Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Materials (Basel) ; 17(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274663

RESUMEN

The TC4 titanium alloy is widely used in medical, aerospace, automotive, shipbuilding, and other fields due to its excellent comprehensive properties. As an advanced processing technology, laser processing can be used to improve the surface quality of TC4 titanium alloy. In the present research, a new type of rotational laser processing method was adopted, by using a beam shaper to modulate the Gaussian spot into a line spot, with uniform energy distribution. The effects of the laser power and rotational speed on the laser ablation surface of the TC4 titanium alloy were analyzed. The results reveal that the melting mechanism of the material surface gradually changes from surface over melt to surface shallow melt with the increase in the measurement radius and the surface roughness increases first, then decreases and, finally, tends to be stable. By changing the laser power, the surface roughness changes significantly with the variation in the measurement radius. Because low laser power cannot provide sufficient laser energy, the measurement radius corresponding to the surface roughness peak of the microcrack area is reduced. Under a laser power of 11 W, the surface roughness reaches its peak when the measurement radius is 600 µm, which is 200 µm lower than that of a laser power of 12 W, 13 W, and 14 W. By changing the rotational speed, the centrifugal force generated by the rotation of the specimen affects the distribution and re-condensation of the molten pool of the surface. As the rotational speed increases, the shallow pit around the pit is made shallower by the filling of the pit with molten material and the height of the bulge decreases, until it disappears. The surface oxygen content of the material increases first and then decreases with the increase in the measurement radius and gradually approaches the initial surface state. Compared with a traditional laser processing spot, the rotational line spot covers a larger processing area of 22.05 mm2. This work can be used as the research basis for rotational modulation laser polishing and has significance for guiding the innovative development of high-quality and high-efficiency laser processing technology.

2.
Int J Biol Macromol ; 280(Pt 3): 135970, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39332566

RESUMEN

Infection-induced cardiovascular damage is the primary pathological mechanism underlying septic cardiac dysfunction. This condition affects the majority of patients in intensive care unit and has an unfavorable prognosis due to the lack of effective therapies available. Vascular cell adhesion molecule-1 (VCAM-1) plays a vital role in coordinating the inflammatory response and recruitment of leukocytes in cardiac tissue, making it a potential target for developing novel therapies. MicroRNA-126 (miR-126) has been shown to downregulate VCAM-1 expression in endothelial cells, reducing leukocyte adhesion and exerting anti-inflammatory effects. Therefore, this work described a polysialic acid (PSA) modified ROS-responsive nanosystem to targeted co-delivery 1,8-Cineole and miR-126 for mitigating septic cardiac dysfunction. The nanosystem consists of 1,8-Cineole nanoemulsion (CNE) conjugated with PEI/miR126 complex by a ROS-sensitive linker, with PSA on its surface to facilitate targeted delivery via specific interactions with selectins on endothelial cells. CNE has demonstrated protective effects against inflammation in the cardiovascular system and synergistic anti-inflammatory effects when combined with miR-126. The targeted nanosystem successfully delivered miR-126 and 1,8-Cineole to the injured heart tissues and vessels, reducing inflammatory responses and improving cardiac function. In summary, this work provides a promising therapy for alleviating the inflammatory response in sepsis while boosting cardiovascular protection.

3.
Sensors (Basel) ; 24(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39204922

RESUMEN

Accurately detecting atmospheric carbon dioxide is a vital part of responding to the global greenhouse effect. Conventional off-axis integral cavity detection systems are computationally intensive and susceptible to environmental factors. This study deploys an Extreme Learning Machine model incorporating a cascaded integrator comb (CIC) filter into the off-axis integrating cavity. It is shown that appropriate parameters can effectively improve the performance of the instrument in terms of lower detection limit, accuracy, and root mean square deviation. The proposed method is incorporated successfully into a monitoring station situated near an industrial area for detecting atmospheric carbon dioxide (CO2) concentration daily.

4.
Metabolites ; 14(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39195510

RESUMEN

The environment is an important factor affecting the composition and abundance of metabolites in O. sinensis, which indirectly determines its edible function and medicinal potential. This study integrated metabolomics and redundancy analysis (RDA) to analyze the metabolite profile characteristics and key environmental factors influencing O. sinensis in various production areas. A total of 700 differentially accumulated metabolites (DAMs) were identified, primarily comprising lipids, organic acids, and organoheterocyclic compounds. Results from hierarchical cluster analysis and KEGG indicated distinct accumulation patterns of these DAMs in O. sinensis from different regions, with enrichment in pathways such as tryptophan metabolism and glycerophospholipid metabolism. Environmental factors like annual mean precipitation, pH, temperature, and altitude were found to significantly influence metabolite composition, particularly lipids, organic acids, and nucleosides. Overall, this study highlights the impact of environmental factors on metabolite diversity in O. sinensis and sheds light on the evolutionary processes shaping its metabolic landscape.

5.
Anal Chem ; 96(32): 12991-12998, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39075986

RESUMEN

With the increasing demand for trace sample analysis, injecting trace samples into liquid chromatography-mass spectrometry (LC-MS) systems with minimal loss has become a major challenge. Herein, we describe an in situ LC-MS analytical probe, the Falcon probe, which integrates multiple functions of high-pressure sample injection without sample loss, high-efficiency LC separation, and electrospray. The main body of the Falcon probe is made of stainless steel and fabricated by the computer numerical control (CNC) technique, which has ultrahigh mechanical strength. By coupling a nanoliter-scale droplet reactor made of polyether ether ketone (PEEK) material, the Falcon probe-based LC-MS system was capable of operating at mobile-phase pressures up to 800 bar, which is comparable to those of conventional ultraperformance liquid chromatography (UPLC) systems. Using the probe pressing microamount in situ (PPMI) injection approach, the Falcon probe-based LC-MS system showed high separation efficiency and good repeatability with relative standard deviations (RSDs) of retention time and peak area of 1.8% and 9.9%, respectively, in peptide mixture analysis (n = 6). We applied this system to the analysis of a trace amount of 200 pg of HeLa protein digest and successfully identified an average of 766 protein groups (n = 5). By combining in situ sample pretreatment at the nanoliter range, we further applied the present system in single-cell proteomic analysis, and 241 protein groups were identified in single 293 cells, which preliminarily demonstrated its potential in the analysis of trace amounts of samples with complex compositions.


Asunto(s)
Presión , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Nanotecnología , Polietilenglicoles/química , Péptidos/análisis , Cromatografía Líquida de Alta Presión , Células HeLa , Benzofenonas/análisis , Benzofenonas/química , Polímeros/química , Cetonas/química , Cetonas/análisis , Proteómica/métodos
6.
J Ethnopharmacol ; 333: 118475, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38908496

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The pathophysiological mechanism of thromboinflammation involves the intricate interplay between the inflammatory responses and coagulation cascades. Rhubarb is frequently used in traditional Chinese medicine to treat thromboinflammatory diseases. The scorched rhubarb (prepared by stir-baking the dried raw rhubarb till it partly turns to charcoal) is believed to possess enhanced blood-cooling and stasis-removing functions compared to the raw rhubarb, thereby augmenting the therapeutic effects on thromboinflammation. AIM OF THE STUDY: This study aimed to explore the chemical and pharmacological foundations of the scorch processing of rhubarb in order to ensure and enhance the efficacy and safety of the scorched rhubarb for treating thromboinflammatory diseases. MATERIALS AND METHODS: The dried raw rhubarb pieces were subjected to stir-baking at 180 °C for 10∼80 min to obtain the rhubarbs with varying degrees of scorching. Typical ingredients present in rhubarb pieces and extracts were determined by high-performance liquid chromatography. The therapeutic effects of the raw and scorched rhubarb on thromboinflammation were evaluated using a rat model. Proteomics analysis was employed to screen potential biological pathways associated with thromboinflammation treatment by the raw and scorched rhubarb, which were further verified using a cell model. RESULTS: Morphological properties indicated that the rhubarb baked at 180 °C for 50 min in this research showed the optimal degree of scorching. Compared to the raw rhubarb, the properly scorched rhubarb exhibited lower levels of anthraquinone glucosides, higher levels of anthraquinone aglycones, superior anti-thromboinflammatory effects, and no purgative side effects. Proteomics analysis revealed that the complement and coagulation cascades pathway played a significant role in mediating the therapeutic effects of the raw and scorched rhubarb on thromboinflammation. Furthermore, it was found that anthraquinone aglycones were more effective than their glucoside counterparts in restoring the impaired vascular endothelial cells as well as regulating the complement and coagulation cascades pathway. CONCLUSIONS: Proper scorch processing may augment the therapeutic effects of rhubarb on thromboinflammation via relieving inflammation and oxidative stress, repairing vascular endothelial cells, restoring coagulation cascades and blood rheology, and regulating some other biological processes. This may be partly caused by the scorch-induced thermolysis of anthraquinone glucosides into their aglycone counterparts that seemed to perform better in regulating the complement and coagulation cascades pathway.


Asunto(s)
Antraquinonas , Coagulación Sanguínea , Glucósidos , Ratas Sprague-Dawley , Rheum , Animales , Rheum/química , Antraquinonas/farmacología , Coagulación Sanguínea/efectos de los fármacos , Masculino , Glucósidos/farmacología , Glucósidos/química , Ratas , Inflamación/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Antiinflamatorios/farmacología , Proteínas del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología , Extractos Vegetales/química
7.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1834-1847, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812196

RESUMEN

This study compared the therapeutic difference effects of the raw and scorched rhubarb for the treatment of ulcerative colitis(UC) and explored their difference in chemical components and mechanisms by using ultra-high performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-QE-Orbitrap-MS) and network pharmacology. The UC therapeutic effects of Shaoyao Decoction with the raw rhubarb or the scorched rhubarb were evaluated by dextran sulfate sodium(DSS)-induced mouse model. The results showed that Shaoyao Decoction with either the raw rhubarb or the scorched rhubarb could relieve the UC symptoms of mice to different extents, while the scorched rhubarb-based formula showed advantages in reducing hemorrhagic diarrhea and inflammation levels. UPLC-QE-Orbitrap-MS was used to identify a total of 78 small molecules in the water decoction of the raw and scorched rhubarb. Multivariate statistical methods were used to screen components increasing significantly after the scorching process. The seven compounds included five free anthraquinones, gallic acid, and 5-hydroxymethylfurfural(HMF). Meanwhile, the nine compounds decreasing scorching were mainly combined anthraquinones and catechins-related compounds. Network pharmacology and molecular docking suggested that free anthraquinones, gallic acid, and 5-HMF may act on core targets such as B-cell lymphoma-2(BCL2), epidermal growth factor receptor(EGFR), tumor necrosis factor(TNF), and caspase-3(CASP3) and influence the signaling pathways such as phosphoinositide-3-kinase/protein kinase B(PI3K/Akt), hypoxia inducible factor-1(HIF-1), TNF, and mitogen-activated protein kinase(MAPK), so as to regulate the inflammation response, oxidative stress, and cell apoptosis to relieve UC symptoms. This study compared the therapeutic effects and chemical components of the raw and scorched rhubarb, providing the clinical reference for using rhubarb to treat UC.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Espectrometría de Masas , Farmacología en Red , Rheum , Rheum/química , Animales , Colitis Ulcerosa/tratamiento farmacológico , Ratones , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Cromatografía Líquida de Alta Presión/métodos , Masculino , Humanos
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124244, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579425

RESUMEN

Clinical and experimental evidences have confirmed the significant therapeutic effects of rhubarb on ulcerative colitis (UC), but the strong purgative function of rhubarb also aggravates UC symptoms such as bloody diarrhea. Stir-baking to scorch is a traditional Chinese medicinal processing method that can eliminate the adverse purgative function while keep or even enhance the UC therapeutic function of rhubarb. However, the under-baked rhubarb still have the undesirable purgative function, but the over-baked rhubarb may lose the required medicinal functions. Therefore, the determination of the right endpoint is the primary quality concern about the baking process of rhubarb. In this research, typical anthraquinone compounds and mid-infrared (MIR) spectra were recruited to determine the best baking degree of rhubarb for UC therapy. Raw rhubarb slices were baked at 180 °C with rotation to prepare the rhubarbs with different baking degrees. The right-baked rhubarb was defined according to the UC therapeutic responses as well as the traditional color criterion. Referring to the typical anthraquinone compounds in rhubarb slices and extracts, the baking degree of rhubarb may be assessed by the conversion ratio of anthraquinone glycosides to anthraquinone aglycones. MIR spectra showed the gradual decompositions of organic compounds including anthraquinone glycosides and tannins during the baking process. Rhubarbs with different baking degrees can be distinguished clearly by MIR-based principal component analysis. In conclusion, the ratio of anthraquinone glycosides to anthraquinone aglycones may be a reasonable chemical indicator of the right-baked rhubarb. Meanwhile, MIR spectroscopy can identify the right-baked rhubarb simply and rapidly.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Rheum , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Colitis Ulcerosa/tratamiento farmacológico , Rheum/química , Catárticos/farmacología , Antraquinonas/análisis , Glicósidos
9.
Anal Chem ; 96(14): 5499-5508, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38547315

RESUMEN

Characterizing the profiles of proteome and metabolome at the single-cell level is of great significance in single-cell multiomic studies. Herein, we proposed a novel strategy called one-shot single-cell proteome and metabolome analysis (scPMA) to acquire the proteome and metabolome information in a single-cell individual in one injection of LC-MS/MS analysis. Based on the scPMA strategy, a total workflow was developed to achieve the single-cell capture, nanoliter-scale sample pretreatment, one-shot LC injection and separation of the enzyme-digested peptides and metabolites, and dual-zone MS/MS detection for proteome and metabolome profiling. Benefiting from the scPMA strategy, we realized dual-omic analysis of single tumor cells, including A549, HeLa, and HepG2 cells with 816, 578, and 293 protein groups and 72, 91, and 148 metabolites quantified on average. A single-cell perspective experiment for investigating the doxorubicin-induced antitumor effects in both the proteome and metabolome aspects was also performed.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Humanos , Proteoma/metabolismo , Cromatografía Liquida , Metaboloma , Células HeLa
10.
Heliyon ; 10(5): e26963, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449661

RESUMEN

Mechanical processing and operations are widely involved in modern industry. Large amount of oil mist is tended to be produced and will diffuse in the processing workshop when metalworking fluids are applied on the high temperature workpiece. The ventilation modes and air distributions can influence the air pollutants dilution in machining workshops. Therefore, this paper presents both experimental investigation and simulation study on the oil mist particles diffusion under different ventilation modes. The results identified PM2.5 as the primary component among different oil mist particles generated during a typical machining process. The distribution of oil mist particles in a full-scale machining workshop laboratory was investigated under two ventilation modes: high-sidewall nozzle air supply and low-sidewall air supply. Results revealed obvious influences of both air supply modes on the distribution of oil mist particles. Under the high-sidewall-nozzle air supply mode, the airflow and the oil mist distribution in the workshop was relatively uniform; while the low-sidewall-vent air supply mode led to an uneven distribution of oil mist particles, and the maximum oil mist concentration appeared at the height of 3 m. Under both modes, the attempts to increase the airflow rate are not always successful. Compared with low-sidewall-vent air supply mode, the high-sidewall-nozzle air supply mode presents better performance in achieving lower overall particle concentration level. Overall, the results of this study give useful reference to improve the air quality of industrial plant by properly designing the ventilation mode of machining workshop.

11.
Nutrients ; 16(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542753

RESUMEN

The primary objective of this investigation was to elucidate the manner in which ginsenoside Rg5 (Rg5) ameliorates nonalcoholic fatty liver disease (NAFLD) via the modulation of the gut microbiota milieu. We administered either a standard diet (ND) or a high-fat diet (HFD), coupled with 12-week treatment employing two distinct doses of Rg5 (50 and 100 mg/kg/d), to male C57BL/6J mice. In comparison to the HFD cohort, the Rg5-treated group demonstrated significant enhancements in biochemical parameters, exemplified by a substantial decrease in lipid concentrations, as well as the reduced expression of markers indicative of oxidative stress and liver injury. This signifies a mitigation of hepatic dysfunction induced by an HFD. Simultaneously, Rg5 demonstrates the capacity to activate the LKB1/AMPK/mTOR signaling pathway, instigating energy metabolism and consequently hindering the progression of NAFLD. Furthermore, we underscored the role of Rg5 in the treatment of NAFLD within the gut-microbiota-liver axis. Analysis via 16S rRNA sequencing unveiled that Rg5 intervention induced alterations in gut microbiota composition, fostering an increase in beneficial bacteria, such as Bacteroides and Akkermansia, while concurrently reducing the relative abundance of detrimental bacteria, exemplified by Olsenella. Furthermore, employing fecal microbiota transplantation (FMT) experiments, we observed analogous outcomes in mice subjected to fecal bacterial transplants, providing additional verification of the capacity of Rg5 to mitigate NAFLD in mice by actively participating in the restoration of gut microbiota via FMT. Drawing from these data, the regulation of the gut microbiota is recognized as an innovative strategy for treating or preventing NAFLD and metabolic syndrome. Consequently, these research findings suggest that Rg5 holds promise as a potential therapeutic agent for NAFLD management.


Asunto(s)
Microbioma Gastrointestinal , Ginsenósidos , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ginsenósidos/metabolismo , Dieta Alta en Grasa/efectos adversos , ARN Ribosómico 16S/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Bacterias , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal
12.
Nat Commun ; 15(1): 1279, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341466

RESUMEN

The shotgun proteomic analysis is currently the most promising single-cell protein sequencing technology, however its identification level of ~1000 proteins per cell is still insufficient for practical applications. Here, we develop a pick-up single-cell proteomic analysis (PiSPA) workflow to achieve a deep identification capable of quantifying up to 3000 protein groups in a mammalian cell using the label-free quantitative method. The PiSPA workflow is specially established for single-cell samples mainly based on a nanoliter-scale microfluidic liquid handling robot, capable of achieving single-cell capture, pretreatment and injection under the pick-up operation strategy. Using this customized workflow with remarkable improvement in protein identification, 2449-3500, 2278-3257 and 1621-2904 protein groups are quantified in single A549 cells (n = 37), HeLa cells (n = 44) and U2OS cells (n = 27) under the DIA (MBR) mode, respectively. Benefiting from the flexible cell picking-up ability, we study HeLa cell migration at the single cell proteome level, demonstrating the potential in practical biological research from single-cell insight.


Asunto(s)
Proteoma , Proteómica , Animales , Humanos , Células HeLa , Proteómica/métodos , Proteoma/metabolismo , Análisis de la Célula Individual , Flujo de Trabajo , Mamíferos/metabolismo
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124009, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38335588

RESUMEN

Microemulsion is usually a transparent and isotropic liquid mixture composed of oil phase, water phase, surfactant and cosurfactant. The surfactant-framed nanoscale droplets in the microemulsion can penetrate into the skin surface to reduce its barrier function. This makes microemulsion an ideal preparation for the transdermal drug delivery. The permeability of microemulsion may be further enhanced when botanical essential oils that can dissolve the stratum corneum are used as the oil phase. However, the volatility of essential oils is possible to shorten the retention time of the microemulsion on the skin surface. Therefore, analytical methods are required to understand the volatilization process of the microemulsion composed of essential oils to develop the reasonable topical drug carrier system. In this research, Fourier transform infrared (FTIR) spectroscopy with an attenuated total reflection (ATR) accessory cooperated with two-dimensional correlation spectroscopy (2DCOS) to elucidate the volatilization processes of some microemulsions composed of peppermint essential oil. Principal component analysis (PCA) and moving-window two-dimensional correlation spectroscopy (MW2DCOS) revealed the multiple stages of the volatilization processes of the microemulsions. Synchronous 2D correlation infrared spectra indicated the compositional changes during each stage. It was found that the successive volatilizations of ethanol, water and menthone were the major events during the volatilization process of the microemulsion composed of peppermint essential oil. Ethanol can accelerate the volatilization of water, while the composite herbal extract seemed to not influence the volatilization of the other ingredients. After a 20-min-long volatilization process, the remaining microemulsion still contained considerable peppermint essential oil to affect the skin. The above results showed the feasibility of developing the microemulsion composed of peppermint essential oil for the transdermal drug delivery of composite herbal extract. This research also proved that the combination of ATR-FTIR spectroscopy and 2DCOS was valuable to study the volatilization process of the microemulsion.


Asunto(s)
Aceites Volátiles , Volatilización , Mentha piperita , Tensoactivos/química , Agua/química , Etanol , Emulsiones/química
14.
J Biochem Mol Toxicol ; 38(1): e23567, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37867458

RESUMEN

Previous data have suggested the involvement of circular RNA (circRNA) in hepatocellular carcinoma (HCC) progression. Up to now, the effect of circMETTL15 on HCC development remains unknown. This study aims to analyze the function of circMETTL15 in HCC development and the underlying mechanism. RNA expression of circMETTL15, miR-944, and transmembrane O-mannosyltransferase targeting cadherins 3 (TMTC3) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated by Western blot analysis assay or immunohistochemistry assay. Cell proliferation was investigated by cell counting kit-8 assay, 5-Ethynyl-29-deoxyuridine (EdU) assay, and cell colony formation assay. Cell migration and invasion were assessed by wound-healing assay and transwell assay, respectively. Angiogenic capacity was analyzed by tube formation assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the interplay between miR-944 and circMETTL15 or TMTC3. Xenograft mouse model assay was conducted to reveal the effect of circMETTL15 on tumor formation in vivo. CircMETTL15 and TMTC3 expression were significantly upregulated, while miR-944 expression was downregulated in HCC tissues and cells. CircMETTL15 knockdown led to decreased cell proliferation, migration, invasion, and tube formation. Besides, the inhibitors of miR-944, a target miRNA of circMETTL15, partially restored circMETTL15 silencing-mediated effects on the proliferation, migration, invasion, and tube formation of HCC cells. MiR-944 overexpression also inhibited HCC cell malignancy by targeting TMTC3. Furthermore, circMETTL15 absence inhibited tumor formation by regulating miR-944 and TMTC3 in vivo. In conclusion, circMETTL15 induced HCC development through the miR-944/TMTC3 pathway, raising the potential of circMETTL15 as a target for HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Animales , Ratones , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Western Blotting , Recuento de Células , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Línea Celular Tumoral , Proteínas Portadoras , Proteínas de la Membrana
15.
Cell Rep ; 42(11): 113455, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37976159

RESUMEN

Although single-cell multi-omics technologies are undergoing rapid development, simultaneous transcriptome and proteome analysis of a single-cell individual still faces great challenges. Here, we developed a single-cell simultaneous transcriptome and proteome (scSTAP) analysis platform based on microfluidics, high-throughput sequencing, and mass spectrometry technology to achieve deep and joint quantitative analysis of transcriptome and proteome at the single-cell level, providing an important resource for understanding the relationship between transcription and translation in cells. This platform was applied to analyze single mouse oocytes at different meiotic maturation stages, reaching an average quantification depth of 19,948 genes and 2,663 protein groups in single mouse oocytes. In particular, we analyzed the correlation of individual RNA and protein pairs, as well as the meiosis regulatory network with unprecedented depth, and identified 30 transcript-protein pairs as specific oocyte maturational signatures, which could be productive for exploring transcriptional and translational regulatory features during oocyte meiosis.


Asunto(s)
Proteoma , Transcriptoma , Animales , Ratones , Transcriptoma/genética , Proteoma/metabolismo , Oocitos/metabolismo , Oogénesis/genética , Perfilación de la Expresión Génica , Meiosis
16.
Food Chem X ; 19: 100826, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780250

RESUMEN

This study aims to analysis the structures of polysaccharides isolated from Pteridium revolutum and their antioxidant and antiglycated activities. Three novel water-soluble heteropolysaccharides, named PRP0, PRP1, and PRP2, were isolated from P. revolutum. The average molecular weight was determined by high performance gel permeation chromatography analysis as 1.04 × 106, 8.39 × 105, and 7.37 × 105 Da, respectively. Their structures were characterized using physicochemical and spectroscopic methods. The antioxidant and antiglycated activities were assayed in vitro. PRP0, PRP1, and PRP2 consist of l-Ara, l-Rha, d-Man, d-Xyl, d-Fuc, d-Gal, and d-Glc in different proportions. PRP1 mainly has a backbone of (1 â†’ 3,6)-linked d-Man and (1 â†’ 3)-linked d-Gal on main chain. PRP2 is mainly composed of (1 â†’ 2,4)-linked d-Man and (1 â†’ 3)-linked d-Gal on main chain. All polysaccharides have strong scavenging power on 2,2-difenil-1-picril-hidrazil and hydroxyl radicals and significantly antiglycated activity in Bovine serum albumin-Glucose model, which showing that the polysaccharides have potential application value on the functional food.

17.
Am J Chin Med ; 51(7): 1845-1864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37667863

RESUMEN

Sleep deprivation (SD) has become a universal social problem. There is a causal relationship between SD and energy metabolism disorder. Phytochemicals have been demonstrated to have excellent sleep-promoting effects, and studies have shown that ginsenoside Rg5 (Rg5) exerts sedative and hypnotic effects. The present study aimed to investigate the role of Rg5 in regulating energy metabolism and explore the potential mechanism of improving sleep. Sleep-deprived rats were randomly divided into a control group (Ctrl), SD model group (SD), Rg5 group (GRg5), and melatonin group (MT). Sleep-deprived model rats were generated by housing rats in an SD box for 4 weeks. The Ctrl and SD groups were given equal volumes of saline. The Rg5 groups were given 25[Formula: see text]mg/kg Rg5 or 50[Formula: see text]mg/kg Rg5, and the MT group was given 0.27[Formula: see text]g/kg MT. A Western blot analysis and ELISA were used to detect the metabolic levels, mitochondrial functional proteins, AMPK pathway proteins, clock-related proteins, adenosine receptors, and neurotransmitter receptors. The results showed that Rg5 corrected abnormal glucose and lipid metabolism as well as improved ATP levels. In addition, Rg5 alleviated mitochondrial structural damage and improved the expression of proteins involved in mitochondrial biosynthesis, fission, and fusion. Moreover, Rg5 improved the expression of AMPK/PGC-1/Nrf-1 pathway proteins, regulated mitochondrial biological functions, and affected the rhythm characteristics of circadian clock-related proteins. Further, Rg5 improved the expression of A1R and A[Formula: see text]R as well as regulated the expression levels of GABAA1[Formula: see text] and mGluR5 to improve sleep in SD rats.

18.
Mitochondrial DNA B Resour ; 8(9): 998-1002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746034

RESUMEN

As one of the top 10 famous flowers in Chinese tradition, Rhododendron przewalskii subsp. przewalskii known as 'beauty in flowers,' which has high ornamental and medicinal value. The complete chloroplast (cp) genome of R. przewalskii subsp. przewalskii was determined in this study. The complete chloroplast genome of R. przewalskii subsp. przewalskii was 201,233 bp in length and contained a large single-copy region (LSC, 108,077 bp), and a small single-copy region (SSC, 2624 bp) and a pair of inverted repeat regions (IRa and IRb, 45,266 bp). A total of 142 functional genes were observed in this cp genome, including 91 protein-coding genes (PCGs), 43 transfer RNA genes (tRNAs), and eight ribosomal RNA genes (rRNAs). The R. przewalskii subsp. przewalskii cp genome has an A + T content of 64.06% and presents a positive AT-skew (0.53%) and a negative GC-skew (-1.56%). The maximum likelihood phylogenetic analysis based on the concatenated nucleotide sequences of 13 PCGs strongly supported the monophyletic relationship of R. przewalskii subsp. przewalskii the clade of R. henanense subsp. lingbaoense. This study provides genomic evidence for the vegetation classification of Rhododendron.

19.
Nano Lett ; 23(20): 9651-9656, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37548947

RESUMEN

Emerging memory devices have been demonstrated as artificial synapses for neural networks. However, the process of rewriting these synapses is often inefficient, in terms of hardware and energy usage. Herein, we present a novel surface plasmon resonance polarizer-based all-optical synapse for realizing convolutional filters and optical convolutional neural networks. The synaptic device comprises nanoscale crossed gold arrays with varying vertical and horizontal arms that respond strongly to the incident light's polarization angle. The presented synapse in an optical convolutional neural network achieved excellent performance in four different convolutional results for classifying the Modified National Institute of Standards and Technology (MNIST) handwritten digit data set. After training on 1,000 images, the network achieved a classification accuracy of over 98% when tested on a separate set of 10,000 images. This presents a promising approach for designing artificial neural networks with efficient hardware and energy consumption, low cost, and scalable fabrication.

20.
J Sep Sci ; 46(16): e2200941, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37322407

RESUMEN

Danggui Buxue Decoction is a classic formula for replenishing qi and nourishing blood. Despite its widespread use, its dynamic metabolism involved remains unclear. Based on the sequential metabolism strategy, blood samples from different metabolic sites were obtained via in situ closed intestine ring integrated with a jugular venous continuous blood supply technique. An ultra-high-performance liquid chromatography-linear triple quadruple-Orbitrap-tandem mass spectrometry method was developed for the identification of prototypes and metabolites in rat plasma. The dynamic absorption and metabolic landscape of flavonoids, saponins, and phthalides were characterized. Flavonoids could be deglycosylated, deacetylated, demethylated, dehydroxylated, and glucuronicated in the gut and then absorbed for further metabolism. Jejunum is an important metabolic site for saponins biotransformation. Saponins that are substituted by Acetyl groups tend to lose their acetyl groups and convert to Astragaloside IV in the jejunum. Phthalides could be hydroxylated and glucuronidated in the gut and then absorbed for further metabolism. Seven components serve as crucial joints in the metabolic network and are potential candidates for the quality control of Danggui Buxue Decoction. The sequential metabolism strategy described in this study could be useful for characterizing the metabolic pathways of Chinese medicine and natural products in the digestive system.


Asunto(s)
Medicamentos Herbarios Chinos , Saponinas , Ratas , Animales , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/análisis , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Saponinas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA