Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Orthop Surg ; 16(3): 775-780, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38180292

RESUMEN

BACKGROUND: The repair and reconstruction of medial meniscus posterior root tears (MMPRTs) is an important issue in the field of orthopedic sports medicine. This study reports the first application of arthroscopic linear chain fixation for the treatment of MMPRTs. CASE PRESENTATION: A 78-year-old female patient presented with a 1.5-month history of right knee pain accompanied by a locked facet joint. The patient underwent surgery with the new linear chain fixation method. In this method, the suture and the loop part of the buckle-strap titanium plate were combined into a linear chain mechanical complex, and the tension of the posterior root stump was gradually increased by pulling on the two attachment lines at the external mouth of the tibial tunnel. The postoperative Lysholm score was 89, and the visual analogue scale score was 0.9, indicating a significant improvement in knee joint function. At the 7-month and 1-year post-surgery follow-up, physical and MRI examinations confirmed satisfactory healing of the MMPRTs. CONCLUSION: This surgical approach offers several benefits, including a simplified instrumentation setup, preservation of natural anatomical structures, and reliable residual stump fixation. It has the potential for clinical implementation.


Asunto(s)
Meniscos Tibiales , Lesiones de Menisco Tibial , Femenino , Humanos , Anciano , Meniscos Tibiales/diagnóstico por imagen , Meniscos Tibiales/cirugía , Artroscopía/métodos , Lesiones de Menisco Tibial/diagnóstico por imagen , Lesiones de Menisco Tibial/cirugía , Articulación de la Rodilla/cirugía , Tibia , Rotura
2.
NPJ Biofilms Microbiomes ; 9(1): 62, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666845

RESUMEN

Diarrhea is characterized by alterations in the gut microbiota, metabolites, and host response to these changes. Studies have focused on the role of commensal bacteria in diarrhea; however, the effect of fungi on its pathogenesis remains unexplored. Here, using post-weaned piglets with or without diarrhea, we found an unexpected decrease in the abundance of Candida tropicalis in diarrheal piglets. We also observed increased accumulation of reactive oxygen species (ROS) and the formation of neutrophil extracellular traps (NETs) in the colonic tissues of diarrheal piglets. Using dectin-1-knockout mice, we found that the over-accumulation of ROS killed C. tropicalis by promoting NET formation, which was dependent on dectin-1. The decreased abundance of C. tropicalis resulted in reduced phosphocholine consumption. Then, colonic phosphocholine accumulation drives water efflux by increasing cAMP levels by activating adenylyl cyclase, which promotes the clearance of pathogenic bacteria. Collectively, we demonstrated that phosphocholine is correlated with colonic C. tropicalis and promotes diarrhea and pathogen clearance. Our results suggest that mycobiota colonizing the colon might be involved in maintaining intestinal metabolic homeostasis through the consumption of certain metabolites.


Asunto(s)
Candida tropicalis , Fosforilcolina , Animales , Porcinos , Ratones , Especies Reactivas de Oxígeno , Colon , Diarrea/veterinaria , Ratones Noqueados
3.
Ecotoxicol Environ Saf ; 257: 114948, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37105098

RESUMEN

Nowadays, the companion animals (dogs or other pets) are considered as members of the family and have established strong emotional relationships with their owners. Dogs are long lived compared to food animals, so safety, adequacy, and efficacy of dog food is of great importance for their health. Cereals, cereal by-products as well as feedstuffs of plant origin are commonly employed food resources in dry food, yet are potential ingredients for mycotoxins contamination, so dogs are theoretically more vulnerable to exposure when consumed daily. Aflatoxins (AF), deoxynivalenol (DON), fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEA) are the most frequent mycotoxins that might present in dog food and cause toxicity on the growth and metabolism of dogs. An understanding of toxicological effects and detoxification methods (physical, chemical, or biological approaches) of mycotoxins will help to improve commercial ped food quality, reduce harm and minimize exposure to dogs. Herein, we outline a description of mycotoxins detected in dog food, toxicity and clinical findings in dogs, as well as methods applied in mycotoxins detoxification. This review aims to provide a reference for future studies involved in the evaluation of the risk, preventative strategies, and clear criteria of mycotoxins for minimizing exposure, reducing harm, and preventing mycotoxicosis in dog.


Asunto(s)
Aflatoxinas , Fumonisinas , Micotoxinas , Perros , Animales , Micotoxinas/toxicidad , Alimentación Animal/análisis , Contaminación de Alimentos/análisis , Fumonisinas/análisis , Grano Comestible/química
4.
Int J Biol Macromol ; 242(Pt 2): 124650, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119914

RESUMEN

Amuc_1100 (hereafter called Amuc) is a highly abundant pili-like protein on the outer membrane of Akkermansia muciniphila and has been found to be effective for in anti-obesity, which is probably through the activation of TLR2. However, the precise mechanisms underlying the contributions of TLR2 to obesity resistance remain unknown. Here, TLR2 knockout mice were used to decipher the anti-obesity mechanism of Amuc. Mice exposed to a high-fat diet (HFD) were treated with Amuc (60 µg) every other day for 8 weeks. The results showed that Amuc supplementation decreased mouse body weight and lipid deposition by regulating fatty acid metabolism and reducing bile acid synthesis by activating TGR5 and FXR and strengthening the intestinal barrier function. The ablation of TLR2 partially reversed the positive effect of Amuc on obesity. Furthermore, we revealed that Amuc altered the gut microbiota composition by increasing the relative abundance of Peptostreptococcaceae, Faecalibaculum, Butyricicoccus, and Mucispirillum_schaedleri_ASF457, and decreasing Desulfovibrionaceae, which may serve as a contributor for Amuc to reinforce the intestinal barrier in HFD-induced mice. Therefore, the anti-obesity effect of Amuc was accompanied by the mitigation of gut microbes. These findings provide support for the use of Amuc as a therapy targeting obesity-associated metabolic syndrome.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Receptor Toll-Like 2 , Verrucomicrobia , Obesidad/etiología , Obesidad/inducido químicamente , Ácidos Grasos/farmacología , Ácidos y Sales Biliares/farmacología , Ratones Endogámicos C57BL
5.
J Nutr ; 153(2): 532-542, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36894245

RESUMEN

BACKGROUND: Salmonella typhimurium is a pathogen that causes gastroenteritis in humans and animals. Amuc_1100 (hereafter called Amuc), the outer membrane protein of Akkermansia muciniphila, alleviates metabolic disorders and maintains immune homeostasis. OBJECTIVE: This study was conducted to determine whether there is a protective effect of Amuc administration. METHODS: Male 6-wk-old C57BL6J mice were randomly allocated into 4 groups: CON (control), Amuc (gavaged with Amuc, 100 µg/d for 14 d), ST (oral administration of 1.0 × 106 CFU S. typhimurium on day 7), and ST + Amuc (Amuc supplementation for 14 d, S. typhimurium administration on day 7). Serum and tissue samples were collected 14 d after treatment. Histological damage, inflammatory cell infiltration, apoptosis, and protein levels of genes associated with inflammation and antioxidant stress were analyzed. Data were analyzed by 2-way ANOVA and Duncan's multiple comparisons using SPSS software. RESULTS: The ST group mice had 17.1% lower body weight, 1.3-3.6-fold greater organ index (organ weight/body weight for organs including the liver and spleen), 10-fold greater liver damage score, and 3.4-10.1-fold enhanced aspartate transaminase, alanine transaminase, and myeloperoxidase activities, and malondialdehyde and hydrogen peroxide concentrations compared with controls (P < 0.05). The S. typhimurium-induced abnormalities were prevented by Amuc supplementation. Furthermore, the ST + Amuc group mice had 1.44-1.89-fold lower mRNA levels of proinflammatory cytokines (interleukin [Il]6, Il1b, and tumor necrosis factor-α) and chemokines (chemokine ligand [Ccl]2, Ccl3, and Ccl8) and 27.1%-68.5% lower levels of inflammation-related proteins in the liver than ST group mice (P < 0.05). CONCLUSIONS: Amuc treatment prevents S. typhimurium-induced liver damage partly through the toll-like receptor (TLR)2/TLR4/myeloid differentiation factor 88 and nuclear factor-κB signaling as well as nuclear factor erythroid-2 related factor signaling pathways. Thus, Amuc supplementation may be effective in treating liver injury in S. typhimurium-challenged mice.


Asunto(s)
Hepatopatías , Salmonella typhimurium , Animales , Masculino , Ratones , Peso Corporal , Inflamación/metabolismo , Interleucina-6/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Salmonella typhimurium/metabolismo , Proteínas de la Membrana/metabolismo
6.
Theriogenology ; 195: 159-167, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36335719

RESUMEN

Recent studies have shown that l-proline (proline) is an antioxidant to protect cells from oxidative stress in vivo and in vitro. Glutathione (GSH) is a major cellular redox regulator involved in controlling redox balance and is regarded as one of the key indices to predict the cytoplasmic maturation of oocytes. The objectives of this study are to investigate the effect of proline on the developmental potential of mouse oocytes and to determine the role of gap junctional communication (GJC) on intraoocyte GSH concentration during in vitro maturation (IVM). Compared with control (0 mmol/L), 0.5 mmol/L proline supplementation enhanced rates of activated oocytes, 2-cell and 4-cell embryos, and blastocysts. Furthermore, 0.25 and 0.5 mmol/L proline supplementation markedly upregulated mRNA expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM) in oocytes and cumulus cells, enhanced GSH concentration in oocytes, and reduced reactive oxygen species (ROS) level in oocytes. Interestingly, carbenoxolone disodium salt (CBX) treatment reduced GSH concentration in oocytes and the rate of early embryo development without proline incubation. Notably, CBX-triggered reduction in the rates of the number of 2-cell and 4-cell embryos and blastocysts were rescued by 0.5 mmol/L proline supplementation. Collectively, these results indicate a novel functional role of proline in oocyte cytoplasmic maturation and regulation of glutathione-related redox homeostasis.


Asunto(s)
Glutamato-Cisteína Ligasa , Prolina , Ratones , Animales , Glutamato-Cisteína Ligasa/genética , Oocitos , Oxidación-Reducción , Glutatión , Homeostasis
7.
Inflammation ; 46(1): 404-417, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36181623

RESUMEN

The E2 promoter binding factor 1 (E2F1) and the Wnt/ß-catenin signaling are crucial in regulating metabolic homeostasis including obesity. The ß-catenin interacting protein 1 (CTNNBIP1), also known as the inhibitor of ß-catenin and TCF4 (ICAT), is required for E2F1 to inhibit the activity of ß-catenin. However, the role of ICAT in E2F1 regulating obesity-related metabolic disorders remains unknown. In the present study, male adipose tissue-specific ICAT knockout (ICATadi-/-) C57BL/6 J mice and control littermates aged 6-8 weeks were fed with high-fat diet (HFD) for 12 weeks to explore the effect of ICAT on lipid metabolism and obesity-related disorders. Results showed that the adipose tissue-specific ICAT knockout had negligible effect on lipid metabolism, reflected by no difference in body weight, fat mass, and the expression of proteins involved in lipid metabolism in white adipose tissue (WAT) and the liver between the ICATadi-/- mice and the control littermate (ICATfl/fl) mice. However, the knockout of ICAT reduced inflammatory response in WAT and the liver. Additionally, Sirius red staining results showed that deletion of ICAT attenuated fibrosis and reduced mRNA levels of transforming growth factor ß1(TGF-ß1), matrix metallopeptidase 2 (Mmp2), Mmp3, and collagen, type V, alpha 1 (Col5a1) in WAT and the liver. These results suggested that knockout of ICAT improved the metabolic abnormalities of obese mice through attenuating adipose tissue and the liver inflammation as well as fibrosis. Our findings may provide a new insight to understand the role of ICAT in inflammation and fibrosis.


Asunto(s)
Tejido Adiposo , beta Catenina , Masculino , Animales , Ratones , Ratones Obesos , beta Catenina/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Fibrosis , Colágeno/metabolismo , Dieta Alta en Grasa/efectos adversos
8.
Front Microbiol ; 13: 1007814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312938

RESUMEN

Either selenium or serine could modulate glucose homeostasis, however, whether there are synergistic effects of selenium with serine on diabetes remains to be unknown. In the present study, eight male db/m mice were used as a control, and 24 male diabetic db/db mice were either orally gavaged with PBS, or with selenomethionine alone, or with both selenomethionine and serine, to investigate the effects of selenomethionine and serine on body weight and glucose level. Furthermore, intestinal microbiota composition was analyzed and fecal microbiota transplantation (FMT) was performed to explore whether microbes mediate the beneficial effects of selenomethionine and serine. The results showed that administration of selenomethionine decreased body weight, adipose tissue weight and serum glucose level in db/db diabetic mice. Importantly, administration of selenomethionine in combination with serine exerted better effects than selenomethionine alone did. Furthermore, a combined administration of selenomethionine and serine restored the microbial composition in diabetic mice. Corynebacterium glutamicum, Bifidobacterium pseudolongum, and Aerococcus urinaeequi were significantly decreased, whereas Lactobacillus murinus was increased in mice in the selenomethionine group and selenomethionine in combination with serine group, when compared with those in the db/db group. FMT decreased body weight and glucose level in db/db mice, further indicating that microbes play critical roles in the beneficial effects of selenomethionine and serine. Thus, we concluded that administration of selenomethionine in combination with serine benefits diabetes via gut microbes. Our results suggested that the synergic application of selenomethionine and serine could be potentially used for the treatment of diabetes.

9.
Gut Microbes ; 14(1): 2091369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35758253

RESUMEN

Diarrheal disease is a common health problem with complex causality. Although diarrhea is accompanied by disturbances in microbial diversity, how gut microbes are involved in the occurrence of diarrhea remains largely unknown. Here, using a pig model of post-weaning stress-induced diarrhea, we aim to elucidate and enrich the mechanistic basis of diarrhea. We found significant alterations in fecal microbiome, their metabolites, and microRNAs levels in piglets with diarrhea. Specifically, loss of ssc-miRNA-425-5p and ssc-miRNA-423-3p, which inhibit the gene expression of fumarate reductase (frd) in Prevotella genus, caused succinate accumulation in piglets, which resulted in diarrhea. Single-cell RNA sequencing indicated impaired epithelial function and increased immune response in the colon of piglet with diarrhea. Notably, the accumulated succinate increased colonic fluid secretion by regulating transepithelial Cl-secretion in the epithelial cells. Meanwhile, succinate promoted colonic inflammatory responses by activating MyD88-dependent TLR4 signaling in the macrophages. Overall, our findings expand the mechanistic basis of diarrhea and suggest that colonic accumulation of microbiota-produced succinate caused by loss of miRNAs leads to diarrhea in weanling piglets.


Asunto(s)
Microbioma Gastrointestinal , MicroARNs , Microbiota , Animales , Diarrea/genética , Diarrea/veterinaria , MicroARNs/genética , Ácido Succínico , Porcinos , Destete
10.
Curr Pharm Des ; 28(22): 1854-1862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585811

RESUMEN

BACKGROUND: Docosahexaenoic acid-acylated phloridzin (PZ-DHA), a novel polyphenol fatty acid ester derivative, is synthesized through an acylation reaction of phloridzin (PZ) and docosahexaenoic acid (DHA). PZ-DHA is more stable than DHA and exhibits higher cellular uptake and bioavailability than PZ. OBJECTIVE: The study aims to investigate the effects of PZ-DHA on insulin resistance in the skeletal muscle and the related mechanisms; we used palmitic acid (PA)-treated C2C12 myotubes as an insulin resistance model. RESULTS: We found that PZ-DHA increased the activity of AMP-activated protein kinase (AMPK) and improved glucose uptake and mitochondrial function in an AMPK-dependent manner in untreated C2C12 myotubes. PZ-DHA treatment of the myotubes reversed PA-induced insulin resistance; this was indicated by increases in glucose uptake and the expression of membrane glucose transporter 4 (Glut4) and phosphorylated Akt. Moreover, PZ-DHA treatment reversed PA-induced inflammation and oxidative stress. These effects of PZ-DHA were mediated by AMPK. Furthermore, the increase in AMPK activity, improvement in insulin resistance, and decrease in inflammatory and oxidative responses after PZ-DHA treatment diminished upon co-treatment with a liver kinase B1 (LKB1) inhibitor, suggesting that PZ-DHA improved AMPK activity by regulating its upstream kinase, LKB1. CONCLUSION: The effects of PZ-DHA on insulin resistance in C2C12 myotubes may be mediated by the LKB1- AMPK signaling pathway. Hence, PZ-DHA is a promising therapeutic agent for insulin resistance in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Proteínas Quinasas Activadas por AMP , Línea Celular , Ácidos Docosahexaenoicos , Ésteres , Glucosa , Humanos , Inflamación , Insulina , Fibras Musculares Esqueléticas , Ácido Palmítico , Florizina
11.
Front Physiol ; 12: 727093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566689

RESUMEN

Muscle weakness affects physical activity and quality of life of patients. Serine, a nutritionally non-essential amino acid has been reported to enhance protein synthesis and implicate in biosynthesis of multiple bioactive molecules. It remains unknown whether it can protect mice against oxidative stress-induced muscles weakness. This study was conducted to test the hypothesis that serine administration alleviates doxorubicin-induced oxidative damage in skeletal muscle of mice. Mice pre-treated with or without serine were intraperitoneally injected with either doxorubicin or equal volume of saline. Reactive oxygen species (ROS) accumulation, activity of antioxidant enzymes, oxidation product of protein, DNA, and lipid, activity of mitochondrial complex, and protein level of nuclear-factor-erythroid-2-related factor 2 (NRF2)/constitutive-androstane-receptor (CAR) signaling in skeletal muscle of mice were determined. Compared with the control, doxorubicin exposure led to oxidative damage as shown by increased ROS accumulation, decreased activity of antioxidant enzymes, and enhanced oxidative product of protein, DNA, and lipid in the skeletal muscle of mice. These effects of doxorubicin were associated with increased activity of complex I and reduced glutathione. Interestingly, doxorubicin-induced oxidative damage was alleviated by serine administration. Further study showed that the beneficial effect of serine was associated with enhanced NRF2/CAR signaling. Our result showed that serine attenuated doxorubicin-induced muscle weakness in mice. Serine supplementation might be a nutritional strategy to improve the function of skeletal muscle in patients exposed to doxorubicin.

12.
J Nutr ; 151(7): 1769-1778, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33830211

RESUMEN

BACKGROUND: Obesity, a major public health problem worldwide, is associated with dysfunction of the intestinal barrier. Glycine (Gly) has been reported to enhance the expression of tight-junction proteins in porcine enterocytes. It is unknown whether Gly can improve intestinal barrier integrity in obese mice. OBJECTIVES: This study tested the hypothesis that Gly enhances the intestinal epithelial barrier by regulating endoplasmic reticulum (ER) stress-related signaling and mitigating inflammation in high-fat diet (HFD)-induced obese mice. METHODS: Five-week-old male C57BL/6J mice were fed a normal-fat diet (ND; fat = 10% energy) or an HFD (fat = 60% energy) and received drinking water supplemented with 2% Gly or 2.37% l-alanine (Ala; isonitrogenous control) daily for 12 wk. Body weight gain and tissue weights, glucose tolerance and the activation of immune cells, as well as the abundances of tight-junction proteins, ER stress proteins, and apoptosis-related proteins in the jejunum and colon were determined. In addition, the body weights of naïve ND and HFD groups (nND and nHFD, respectively) were also recorded for comparison. Differences were analyzed statistically by ANOVA followed by the Duncan multiple-comparison test using SAS software. RESULTS: Compared with ND-Ala, HFD-feeding resulted in enhanced macrophage (CD11b+ and F4/80+) infiltration and immune cell activation by 1.9- to 5.4-fold (P < 0.05), as well as the upregulation of ER stress sensor proteins (including phospho-inositol-requiring enzyme 1α and binding immunoglobulin protein) by 2.5- to 4.5-fold, the induction of apoptotic proteins by 1.5- to 3.2-fold, and decreased abundances of tight-junction proteins by 35%-65% (P < 0.05) in the intestine. These HFD-induced abnormalities were significantly ameliorated by Gly supplementation in the HFD-Gly group (P < 0.05). Importantly, Gly supplementation also significantly enhanced glucose tolerance (P < 0.05) by 1.5-fold without affecting the fat accumulation of HFD-induced obese mice. CONCLUSIONS: Gly supplementation enhanced the intestinal barrier and ameliorated inflammation and insulin resistance in HFD-fed mice. These effects of Gly were associated with reduced ER stress-related apoptosis in the intestine of obese mice.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Animales , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Glicina , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Porcinos
13.
J Anim Sci Biotechnol ; 11: 82, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32817790

RESUMEN

BACKGROUND: Excessive white fat accumulation in humans and other animals is associated with the development of multiple metabolic diseases. It is unknown whether dietary L-arginine supplementation reduces lipid deposition in high fat diet-fed Nile tilapia (Oreochromis niloticus). RESULTS: In the present study, we found that dietary supplementation with 1% or 2% arginine decreased the deposition and concentration of fats in the liver; the concentrations of triglycerides, low-density lipoprotein, total cholesterol, and high-density lipoprotein in the serum; and the diameter of adipocytes in intraperitoneal adipose tissue. Compared with the un-supplementation control group, the hepatic activities of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase, and hepatic concentration of malondialdehyde were reduced but these for catalase and superoxide dismutase were enhanced by dietary supplementation with 2% arginine. Arginine supplementation reduced the total amounts of monounsaturated fatty acids, while increasing the total amounts of n-3 and n-6 polyunsaturated fatty acids in the liver. These effects of arginine were associated with reductions in mRNA levels for genes related to lipogenesis (sterol regulatory element-binding protein-1, acetyl-CoA carboxylase α, stearoyl-CoA desaturase, and fatty acid synthase) but increases in mRNA levels for genes involved in fatty acid ß-oxidation (carnitine palmitoyltransferase 1α and peroxisome proliferator-activated receptor α). In addition, hepatic mRNA levels for Δ4 fatty acyl desaturase 2 and elongase 5 of very long-chain fatty acids were enhanced by arginine supplementation. CONCLUSION: These results revealed that dietary L-arginine supplementation to tilapia reduced high fat diet-induced fat deposition and fatty acid composition in the liver by regulating the expression of genes for lipid metabolism.

14.
Adv Exp Med Biol ; 1265: 57-70, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32761570

RESUMEN

Lung diseases affect millions of individuals all over the world. Various environmental factors, such as toxins, chemical pollutants, detergents, viruses, bacteria, microbial dysbiosis, and allergens, contribute to the development of respiratory disorders. Exposure to these factors activates stress responses in host cells and disrupt lung homeostasis, therefore leading to dysfunctional epithelial barriers. Despite significant advances in therapeutic treatments for lung diseases in the last two decades, novel interventional targets are imperative, considering the side effects and limited efficacy in patients treated with currently available drugs. Nutrients, such as amino acids (e.g., arginine, glutamine, glycine, proline, taurine, and tryptophan), peptides, and bioactive molecules, have attracted more and more attention due to their abilities to reduce oxidative stress, inhibit apoptosis, and regulate immune responses, thereby improving epithelial barriers. In this review, we summarize recent advances in amino acid metabolism in the lungs, as well as multifaceted functions of amino acids in attenuating inflammatory lung diseases based on data from studies with both human patients and animal models. The underlying mechanisms for the effects of physiological amino acids are likely complex and involve cell signaling, gene expression, and anti-oxidative reactions. The beneficial effects of amino acids are expected to improve the respiratory health and well-being of humans and other animals. Because viruses (e.g., coronavirus) and environmental pollutants (e.g., PM2.5 particles) induce severe damage to the lungs, it is important to determine whether dietary supplementation or intravenous administration of individual functional amino acids (e.g., arginine-HCl, citrulline, N-acetylcysteine, glutamine, glycine, proline and tryptophan) or their combinations to affected subjects may alleviate injury and dysfunction in this vital organ.


Asunto(s)
Aminoácidos/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Animales , Humanos , Enfermedades Pulmonares/fisiopatología
15.
Environ Pollut ; 265(Pt B): 114697, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32454357

RESUMEN

3-Acetyldeoxynivalenol (3-Ac-DON), the acetylated derivative of deoxynivalenol (DON), has been reported to be coexisted with DON in various cereal grains. Ingestion of grain-based food products contaminated by 3-Ac-DON might exert deleterious effects on the health of both humans and animals. However, the biological toxicity of 3-Ac-DON on macrophages and the underlying mechanisms remain largely unknown. In the present study, we showed that RAW 264.7 macrophages treated with 0.75 or 1.50 µg/mL of 3-Ac-DON resulted in DNA damage and the related cell cycle arrest at G1 phase and cell death, activation of the ribotoxic stress and the endoplasmic reticulum (ER) stress responses. The 3-Ac-DON-induced cell death was accompanied by a protective autophagy, because gene silencing of Atg5 using the small interfering RNA enhanced cell death. Results of further experiments revealed a role for lysosomal membrane permeabilization in the 3-Ac-DON triggered inhibition of autophagic flux. Additional work also showed that increased lysosomal biogenesis and leakage of cathepsin B (CTSB) from lysosomes to cytosol was critical for the 3-Ac-DON-induced cell death. Importantly, 3-Ac-DON-induced DNA damage and cell death were rescued by CA-074-me, a CTSB inhibitor. Collectively, these results indicated a critical role of lysosomal membrane permeabilization in the 3-Ac-DON-induced apoptosis of RAW 264.7 macrophages.


Asunto(s)
Autofagia , Lisosomas , Animales , Apoptosis , Humanos , Macrófagos , Tricotecenos
16.
Cells ; 9(4)2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326181

RESUMEN

Wnt/ß-catenin is a crucial repressor of adipogenesis. We have shown that E2 promoter binding factor 1 (E2F1) suppresses Wnt/ß-catenin activity through transactivation of ß-catenin interacting protein 1 (CTNNBIP1), also known as inhibitor of ß-catenin and TCF4 (ICAT) in human colorectal cancers. However, it remains unknown whether ICAT is required for E2F1 to promote differentiation by inhibiting ß-catenin activity in pre-adipocytes. In the present study, we found that 1-methyl-3-isobutylxanthine, dexamethasone, and insulin (MDI)-induced differentiation and lipid accumulation in 3T3-L1 pre-adipocytes was reversed by activation of ß-catenin triggered by CHIR99021, a GSK3ß inhibitor. Intriguingly, we observed a reduced protein level of E2F1 and ICAT at a later stage of pre-adipocytes differentiation. Importantly, overexpression of ICAT in 3T3-L1 pre-adipocytes markedly promote the adipogenesis and partially reversed the inhibitory effect of CHIR99021 on MDI-induced adipogenesis and lipid accumulation by regulating adipogenic regulators and Wnt/ß-catenin targets. Moreover, pre-adipocytes differentiation induced by MDI were markedly inhibited in siE2F1 or siICAT transfected 3T3-L1 cells. Gene silencing of ICAT in the E2F1 overexpressed adipocytes also inhibited the adipogenesis. These data indicated that E2F1 is a metabolic regulator with an ability to promote pre-adipocyte differentiation by activating ICAT, therefore represses Wnt/ß-catenin activity in 3T3-L1 cells. We also demonstrated that ICAT overexpression did not affect oleic acid-induced lipid accumulation at the surface of Hela and HepG2 cells. In conclusion, we show that E2F1 is a critical regulator with an ability to promote differentiation and adipogenesis by activating ICAT in pre-adipocytes.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Factor de Transcripción E2F1/metabolismo , Células 3T3-L1 , Adipocitos/citología , Animales , Diferenciación Celular/efectos de los fármacos , Humanos , Ratones , Piridinas/farmacología , Pirimidinas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , beta Catenina/efectos de los fármacos , beta Catenina/metabolismo
17.
Antioxidants (Basel) ; 9(4)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272634

RESUMEN

Apoptosis of intestinal epithelial cells following oxidative stress is a major cause of mucosal barrier dysfunction and is associated with the pathogenesis of various gastrointestinal diseases. Although L-tryptophan (Trp) is known to improve intestinal integrity and function, a beneficial effect of N-acetyl serotonin (NAS), a metabolite of Trp, on the apoptosis of enterocytes and the underlying mechanisms remain largely unknown. In the present study, we showed that porcine enterocytes treated with 4-hydroxy-2-nonenal (4-HNE), a metabolite of lipid peroxidation, led to upregulation of apoptotic proteins, including Bax and cleaved caspase-3, and reduction of tight junction proteins. These effects of 4-HNE were significantly abrogated by NAS. In addition, NAS reduced ROS accumulation while increasing the intracellular concentration of glutathione (GSH), and the abundance of the Nrf2 protein in the nucleus and its downstream target proteins. Importantly, these protective effects of NAS were abrogated by Atra, an inhibitor of Nrf2, indicating a dependence on Nrf2 signaling. Taken together, we demonstrated that NAS attenuated oxidative stress-induced cellular injury in porcine enterocytes by regulating Nrf2 signaling. These findings provide new insights into a functional role of NAS in maintaining intestinal homeostasis.

18.
Mediators Inflamm ; 2020: 5821428, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32189994

RESUMEN

Inflammation and oxidative stress play key roles in the process of aging and age-related diseases. Since serine availability plays important roles in the support of antioxidant and anti-inflammatory defense system, we explored whether serine deficiency affects inflammatory and oxidative status in D-galactose-induced aging mice. Male mice were randomly assigned into four groups: mice fed a basal diet, mice fed a serine- and glycine-deficient (SGD) diet, mice injected with D-galactose and fed a basal diet, and mice injected with D-galactose and fed an SGD diet. The results showed that D-galactose resulted in oxidative and inflammatory responses, while serine deficiency alone showed no such effects. However, serine deficiency significantly exacerbated oxidative stress and inflammation in D-galactose-treated mice. The composition of fecal microbiota was affected by D-galactose injection, which was characterized by decreased microbiota diversity and downregulated ratio of Firmicutes/Bacteroidetes, as well as decreased proportion of Clostridium XIVa. Furthermore, serine deficiency exacerbated these changes. Additionally, serine deficiency in combination with D-galactose injection significantly decreased fecal butyric acid content and gene expression of short-chain fatty acid transporters (Slc16a3 and Slc16a7) and receptor (Gpr109a) in the brain. Finally, serine deficiency exacerbated the decrease of expression of phosphorylated AMPK and the increase of expression of phosphorylated NFκB p65, which were caused by D-galactose injection. In conclusion, our results suggested that serine deficiency exacerbated inflammation and oxidative stress in D-galactose-induced aging mice. The involved mechanisms might be partially attributed to the changes in the microbiota-gut-brain axis affected by serine deficiency.


Asunto(s)
Galactosa/farmacología , Inflamación/metabolismo , Estrés Oxidativo/fisiología , Animales , Western Blotting , Clostridium/fisiología , Firmicutes/fisiología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Glicina/deficiencia , Inflamación/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/genética , Serina/deficiencia , Factor de Transcripción ReIA/metabolismo
19.
Nutrients ; 12(3)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110933

RESUMEN

Glycine supplementation has been reported to alleviate lipopolysaccharide (LPS)-induced lung injury in mice. However, the underlying mechanisms responsible for this beneficial effect remain unknown. In the present study, male C57BL/6 mice were treated with aerosolized glycine (1000 mg in 5 mL of 0.9% saline) or vehicle (0.9% saline) once daily for 7 continuous days, and then were exposed to aerosolized LPS (5 mg in 5 mL of 0.9% saline) for 30 min to induce lung injury. Sera and lung tissues were collected 24 h post LPS challenge. Results showed that glycine pretreatment attenuated LPS-induced decreases of mucin at both protein and mRNA levels, reduced LPS-triggered upregulation of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interferons, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukins. Further study showed that glycine-reduced LPS challenge resulted in the upregulation of nuclear factor κB (NF-κB), nucleotide binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. In addition, LPS exposure led to the downregulation of NRF2 and downstream targets, which were significantly improved by glycine administration in the lung tissues. Our findings indicated that glycine pretreatment prevented LPS-induced lung injury by regulating both NLRP3 inflammasome and NRF2 signaling.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Glicina/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Lesión Pulmonar Aguda/sangre , Lesión Pulmonar Aguda/inducido químicamente , Animales , Autofagia/efectos de los fármacos , Citocinas/sangre , Regulación hacia Abajo/efectos de los fármacos , Glicina/administración & dosificación , Glicina/farmacología , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Mediadores de Inflamación/sangre , Lipopolisacáridos , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Mucinas/metabolismo , FN-kappa B/metabolismo
20.
Amino Acids ; 52(4): 587-596, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32170468

RESUMEN

Dietary L-proline (proline) supplementation during gestation enhances fetal survival and placental development in mice. The objective of the present study was to test the hypothesis that this beneficial effect of proline was associated with alterations in inflammatory response at the placenta and fetus interface. Populations of immune cells present in peripheral blood mononuclear cells (PBMC) were determined by flow cytometry analysis. The concentrations of immunoglobulins in plasma, and the concentrations of cytokines in plasma, uterus, placenta, and amniotic fluid were measured using a bead-based immunoassay. The data showed that proline supplementation led to higher (P < 0.05) populations of B lymphocytes (CD3-CD19+), natural killer (NK) cells (CD3-NK1.1+), and dendritic cells (DCs, CD11c+MHCII+) in peripheral blood, as compared with the controls. Conversely, mice fed a proline-supplemented diet had a lower population of neutrophils (CD11b+F4/80-). Further study showed that proline supplementation decreased (P < 0.05) the concentrations of (1) interleukin (IL)-23, IL-1α, and IL-6 in plasma; (2) IL-6 in the uterus; and (3) tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein (MCP)-1, and IL-17 in the placenta; and (4) interferon (IFN)-γ in amniotic fluid, compared with controls. Conversely, proline supplementation resulted in higher (P < 0.05) concentrations of (1) IL-10, IL-17 and granulocyte-macrophage colony-stimulating factor (GM-CSF) in plasma; (2) IL-10 and IL-1α in the uterus; and (3) IL-1α, IL-1ß, IL-10, IL-27, and IFN-ß in amniotic fluid, compared with controls. Moreover, concentrations of immunoglobulin (Ig) G2b and IgM were enhanced (P < 0.05) by proline administration. Taken together, our results reveal a regulatory effect of proline in the immunological response at the maternal-fetal interface, which is critical for embryonic development and fetal survival.


Asunto(s)
Citocinas/metabolismo , Suplementos Dietéticos , Intercambio Materno-Fetal/inmunología , Placenta/inmunología , Prolina/fisiología , Líquido Amniótico/metabolismo , Animales , Citocinas/sangre , Desarrollo Embrionario , Femenino , Interleucinas/metabolismo , Leucocitos Mononucleares/inmunología , Ratones , Ratones Endogámicos C57BL , Embarazo , Prolina/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo , Útero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...