Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Materials (Basel) ; 17(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38612044

The electronic structure of carbon nanotube bundles (CNTBs) can be a tough task for the routine first-principle calculation. The difficulty comes from several issues including the atomic structure, the boundary condition, and above all the very large number of atoms that makes the calculation quite cumbersome. In this work, we estimated the band gap of the CNTBs based on the results from single-walled carbon nanotubes (SWCNTs) under different deformations. The effects of squeezing, stretching, and torsion on the bands of SWCNTs were investigated through first-principle calculations, from which the band gaps of bundles were analyzed because the effects of these deformations were qualitatively independent when the distortions were small. Specifically, the gaps of (4,4) and (8,0) CNTBs under a reasonable torsional strength were predicted, wherein we were able to see metal-semiconductor and semiconductor-metal transitions, respectively. Such reversible mechanical modification of the conductivity may be helpful to the future band-gap engineering in nanoscale circuits.

2.
Nanotechnology ; 33(9)2021 Dec 09.
Article En | MEDLINE | ID: mdl-34798622

Quantum interference (QI) in single molecular junctions shows a promising perspective for realizing conceptual nanoelectronics. However, controlling and modulating the QI remains a big challenge. Herein, two-type substituents at different positions ofmeta-linked benzene, namely electron-donating methoxy (-OMe) and electron-withdrawing nitryl (-NO2), are designed and synthesized to investigate the substituent effects on QI. The calculated transmission coefficientsT(E) indicates that -OMe and -NO2could remove the antiresonance and destructive quantum interference (DQI)-induced transmission dips at position 2. -OMe could raise the antiresonance energy at position 4 while -NO2groups removes the DQI features. For substituents at position 5, both of them are nonactive for tuning QI. The conductance measurements by scanning tunneling microscopy break junction show a good agreement with the theoretical prediction. More than two order of magnitude single-molecule conductance on/off ratio could be achieved at the different positions of -NO2substituent groups at room temperature. The present work proves chemical substituents can be used for tuning QI features in single molecular junctions, which provides a feasible way toward realization of high-performance molecular devices.

3.
ACS Appl Mater Interfaces ; 13(7): 8656-8663, 2021 Feb 24.
Article En | MEDLINE | ID: mdl-33587592

Fabricating single-molecule junctions with asymmetric metal electrodes is significant for realizing single-molecule diodes, but it remains a big challenge. Herein, we develop a z-piezo pulse-modulated scanning tunneling microscopy break junction (STM-BJ) technique to construct a robust asymmetric junction with different metal electrodes. The asymmetric Ag/BPY-EE/Au single-molecule junctions exhibit a middle conductance value in between those of the two individual symmetric metal electrode junctions, which is consistent with the order of calculated energy-dependent transmission coefficient T(E) of the asymmetric junctions at EF. Furthermore, the single-molecule conductance of Ag/BPY-EE/Au decreases by about 70% when reversing the bias voltage from 100 to -100 mV, and a clear asymmetric I-V feature at the single-molecule level is observed for these junctions. This rectifying behavior could be ascribed to a different interfacial coupling of molecules at the two end electrodes, which is confirmed by the different displacement of T(E) at the two bias voltages. Other asymmetric junctions exhibit similar rectifying behavior. The current work provides a feasible way to fabricate hybrid junctions based on asymmetric metal electrodes and investigate their electron transport toward the design of molecular rectifiers.

4.
J Phys Chem Lett ; 12(2): 758-763, 2021 Jan 21.
Article En | MEDLINE | ID: mdl-33405930

Enhancing the gating performance of single-molecule conductance is significant for realizing molecular transistors. Herein, we report a new strategy to improve the electrochemical gating efficiency of single-molecule conductance with fused molecular structures consisting of heterocyclic rings of furan, thiophene, or selenophene. One order magnitude of gating ratio is achieved within a potential window of 1.2 V for the selenophene-based molecule, which is significantly greater than that of other heterocyclic and benzene ring molecules. This is caused by the different electronic structures of heterocyclic molecules and transmission coefficients T(E), and preliminary resonance tunneling is achieved through the highest occupied molecular orbital at high potential. The current work experimentally shows that electrochemical gating performance can be significantly modulated by the alignment of the conducting orbital of the heterocyclic molecule relative to the metal Fermi energy.

5.
Nanoscale Res Lett ; 14(1): 253, 2019 Jul 26.
Article En | MEDLINE | ID: mdl-31350621

In this paper, the contact configuration of single molecular junction is controlled through side group, which is explored by electrochemical jump-to-contact STM break junction. The conductance values of 2-methoxy-1,3-benzenedicarboxylic acid (2-M-1,3-BDC) is around 10-3.65 G0, which is different from that of 5-methoxy-1,3-benzenedicarboxylic acid (5-M-1,3-BDC) with 10-3.20 G0. Interestingly, the conductance value of 2-M-1,3-BDC is the same as that of 1,3-benzenedicarboxaldehyde (1,3-BDCA), while single molecular junctions of 5-M-1,3-BDC and 1,3-benzenedicarboxylic acid (1,3-BDC) give out similar conductance value. Since 1,3-BDCA binds to the Cu electrode through one oxygen atom, the dominated contact configuration for 1,3-BDC is through two oxygen atoms. The different conductance values between 2-M-1,3-BDC and 5-M-1,3-BDC can be attributed to the different contact configurations caused by the position of the side group. The current work provides a feasible way to control the contact configuration between the anchoring group and the electrode, which may be useful in designing future molecular electronics.

6.
J Am Chem Soc ; 140(50): 17685-17690, 2018 Dec 19.
Article En | MEDLINE | ID: mdl-30486647

The ability to control over the quantum interference (QI) effect in single molecular junctions is attractive in the application of molecular electronics. Herein we report that the QI effect of meta-benzene based molecule with dihydrobenzo[ b]thiophene as the anchoring group ( meta-BT) can be controlled by manipulating the electrode potential of the junctions in electrolyte while the redox state of the molecule does not change. More than 2 orders of magnitude conductance change is observed for meta-BT ranging from <10-6.0 to 10-3.3 G0 with varying the electrode potential, while the upper value is even larger than the conductance of para-BT ( para-benzene based molecule with anchoring group of dihydrobenzo[ b]thiophene). This phenomenon is attributed to the shifting of energy level alignment between the molecule and electrodes under electrode potential control. Calculation is carried out to predict the transmission function of single molecular junction and the work function of Au surface in the presence of the molecule, and good agreement is found between theory and experiments, both showing sharp-valley featured destructive QI effect for the meta-BT. The present work demonstrates that the QI effect can be tuned through electrochemical gating without change of molecular redox states, which provides a feasible way toward realization of effective molecular switches.

...