Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Adv Ther (Weinh) ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38933919

RESUMEN

Antimicrobial resistance remains a critical global health concern, necessitating the investigation of alternative therapeutic approaches. With the diminished efficacy of conventional small molecule drugs due to the emergence of highly resilient bacterial strains, there is growing interest in the potential for alternative therapeutic modalities. As naturally occurring viruses of bacteria, bacteriophage (or phage) are being re-envisioned as a platform to engineer properties that can be tailored to target specific bacterial strains and employ diverse antibacterial mechanisms. However, limited understanding of key pharmacological properties of phage is a major challenge to translating its use from preclinical to clinical settings. Here, we review modern advancements in phage-based antimicrobial therapy and discuss the in vivo pharmacokinetics and biodistribution of phage, addressing critical challenges in their application that must be overcome for successful clinical implementation.

2.
Proc Natl Acad Sci U S A ; 121(13): e2402649121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478681
3.
Methods Mol Biol ; 2793: 175-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38526731

RESUMEN

The filamentous phage M13 is one of the most well-studied and characterized phages, particularly since it was introduced as a scaffold for phage display, a technique to express and evolve fusion proteins on the M13 phage's coat to study protein or peptide binding interactions. Since phages can be engineered or evolved to specifically bind to a variety of targets, engineered M13 phages have been explored for applications such as drug delivery, biosensing, and cancer therapy, among others. Specifically, with the rising challenge of antimicrobial resistance among bacteria, chimeric M13 phages have been explored both as detection and therapeutic agents due to the flexibility in tuning target specificity. Transmission electron microscopy (TEM) is a powerful tool enabling researchers to directly visualize and characterize binding of phages to bacterial surfaces. However, the filamentous phage structure poses a challenge for this technique, as the phages have similar morphology to bacterial structures such as pili. In order to differentiate between bacterial structures and the filamentous phages, here we describe a protocol to prepare TEM samples of engineered M13 phages bound to bacterial cells, in which the phage virions have been specifically labeled by decoration of the major capsid proteins with gold nanoparticles. This protocol enables clear visualization and unambiguous identification of attached filamentous phages within the context of bacterial cells expressing numerous pili.


Asunto(s)
Inovirus , Nanopartículas del Metal , Bacteriófago M13/genética , Bacteriófago M13/química , Oro/química , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Bacterias/genética
4.
Methods Mol Biol ; 2793: 131-141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38526728

RESUMEN

Phage-nanomaterial conjugates are functional bio-nanofibers with various applications. While phage display can select for phages with desired genetically encoded functions and properties, nanomaterials can endow the phages with additional features at nanoscale dimensions. Therefore, combining phages with nanotechnology can construct bioconjugates with unique characteristics. One strategy for filamentous phages is to adsorb nanoparticles onto the side wall, composed of pVIII subunits, through electrostatic interactions. However, a noncovalent approach may cause offloading if the environment changes, potentially causing side effects especially for in vivo applications. Therefore, building stable phage-bioconjugates is an important need. We previously reported the construction of chimeric M13 phage conjugated with gold nanorods, named "phanorods," without weakening the binding affinity to the bacterial host cells. Herein, we give a detailed protocol for preparing the chimeric M13 phage and covalently conjugating gold nanorods to the phage.


Asunto(s)
Inovirus , Nanotubos , Bacteriófago M13/metabolismo , Oro/química , Técnicas de Visualización de Superficie Celular/métodos
5.
Biophys J ; 123(4): 451-463, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37924206

RESUMEN

One of the earliest living systems was likely based on RNA ("the RNA world"). Mineral surfaces have been postulated to be an important environment for the prebiotic chemistry of RNA. In addition to adsorbing RNA and thus potentially reducing the chance of parasitic takeover through limited diffusion, minerals have been shown to promote a range of processes related to the emergence of life, including RNA polymerization, peptide bond formation, and self-assembly of vesicles. In addition, self-cleaving ribozymes have been shown to retain activity when adsorbed to the clay mineral montmorillonite. However, simulation studies suggest that adsorption to minerals is likely to interfere with RNA folding and, thus, function. To further evaluate the plausibility of a mineral-adsorbed RNA world, here we studied the effect of the synthetic clay montmorillonite K10 on the malachite green RNA aptamer, including binding of the clay to malachite green and RNA, as well as on the formation of secondary structures in model RNA and DNA oligonucleotides. We evaluated the fluorescence of the aptamer complex, adsorption to the mineral, melting curves, Förster resonance energy transfer interactions, and 1H-NMR signals to study the folding and functionality of these nucleic acids. Our results indicate that while some base pairings are unperturbed, the overall folding and binding of the malachite green aptamer are substantially disrupted by montmorillonite. These findings suggest that minerals would constrain the structures, and possibly the functions, available to an adsorbed RNA world.


Asunto(s)
Bentonita , ARN , Colorantes de Rosanilina , Bentonita/química , ARN/química , Arcilla , Silicatos de Aluminio/química , Adsorción , Minerales/química
6.
RNA ; 29(11): 1644-1657, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580126

RESUMEN

The identification of catalytic RNAs is typically achieved through primarily experimental means. However, only a small fraction of sequence space can be analyzed even with high-throughput techniques. Methods to extrapolate from a limited data set to predict additional ribozyme sequences, particularly in a human-interpretable fashion, could be useful both for designing new functional RNAs and for generating greater understanding about a ribozyme fitness landscape. Using information theory, we express the effects of epistasis (i.e., deviations from additivity) on a ribozyme. This representation was incorporated into a simple model of the epistatic fitness landscape, which identified potentially exploitable combinations of mutations. We used this model to theoretically predict mutants of high activity for a self-aminoacylating ribozyme, identifying potentially active triple and quadruple mutants beyond the experimental data set of single and double mutants. The predictions were validated experimentally, with nine out of nine sequences being accurately predicted to have high activity. This set of sequences included mutants that form a previously unknown evolutionary "bridge" between two ribozyme families that share a common motif. Individual steps in the method could be examined, understood, and guided by a human, combining interpretability and performance in a simple model to predict ribozyme sequences by extrapolation.


Asunto(s)
ARN Catalítico , Humanos , ARN Catalítico/genética , ARN Catalítico/metabolismo , Epistasis Genética , Mutación , Evolución Biológica , Aptitud Genética
7.
ACS Bio Med Chem Au ; 3(2): 189-200, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37096032

RESUMEN

One of the primary global health concerns is the increase in antimicrobial resistance. Polymer chemistry enables the preparation of macromolecules with hydrophobic and cationic side chains that kill bacteria by destabilizing their membranes. In the current study, macromolecules are prepared by radical copolymerization of caffeine methacrylate as the hydrophobic monomer and cationic- or zwitterionic-methacrylate monomers. The synthesized copolymers bearing tert-butyl-protected carboxybetaine as cationic side chains showed antibacterial activity toward Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). By tuning the hydrophobic content, we prepared copolymers with optimal antibacterial activity against S. aureus, including methicillin-resistant clinical isolates. Moreover, the caffeine-cationic copolymers presented good biocompatibility in a mouse embryonic fibroblast cell line, NIH 3T3, and hemocompatibility with erythrocytes even at high hydrophobic monomer content (30-50%). Therefore, incorporating caffeine and introducing tert-butyl-protected carboxybetaine as a quaternary cation in polymers could be a novel strategy to combat bacteria.

8.
Sens Diagn ; 2(4): 948-955, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38405385

RESUMEN

Detecting bacterial cells with high specificity in deep tissues is challenging. Optical probes provide specificity, but are limited by the scattering and absorption of light in biological tissues. Conversely, magnetic resonance imaging (MRI) allows unfettered access to deep tissues, but lacks contrast agents for detecting specific bacterial strains. Here, we introduce a biomolecular platform that combines both capabilities by exploiting the modularity of M13 phage to target bacteria with tunable specificity and allow deep-tissue imaging using T1-weighted MRI. We engineered two types of phage probes: one for detecting the phage's natural host, viz., F-pilus expressing E. coli; and the other for detecting a different (F-negative) bacterial target, V. cholerae. We show that these phage sensors generate 3-9-fold stronger T1 relaxation upon recognizing target cells relative to non-target bacteria. We further establish a preliminary proof-of-concept for in vivo applications, by demonstrating that phage-labeled bacteria can be detected in mice using MRI. The framework developed in this study may have potential utility in a broad range of applications, from basic biomedical research to in situ diagnostics, which require methods to detect and track specific bacteria in the context of intact living systems.

9.
Microorganisms ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36363738

RESUMEN

The creation of oral microcosms with reproducible composition is important for developing model systems of the oral microbiome. However, oral microbiomes vary substantially across individuals. To derive a reproducible composition from inocula sourced from different individuals, we tested whether selective conditions from cold storage and culturing in defined media would generate a reproducible community composition despite individual variations. In this pilot study, we collected dental plaque scrapings from three individuals, inoculated media under anaerobic conditions, and characterized the bacterial community compositions after cold storage and subsequent propagation in liquid media. Harvested cultures were extracted and bacterial composition was determined by 16S rRNA gene amplicon sequencing and the mothur pipeline. Our results show that samples from two out of three individuals clustered into a specific compositional type (termed "attractor" here). In addition, the samples from the third individual could adopt this attractor compositional type after propagation in vitro, even though its original composition did not display this type. These results indicate that simple selective environments could help create reproducible microcosms despite variation among dental plaque samples sourced from different individuals. The findings illustrate important parameters to consider for creating reproducible microcosms from the human oral microbiome.

10.
Biochemistry ; 61(17): 1757-1765, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994742

RESUMEN

Protein aggregation is an important problem for human health and biotechnology, with consequences in areas ranging from neurodegenerative diseases to protein production yields. Methods to modulate protein aggregation are therefore essential. One suggested method to modulate protein aggregation is the use of nucleic acid aptamers, that is, single-stranded nucleic acids that have been selected to specifically bind to a target. Previous studies in some systems have demonstrated that aptamers may inhibit protein aggregation, including for α-synuclein, a protein implicated in synucleinopathies. However, the mechanisms by which aptamers might affect or modulate aggregation have not been fully determined. In this study, we investigated the effect of an aptamer that binds α-synuclein oligomer, T-SO508, on α-synuclein aggregation in vitro using thioflavin T to monitor aggregation kinetics, and we performed atomic force microscopy, transmission electron microscopy, and analytical ultracentrifugation to characterize intermediate structures. The results indicated that T-SO508, but not control DNA sequences, extends the lag phase of aggregation and stabilizes formation of a small non-fibrillar aggregate complex. Attempts to use the aptamer-induced complexes to seed fibril formation did not in fact accelerate aggregation, indicating that these structures are off-pathway for aggregation. This study highlights a potential mechanism by which aptamers may modulate the aggregation properties of proteins.


Asunto(s)
Aptámeros de Nucleótidos , alfa-Sinucleína , Aptámeros de Nucleótidos/metabolismo , Humanos , Cinética , Microscopía de Fuerza Atómica , Agregado de Proteínas , alfa-Sinucleína/química
11.
Nat Commun ; 13(1): 3631, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752631

RESUMEN

Systems of catalytic RNAs presumably gave rise to important evolutionary innovations, such as the genetic code. Such systems may exhibit particular tolerance to errors (error minimization) as well as coding specificity. While often assumed to result from natural selection, error minimization may instead be an emergent by-product. In an RNA world, a system of self-aminoacylating ribozymes could enforce the mapping of amino acids to anticodons. We measured the activity of thousands of ribozyme mutants on alternative substrates (activated analogs for tryptophan, phenylalanine, leucine, isoleucine, valine, and methionine). Related ribozymes exhibited shared preferences for substrates, indicating that adoption of additional amino acids by existing ribozymes would itself lead to error minimization. Furthermore, ribozyme activity was positively correlated with specificity, indicating that selection for increased activity would also lead to increased specificity. These results demonstrate that by-products of ribozyme evolution could lead to adaptive value in specificity and error tolerance.


Asunto(s)
ARN Catalítico , Aminoácidos/metabolismo , Aminoacilación , Código Genético , Conformación de Ácido Nucleico , ARN/metabolismo , ARN Catalítico/metabolismo
12.
Curr Biol ; 32(12): R580-R583, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35728532

RESUMEN

During an in vitro evolution experiment over hundreds of generations, a replicator system, begun with a single RNA species and the replicase it encodes, spontaneously generated a multi-member network where parasitism, altruism, and the environment play key roles.


Asunto(s)
Altruismo , ARN , Evolución Biológica , ARN/genética
13.
Microbiol Spectr ; 10(3): e0277721, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35435739

RESUMEN

Two leading impediments to chronic wound healing are polymicrobial infection and biofilm formation. Recent studies have characterized the bacterial fraction of these microbiomes and have begun to elucidate compositional correlations to healing outcomes. However, the factors that drive compositional shifts are still being uncovered. The virome may play an important role in shaping bacterial community structure and function. Previous work on the skin virome determined that it was dominated by bacteriophages, viruses that infect bacteria. To characterize the virome, we enrolled 20 chronic wound patients presenting at an outpatient wound care clinic in a microbiome survey, collecting swab samples from healthy skin and chronic wounds (diabetic, venous, arterial, or pressure) before and after a single, sharp debridement procedure. We investigated the virome using a virus-like particle enrichment procedure, shotgun metagenomic sequencing, and a k-mer-based, reference-dependent taxonomic classification method. Taxonomic composition, diversity, and associations with covariates are presented. We find that the wound virome is highly diverse, with many phages targeting known pathogens, and may influence bacterial community composition and functionality in ways that impact healing outcomes. IMPORTANCE Chronic wounds are an increasing medical burden. These wounds are known to be rich in microbial content, including both bacteria and bacterial viruses (phages). The viruses may play an important role in shaping bacterial community structure and function. We analyzed the virome and bacterial composition of 20 patients with chronic wounds. The viruses found in wounds are highly diverse compared to normal skin, unlike the bacterial composition, where diversity is decreased. These data represent an initial look at this relatively understudied component of the chronic wound microbiome and may help inform future phage-based interventions.


Asunto(s)
Bacteriófagos , Microbiota , Virus , Bacterias/genética , Bacteriófagos/genética , Humanos , Metagenómica , Viroma , Virus/genética , Cicatrización de Heridas
14.
ACS Nano ; 16(3): 4756-4774, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35239330

RESUMEN

Infections caused by drug-resistant bacteria, particularly Gram-negative organisms, are increasingly difficult to treat using antibiotics. A potential alternative is "phage therapy", in which phages infect and lyse the bacterial host. However, phage therapy poses serious drawbacks and safety concerns, such as the risk of genetic transduction of antibiotic resistance genes, inconsistent pharmacokinetics, and unknown evolutionary potential. In contrast, metallic nanoparticles possess precise, tunable properties, including efficient conversion of electronic excitation into heat. In this work, we demonstrate that engineered phage-nanomaterial conjugates that target the Gram-negative pathogen Pseudomonas aeruginosa are highly effective as a treatment of infected wounds in mice. Photothermal heating, performed as a single treatment (15 min) or as two treatments on consecutive days, rapidly reduced the bacterial load and released Zn2+ to promote wound healing. The phage-nanomaterial treatment was significantly more effective than systemic standard-of-care antibiotics, with a >10× greater reduction in bacterial load and ∼3× faster healing as measured by wound size reduction when compared to fluoroquinolone treatment. Notably, the phage-nanomaterial was also effective against a P. aeruginosa strain resistant to polymyxins, a last-line antibiotic therapy. Unlike these antibiotics, the phage-nanomaterial showed no detectable toxicity or systemic effects in mice, consistent with the short duration and localized nature of phage-nanomaterial treatment. Our results demonstrate that phage therapy controlled by inorganic nanomaterials can be a safe and effective antimicrobial strategy in vivo.


Asunto(s)
Bacteriófagos , Nanotubos , Infecciones por Pseudomonas , Infección de Heridas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Oro/farmacología , Ratones , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa , Infección de Heridas/microbiología , Infección de Heridas/terapia , Zinc/farmacología , Zinc/uso terapéutico
15.
Curr Biol ; 32(1): 86-96.e6, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34762821

RESUMEN

During the origin of life, encapsulation of RNA inside vesicles is believed to have been a defining feature of the earliest cells (protocells). The confined biophysical environment provided by membrane encapsulation differs from that of bulk solution and has been shown to increase activity as well as evolutionary rate for functional RNA. However, the structural basis of the effect on RNA has not been clear. Here, we studied how encapsulation of the hairpin ribozyme inside model protocells affects ribozyme kinetics, ribozyme folding into the active conformation, and cleavage and ligation activities. We further examined the effect of encapsulation on the folding of a stem-loop RNA structure and on the formation of a triplex structure in a pH-sensitive DNA switch. The results indicate that encapsulation promotes RNA-RNA association, both intermolecular and intramolecular, and also stabilizes tertiary folding, including the docked conformation characteristic of the active hairpin ribozyme and the triplex structure. The effects of encapsulation were sufficient to rescue the activity of folding-deficient mutants of the hairpin ribozyme. Stabilization of multiple modes of nucleic acid folding and interaction thus enhanced the activity of encapsulated nucleic acids. Increased association between RNA molecules may facilitate the formation of more complex structures and cooperative interactions. These effects could promote the emergence of biological functions in an "RNA world" and may have utility in the construction of minimal synthetic cells.


Asunto(s)
Células Artificiales , ARN Catalítico , ADN/genética , Cinética , Conformación de Ácido Nucleico , ARN/genética , ARN Catalítico/química , ARN Catalítico/genética , ARN Catalítico/metabolismo
16.
RSC Chem Biol ; 2(5): 1370-1383, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34704043

RESUMEN

Various self-cleaving ribozymes appearing in nature catalyze the sequence-specific intramolecular cleavage of RNA and can be engineered to catalyze cleavage of appropriate substrates in an intermolecular fashion, thus acting as true catalysts. The mechanisms of the small, self-cleaving ribozymes have been extensively studied and reviewed previously. Self-cleaving ribozymes can possess high catalytic activity and high substrate specificity; however, substrate specificity is also engineerable within the constraints of the ribozyme structure. While these ribozymes share a common fundamental catalytic mechanism, each ribozyme family has a unique overall architecture and active site organization, indicating that several distinct structures yield this chemical activity. The multitude of catalytic structures, combined with some flexibility in substrate specificity within each family, suggests that such catalytic RNAs, taken together, could access a wide variety of substrates. Here, we give an overview of 10 classes of self-cleaving ribozymes and capture what is understood about their substrate specificity and synthetic applications. Evolution of these ribozymes in an RNA world might be characterized by the emergence of a new ribozyme family followed by rapid adaptation or diversification for specific substrates.

17.
Sci Rep ; 11(1): 18065, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508117

RESUMEN

Advances in sequencing technology have allowed researchers to sequence DNA with greater ease and at decreasing costs. Main developments have focused on either sequencing many short sequences or fewer large sequences. Methods for sequencing mid-sized sequences of 600-5,000 bp are currently less efficient. For example, the PacBio Sequel I system yields ~ 100,000-300,000 reads with an accuracy per base pair of 90-99%. We sought to sequence several DNA populations of ~ 870 bp in length with a sequencing accuracy of 99% and to the greatest depth possible. We optimised a simple, robust method to concatenate genes of ~ 870 bp five times and then sequenced the resulting DNA of ~ 5,000 bp by PacBioSMRT long-read sequencing. Our method improved upon previously published concatenation attempts, leading to a greater sequencing depth, high-quality reads and limited sample preparation at little expense. We applied this efficient concatenation protocol to sequence nine DNA populations from a protein engineering study. The improved method is accompanied by a simple and user-friendly analysis pipeline, DeCatCounter, to sequence medium-length sequences efficiently at one-fifth of the cost.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN/métodos , Animales , Secuencia de Bases , Biología Computacional/normas , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ratones , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN/normas , Análisis de Secuencia de Proteína
18.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001592

RESUMEN

Functional biomolecules, such as RNA, encapsulated inside a protocellular membrane are believed to have comprised a very early, critical stage in the evolution of life, since membrane vesicles allow selective permeability and create a unit of selection enabling cooperative phenotypes. The biophysical environment inside a protocell would differ fundamentally from bulk solution due to the microscopic confinement. However, the effect of the encapsulated environment on ribozyme evolution has not been previously studied experimentally. Here, we examine the effect of encapsulation inside model protocells on the self-aminoacylation activity of tens of thousands of RNA sequences using a high-throughput sequencing assay. We find that encapsulation of these ribozymes generally increases their activity, giving encapsulated sequences an advantage over nonencapsulated sequences in an amphiphile-rich environment. In addition, highly active ribozymes benefit disproportionately more from encapsulation. The asymmetry in fitness gain broadens the distribution of fitness in the system. Consistent with Fisher's fundamental theorem of natural selection, encapsulation therefore leads to faster adaptation when the RNAs are encapsulated inside a protocell during in vitro selection. Thus, protocells would not only provide a compartmentalization function but also promote activity and evolutionary adaptation during the origin of life.


Asunto(s)
Células Artificiales/enzimología , Compartimento Celular , Modelos Biológicos , Origen de la Vida , ARN Catalítico/metabolismo , Secuencia de Bases , Evolución Molecular , Ensayos Analíticos de Alto Rendimiento , Cinética , Selección Genética , Termodinámica
19.
Nucleic Acids Res ; 49(12): e67, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33772580

RESUMEN

Characterizing genotype-phenotype relationships of biomolecules (e.g. ribozymes) requires accurate ways to measure activity for a large set of molecules. Kinetic measurement using high-throughput sequencing (e.g. k-Seq) is an emerging assay applicable in various domains that potentially scales up measurement throughput to over 106 unique nucleic acid sequences. However, maximizing the return of such assays requires understanding the technical challenges introduced by sequence heterogeneity and DNA sequencing. We characterized the k-Seq method in terms of model identifiability, effects of sequencing error, accuracy and precision using simulated datasets and experimental data from a variant pool constructed from previously identified ribozymes. Relative abundance, kinetic coefficients, and measurement noise were found to affect the measurement of each sequence. We introduced bootstrapping to robustly quantify the uncertainty in estimating model parameters and proposed interpretable metrics to quantify model identifiability. These efforts enabled the rigorous reporting of data quality for individual sequences in k-Seq experiments. Here we present detailed protocols, define critical experimental factors, and identify general guidelines to maximize the number of sequences and their measurement accuracy from k-Seq data. Analogous practices could be applied to improve the rigor of other sequencing-based assays.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Catalítico , Análisis de Secuencia de ADN/métodos , Cinética , Modelos Biológicos , Mutación , ARN Catalítico/genética
20.
J R Stat Soc Ser C Appl Stat ; 70(4): 961-979, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37440868

RESUMEN

High-throughput sequencing technology has enabled researchers to profile microbial communities from a variety of environments, but analysis of multivariate taxon count data remains challenging. We develop a Bayesian nonparametric (BNP) regression model with zero inflation to analyse multivariate count data from microbiome studies. A BNP approach flexibly models microbial associations with covariates, such as environmental factors and clinical characteristics. The model produces estimates for probability distributions which relate microbial diversity and differential abundance to covariates, and facilitates community comparisons beyond those provided by simple statistical tests. We compare the model to simpler models and popular alternatives in simulation studies, showing, in addition to these additional community-level insights, it yields superior parameter estimates and model fit in various settings. The model's utility is demonstrated by applying it to a chronic wound microbiome data set and a Human Microbiome Project data set, where it is used to compare microbial communities present in different environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...