that, by activating net acid extrusion in response to depolarization, hippocampal neurons can preempt a large, prolonged, Ca2+ -dependent acidosis.


Asunto(s)
Hipocampo/fisiología , Neuronas/fisiología , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Análisis de Varianza , Animales , Bicarbonatos/farmacología , Células Cultivadas , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Concentración de Iones de Hidrógeno , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo
16.
Proc Natl Acad Sci U S A ; 105(7): 2699-704, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18263732

RESUMEN

The CB(1) cannabinoid receptor mediates many of the psychoactive effects of Delta(9)THC, the principal active component of cannabis. However, ample evidence suggests that additional non-CB(1)/CB(2) receptors may contribute to the behavioral, vascular, and immunological actions of Delta(9)THC and endogenous cannabinoids. Here, we provide further evidence that GPR55, a G protein-coupled receptor, is a cannabinoid receptor. GPR55 is highly expressed in large dorsal root ganglion neurons and, upon activation by various cannabinoids (Delta(9)THC, the anandamide analog methanandamide, and JWH015) increases intracellular calcium in these neurons. Examination of its signaling pathway in HEK293 cells transiently expressing GPR55 found the calcium increase to involve G(q), G(12), RhoA, actin, phospholipase C, and calcium release from IP(3)R-gated stores. GPR55 activation also inhibits M current. These results establish GPR55 as a cannabinoid receptor with signaling distinct from CB(1) and CB(2).


Asunto(s)
Calcio/metabolismo , Receptores de Cannabinoides/metabolismo , Actinas/metabolismo , Antagonistas de Receptores de Cannabinoides , Línea Celular , Citoesqueleto/metabolismo , Electrofisiología , Activación Enzimática , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Técnicas de Placa-Clamp , Fosfoinositido Fosfolipasa C/metabolismo , Piperidinas/farmacología , Potasio/metabolismo , Pirazoles/farmacología , Receptores de Cannabinoides/genética , Rimonabant , Proteína de Unión al GTP rhoA/metabolismo
17.
Proc Natl Acad Sci U S A ; 101(8): 2613-8, 2004 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-14983057

RESUMEN

Neural information processed through the striatum of the basal ganglia is crucial for sensorimotor and psychomotor functions. Genes that are highly expressed in the striatum during development may be involved in neural development and plasticity in the striatum. We report in the present study the identification of a previously uncharacterized mammalian member of the nocA/elB/tlp-1 family, Nolz-1, that is preferentially expressed at high levels in the developing striatum. Nolz-1 mRNA was expressed as soon as striatal anlage began to form at embryonic day 13 in the rat. Nolz-1 mRNA was predominantly expressed in the lateral ganglionic eminence (striatal primordium) and was nearly absent in the adjacent structures of the medial ganglionic eminence and the cerebral cortex. Moreover, Nolz-1 was highly expressed in the subventricular zone of the lateral ganglionic eminence and was colocalized with the early neuronal differentiation markers of TuJ1 and Isl1 and the projection neuron marker of DARPP-32, suggesting that Nolz-1 was expressed in differentiating progenitors of striatal projection neurons. A time course study showed that Nolz-1 mRNA was developmentally regulated, as its expression was down-regulated postnatally with low levels remaining in the ventral striatum at adulthood. As the tagged Nolz-1 protein was localized in the nucleus, Nolz-1 may function as transcriptional regulator. In a model system for neural differentiation, Nolz-1 mRNA was dramatically induced on neural induction of P19 embryonal carcinoma cells by retinoic acid, suggesting that Nolz-1 activation may be involved in neural differentiation. Our study suggests that Nolz-1 is preferentially expressed in differentiating striatal progenitors and may be engaged in the genetic program for controlling striatal development.


Asunto(s)
Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Proteínas Portadoras/genética , Cuerpo Estriado/embriología , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Cuerpo Estriado/crecimiento & desarrollo , Desarrollo Embrionario y Fetal , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , ARN Mensajero/genética , Ratas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética , Transfección , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA