Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
JCI Insight ; 9(10)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652539

Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA. Through in vivo experiments using an experimental RA model, our results demonstrate that GMSC-EVs selectively homed to inflamed joints and recovered Treg and Th17 cell balance, resulting in the reduction of arthritis progression. Our investigations also uncovered miR-148a-3p as a critical contributor to the Treg/Th17 balance modulation via IKKB/NF-κB signaling orchestrated by GMSC-EVs, which was subsequently validated in a model of human xenograft versus host disease (xGvHD). Furthermore, we successfully developed a humanized animal model by utilizing synovial fibroblasts obtained from patients with RA (RASFs). We found that GMSC-EVs impeded the invasiveness of RASFs and minimized cartilage destruction, indicating their potential therapeutic efficacy in the context of patients with RA. Overall, the unique characteristics - including reduced immunogenicity, simplified administration, and inherent ability to target inflamed tissues - position GMSC-EVs as a viable alternative for RA and other autoimmune diseases.


Arthritis, Rheumatoid , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , NF-kappa B , T-Lymphocytes, Regulatory , Th17 Cells , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Humans , Animals , Th17 Cells/immunology , Th17 Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , I-kappa B Kinase/metabolism , Signal Transduction , Disease Models, Animal , Gingiva/cytology , Gingiva/metabolism , Gingiva/pathology , Gingiva/immunology , Male , Fibroblasts/metabolism
2.
Mol Med ; 30(1): 4, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38172666

BACKGROUND: Autophagic defects are involved in Methamphetamine (Meth)-induced neurotoxicity. Syntaxin 17 (Stx17), a member of the SNARE protein family, participating in several stages of autophagy, including autophagosome-late endosome/lysosome fusion. However, the role of Stx17 and potential mechanisms in autophagic defects induced by Meth remain poorly understood. METHODS: To address the mechanism of Meth-induced cognitive impairment, the adenovirus (AV) and adeno-associated virus (AAV) were injected into the hippocampus for stereotaxis to overexpress Stx17 in vivo to examine the cognitive ability via morris water maze and novel object recognition. In molecular level, the synaptic injury and autophagic defects were evaluated. To address the Meth induced neuronal damage, the epidermal growth factor receptor (EGFR) degradation assay was performed to evaluate the degradability of the "cargos" mediated by Meth, and mechanistically, the maturation of the vesicles, including autophagosomes and endosomes, were validated by the Co-IP and the GTP-agarose affinity isolation assays. RESULTS: Overexpression of Stx17 in the hippocampus markedly rescued the Meth-induced cognitive impairment and synaptic loss. For endosomes, Meth exposure upregulated Rab5 expression and its guanine-nucleotide exchange factor (GEF) (immature endosome), with a commensurate decreased active form of Rab7 (Rab7-GTP) and impeded the binding of Rab7 to CCZ1 (mature endosome); for autophagosomes, Meth treatment elicited a dramatic reduction in the overlap between Stx17 and autophagosomes but increased the colocalization of ATG5 and autophagosomes (immature autophagosomes). After Stx17 overexpression, the Rab7-GTP levels in purified late endosomes were substantially increased in parallel with the elevated mature autophagosomes, facilitating cargo (Aß42, p-tau, and EGFR) degradation in the vesicles, which finally ameliorated Meth-induced synaptic loss and memory deficits in mice. CONCLUSION: Stx17 decrease mediated by Meth contributes to vesicle fusion defects which may ascribe to the immature autophagosomes and endosomes, leading to autophagic dysfunction and finalizes neuronal damage and cognitive impairments. Therefore, targeting Stx17 may be a novel therapeutic strategy for Meth-induced neuronal injury.


Autophagosomes , Autophagy , Animals , Mice , Autophagosomes/metabolism , Endosomes/metabolism , ErbB Receptors/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/metabolism
3.
J Adv Res ; 58: 79-91, 2024 Apr.
Article En | MEDLINE | ID: mdl-37169220

INTRODUCTION: Rheumatoid arthritis (RA) is a systemic autoimmune disease with limited treatment success, characterized by chronic inflammation and progressive cartilage and bone destruction. Accumulating evidence has shown that neutrophil extracellular traps (NETs) released by activated neutrophils are important for initiating and perpetuating synovial inflammation and thereby could be a promising therapeutic target for RA. K/B × N serum transfer-induced arthritis (STIA) is a rapidly developed joint inflammatory model that somehow mimics the inflammatory response in patients with RA. Human gingival-derived mesenchymal stem cells (GMSCs) have been previously shown to possess immunosuppressive effects in arthritis and humanized animal models. However, it is unknown whether GMSCs can manage neutrophils in autoimmune arthritis. OBJECTIVES: To evaluate whether infusion of GMSCs can alleviate RA by regulating neutrophils and NETs formation. If this is so, we will explore the underlying mechanism(s) in an animal model of inflammatory arthritis. METHODS: The effects of GMSCs on RA were assessed by comparing the symptoms of the K/B × N serum transfer-induced arthritis (STIA) model administered either with GMSCs or with control cells. Phenotypes examined included clinical scores, rear ankle thickness, paw swelling, inflammation, synovial cell proliferation, and immune cell frequency. The regulation of GMSCs on NETs was examined through immunofluorescence and immunoblotting in GMSCs-infused STIA mice and in an in vitro co-culture system of neutrophils with GMSCs. The molecular mechanism(s) by which GMSCs regulate NETs was explored both in vitro and in vivo by silencing experiments. RESULTS: We found in this study that adoptive transfer of GMSCs into STIA mice significantly ameliorated experimental arthritis and reduced neutrophil infiltration and NET formation. In vitro studies also showed that GMSCs inhibited the generation of NETs in neutrophils. Subsequent investigations revealed that GMSCs secreted prostaglandin E2 (PGE2) to activate protein kinase A (PKA), which ultimately inhibited the downstream extracellular signal-regulated kinase (ERK) pathway that is essential for NET formation. CONCLUSION: Our results demonstrate that infusion of GMSCs can ameliorate inflammatory arthritis mainly by suppressing NET formation via the PGE2-PKA-ERK signaling pathway. These findings further support the notion that the manipulation of GMSCs is a promising stem cell-based therapy for patients with RA and other autoimmune and inflammatory diseases.


Arthritis, Rheumatoid , Extracellular Traps , Humans , Animals , Mice , Extracellular Traps/metabolism , Dinoprostone/metabolism , Dinoprostone/pharmacology , Dinoprostone/therapeutic use , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/pharmacology , Cyclic AMP-Dependent Protein Kinases/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Inflammation/metabolism
4.
J Colloid Interface Sci ; 658: 459-467, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38118192

Developing high mass loading cathodes with high capacity and durable life cycles is greatly worthwhile and challenging for alkaline aqueous rechargeable Zn-based batteries (AAZBs). Herein, we demonstrate an efficient zinc-induced strategy to rationally develop Zn-Ni-Co carbonate hydroxides/hydroxides heterostructure nanosheet array with an extremely high mass loading of 9.2 mg cm-2 on Ni foam (ZNC/NF) as such a superior cathode for AAZBs. It is discovered that Ni-Co hydroxide nanowires can be transformed into Zn-Ni-Co carbonate hydroxides/hydroxides heterostructure nanosheet with rich defect structures after the introduction of Zn during the synthetic process. The formed heterostructures and rich defect structures can enhance ion and electron transfer efficiency, thus ensuring the excellent electrochemical performance under high loading condition. Consequently, the ZNC/NF//Zn battery shows an outstanding areal capacity of 2.1 mAh cm-2 at 5 mA cm-2, with an ultrahigh energy density of 3.6 mWh cm-2. Moreover, the battery can still retain a high capacity of 0.42 mAh cm-2 after 5000 cycles at 50 mA cm-2, suggesting strong long-term cycling stability. This research enables pave the way for the rational design and manufacture of advanced electrode materials with large mass loadings.

5.
Redox Biol ; 69: 103008, 2024 Feb.
Article En | MEDLINE | ID: mdl-38142586

Focal iron overload is frequently observed in patients with rheumatoid arthritis (RA), yet its functional significance remains elusive. Herein, we report that iron deposition in lesion aggravates arthritis by inducing macrophage ferroptosis. We show that excessive iron in synovial fluid positively correlates with RA disease severity as does lipid hyperoxidation of focal monocyte/macrophages. Further study reveals high susceptibility to iron induced ferroptosis of the anti-inflammatory macrophages M2, while pro-inflammatory M1 are less affected. Distinct glutathione peroxidase 4 (GPX4) degradation depending on p62/SQSTM1 in the two cell types make great contribution mechanically. Of note, ferroptosis inhibitor liproxstatin-1 (LPX-1) can alleviate the progression of K/BxN serum-transfer induced arthritis (STIA) mice accompanied with increasing M2 macrophages proportion. We thus propose that the heterogeneous ferroptosis susceptibility of macrophage subtypes as well as consequent inflammation and immune disorders are potential biomarkers and therapeutic targets in RA.


Arthritis, Rheumatoid , Ferroptosis , Iron Overload , Humans , Mice , Animals , Arthritis, Rheumatoid/metabolism , Macrophages/metabolism , Iron Overload/pathology , Iron/metabolism
6.
bioRxiv ; 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38106185

ESCO1 is an acetyltransferase enzyme that regulates chromosome organization and gene expression. It does this by modifying the Smc3 subunit of the Cohesin complex. Although ESCO1 is enriched at the base of chromatin loops in a Cohesin-dependent manner, precisely how it interacts with chromatin is unknown. Here we show that the basic and intrinsically disordered tail of ESCO1 binds DNA with very high affinity, likely through electrostatic interaction. We show that neutralization of positive residues in the N-tail reduces both DNA binding in vitro and association of the enzyme with chromatin in cells. Additionally, disruption of the chromatin state and charge distribution reduces chromatin bound ESCO1. Strikingly, defects in DNA binding do not affect total SMC3 acetylation or sister chromatid cohesion, suggesting that ESCO1-dependent acetylation can occur independently of direct chromatin association. We conclude that the intrinsically disordered tail of ESCO1 binds DNA with both high affinity and turnover, but surprisingly, ESCO1 catalytic activity occurs independently of direct DNA binding by the enzyme.

7.
Wei Sheng Yan Jiu ; 52(4): 611-617, 2023 Jul.
Article Zh | MEDLINE | ID: mdl-37679079

OBJECTIVE: To investigate lead contamination in commercial foods in Chongqing City, and to assess the health risk of dietary lead exposure of residents in Chongqing City. METHODS: Lead concentration data was obtained from the food safety risk monitoring system, which included a total of 2347 lead-containing food samples in 11 categories in Chongqing from 2016 to 2020. Consumption data was derived from the China Health and Nutrition Survey Project in Chongqing in 2018(3 day, 24 h dietary recall survey). The dietary exposure to lead of residents in Chongqing was calculated by the Monte Carlo simulation method and the margin of exposure(MOE) method was used to evaluate the health risk of the population. RESULTS: The average content of lead in 2347 food samples from 11 categories ranged from 0.0328 to 0.0363 mg/kg, with an overall detection rate of 58.5%. For people aged between 3-6, 7-17, 18-59, and ≥ 60 years, the mean dietary lead intakes in Chongqing were 0.935-1.070, 0.600-0.684, 0.367-0.416, 0.369-0.419 µg/(kg·BW·d), respectively; and the high levels of dietary lead exposure(P95) were 1.642-1.852, 1.147-1.299, 0.651-0.729, 0.659-0.740 µg/(kg·BW·d), respectively. MOE values for lead were less than 1 for age groups 3-6 and 7-17 years. Mean MOE values for lead were greater than 1 for ages 18 to 59 and ≥ 60. Cereals and their products, vegetables and their products, and meat and meat products were the main sources of dietary lead exposure, accounting for more than 85% of the total dietary lead exposure. CONCLUSION: There are potential health risks of lead for residents in Chongqing.


Dietary Exposure , Lead , Humans , Child, Preschool , Dietary Exposure/adverse effects , China , Edible Grain , Risk Assessment
8.
Genetics ; 225(2)2023 Oct 04.
Article En | MEDLINE | ID: mdl-37650609

Cornelia de Lange Syndrome (CdLS) is a developmental disorder characterized by limb truncations, craniofacial abnormalities, and cognitive delays. CdLS is caused mainly by mutations in genes encoding subunits or regulators of the cohesin complex. Cohesin plays 2 distinct roles in chromosome dynamics as follows: it promotes looping, organization, and compaction of individual chromosomes, and it holds newly replicated sister chromatids together until cell division. CdLS-associated mutations result in altered gene expression likely by affecting chromosome architecture. Whether CdLS mutations cause phenotypes through impact on sister chromatid cohesion is less clear. Here, we show that CdLS-associated mutations introduced into the SMC1A gene of budding yeast had measurable impacts on sister chromatid cohesion, mitotic progression, and DNA damage sensitivity. These data suggest that sister chromatid cohesion-related defects may contribute to phenotypes seen in CdLS affected individuals.

9.
Toxicol Sci ; 196(1): 85-98, 2023 10 30.
Article En | MEDLINE | ID: mdl-37584706

The widespread use of nanomaterials in daily life has led to increased concern about their potential neurotoxicity. Therefore, it is particularly important to establish a simple and reproducible assessment system. Representative nanomaterials, including cobalt nanoparticles (CoNPs), titanium dioxide nanoparticles (TiO2-NPs), and multiwall carbon nanotubes (MWCNTs), were compared in terms of their neurotoxicity and underlying mechanisms. In 0, 25, 50, and 75 µg/ml of these nanomaterials, the survival, locomotion behaviors, acetylcholinesterase (AchE) activity, reactive oxygen species production, and glutathione-S transferase 4 (Gst-4) activation in wildtype and transgenic Caenorhabditis elegans (C. elegans) were evaluated. All nanomaterials induced an imbalance in oxidative stress, decreased the ratio of survival, impaired locomotion behaviors, as well as reduced the activity of AchE in C. elegans. Interestingly, CoNPs and MWCNTs activated Gst-4, but not TiO2-NPs. The reactive oxygen species scavenger, N-acetyl-l-cysteine, alleviated oxidative stress and Gst-4 upregulation upon exposure to CoNPs and MWCNTs, and rescued the locomotion behaviors. MWCNTs caused the most severe damage, followed by CoNPs and TiO2-NPs. Furthermore, oxidative stress and subsequent activation of Gst-4 were involved in nanomaterials-induced neurotoxicity. Our study provides a comprehensive comparison of the neurotoxicity and mechanisms of typical nanomaterials, which could serve as a model for hazard assessment of environmental pollutants using C. elegans as an experimental model system.


Nanoparticles , Nanotubes, Carbon , Animals , Reactive Oxygen Species , Caenorhabditis elegans , Nanotubes, Carbon/toxicity , Cobalt/toxicity , Acetylcholinesterase , Oxidative Stress , Nanoparticles/toxicity
10.
J Leukoc Biol ; 114(6): 595-603, 2023 11 24.
Article En | MEDLINE | ID: mdl-37192369

Macrophages play a critical role in ankylosing spondylitis by promoting autoimmune tissue inflammation through various effector functions. The inflammatory potential of macrophages is highly influenced by their metabolic environment. Here, we demonstrate that glycolysis is linked to the proinflammatory activation of human blood monocyte-derived macrophages in ankylosing spondylitis. Specifically, ankylosing spondylitis macrophages produced excessive inflammation, including TNFα, IL1ß, and IL23, and displayed an overactive status by exhibiting stronger costimulatory signals, such as CD80, CD86, and HLA-DR. Moreover, we found that patient-derived monocyte-derived M1-type macrophages (M1 macrophages) exhibited intensified glycolysis, as evidenced by a higher extracellular acidification rate. Upregulation of PKM2 and GLUT1 was observed in ankylosing spondylitis-derived monocytes and monocyte-derived macrophages, especially in M1 macrophages, indicating glucose metabolic alteration in ankylosing spondylitis macrophages. To investigate the impact of glycolysis on macrophage inflammatory ability, we treated ankylosing spondylitis M1 macrophages with 2 inhibitors: 2-deoxy-D-glucose, a glycolysis inhibitor, and shikonin, a PKM2 inhibitor. Both inhibitors reduced proinflammatory function and reversed the overactive status of ankylosing spondylitis macrophages, suggesting their potential utility in treating the disease. These data place PKM2 at the crosstalk between glucose metabolic changes and the activation of inflammatory macrophages in patients with ankylosing spondylitis.


Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/metabolism , Macrophage Activation , Macrophages/metabolism , Inflammation/metabolism , Glucose/metabolism
11.
ACS Chem Neurosci ; 14(5): 864-874, 2023 03 01.
Article En | MEDLINE | ID: mdl-36763609

Severe neurological inflammation is one of the main symptoms of methamphetamine (meth)-induced brain injury. Studies have demonstrated that meth exposure facilitates neuroinflammation via Pellino E3 ubiquitin protein ligase 1 (Peli1)-mediated signaling. However, the involved mechanisms remain incompletely understood. Herein, we used Peli1-/- mice and Peli1-knockdown microglial BV2 cells to decipher the roles of Peli1 and downstream signaling in meth-induced neuroinflammation. After meth administration for seven consecutive days, Peli1-/- mice exhibited better learning and memory behavior and dramatically lower interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 levels than wild-type mice. Moreover, in vitro experiments revealed that Peli1 knockdown significantly attenuated the meth-induced upregulation of cytokines. Besides, meth markedly activated and increased the levels of receptor-interacting protein kinase 1 (RIPK1), and Peli1 knockout or knockdown prevented these effects, indicating that RIPK1 participated in meth-induced Peli1-mediated inflammation. Specifically, treating the cells with necrostatin-1(Nec-1), an antagonist of RIPK1, remarkably inhibited the meth-induced increase in IL-1ß, TNF-α, and IL-6 expression, confirming the involvement of RIPK1 in Peli1-mediated neuroinflammation. Finally, meth induced a dramatic transfer of the mixed lineage kinase domain-like protein, a downstream effector of RIRK1, to the cell membrane, disrupting membrane integrity and causing cytokine excretion. Therefore, targeting the Peli1-RIPK1 signaling axis is a potentially valid therapeutic approach against meth-induced neuroinflammation.


Methamphetamine , Mice , Animals , Methamphetamine/toxicity , Neuroinflammatory Diseases , Interleukin-6 , Ubiquitin-Protein Ligases/metabolism , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/chemically induced , Nuclear Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
12.
Neurotoxicology ; 95: 155-163, 2023 03.
Article En | MEDLINE | ID: mdl-36716931

Exposure to cobalt nanoparticles (CoNPs) has been associated with neurodegenerative disorders, while the mitochondrial-associated mechanisms that mediate their neurotoxicity have yet to be fully characterized. In this study, we reported that CoNPs exposure reduced the survival and lifespan in the nematodes, Caenorhabditis elegans (C. elegans). Moreover, exposure to CoNPs aggravated the induction of paralysis and the aggregation of ß-amyloid (Aß). These effects were accompanied by reactive oxygen species (ROS) overproduction, ATP reduction as well as mitochondrial fragmentation. Dynamin-related protein 1 (drp-1) activation and ensuing mitochondrial fragmentation have been shown to be associated with CoNPs-reduced survival. In order to address the role of mitochondrial damage and ROS production in CoNPs-induced Aß toxicity, the mitochondrial reactive oxygen species scavenger mitoquinone (Mito Q) was used. Our results showed that Mito Q pretreatment alleviated CoNPs-induced ROS generation, rescuing mitochondrial dysfunction, thereby lessening the CoNPs-induced Aß toxicity. Taken together, we show for the first time, that increasing of ROS and the upregulation of drp-1 lead to CoNPs-induced Aß toxicity. Our novel findings provide in vivo evidence for the mechanisms of environmental toxicant-induced Aß toxicity, and can afford new modalities for the prevention and treatment of CoNPs-induced neurodegeneration.


Amyloid beta-Peptides , Nanoparticles , Animals , Reactive Oxygen Species/metabolism , Amyloid beta-Peptides/toxicity , Cobalt/toxicity , Caenorhabditis elegans/metabolism , Nanoparticles/toxicity
13.
Chromosome Res ; 31(1): 6, 2023 01 28.
Article En | MEDLINE | ID: mdl-36708487

Cohesion between sister chromatids by the cohesin protein complex ensures accurate chromosome segregation and enables recombinational DNA repair. Sister chromatid cohesion is promoted by acetylation of the SMC3 subunit of cohesin by the ESCO2 acetyltransferase, inhibiting cohesin release from chromatin. The interaction of ESCO2 with the DNA replication machinery, in part through PCNA-interacting protein (PIP) motifs in ESCO2, is required for full cohesion establishment. Recent reports have suggested that Cul4-dependent degradation regulates the level of ESCO2 protein following replication. To follow up on these observations, we have characterized ESCO2 stability in Xenopus egg extracts, a cell-free system that recapitulates cohesion establishment in vitro. We found that ESCO2 was stable during DNA replication in this system. Indeed, further challenging the system by inducing DNA damage signaling or increasing the number of nuclei undergoing DNA replication had no significant impact on the stability of ESCO2. In transgenic somatic cell lines, we also did not see evidence of GFP-ESCO2 degradation during S phase of the cell cycle using both flow cytometry and live-cell imaging. We conclude that ESCO2 is stable during DNA replication in both embryonic and somatic cells.


Cell Cycle Proteins , DNA Replication , Cell Cycle Proteins/metabolism , Chromatids/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Acetyltransferases/metabolism , Cohesins
14.
Plant J ; 112(4): 1070-1083, 2022 11.
Article En | MEDLINE | ID: mdl-36181710

Infections by root-feeding nematodes have profound effects on root system architecture and consequently shoot growth of host plants. Plants harbor intraspecific variation in their growth responses to belowground biotic stresses by nematodes, but the underlying mechanisms are not well understood. Here, we show that the transcription factor TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR-9 (TCP9) modulates root system architectural plasticity in Arabidopsis thaliana in response to infections by the endoparasitic cyst nematode Heterodera schachtii. Young seedlings of tcp9 knock-out mutants display a significantly weaker primary root growth inhibition response to cyst nematodes than wild-type Arabidopsis. In older plants, tcp9 reduces the impact of nematode infections on the emergence and growth of secondary roots. Importantly, the altered growth responses by tcp9 are most likely not caused by less biotic stress on the root system, because TCP9 does not affect the number of infections, nematode development, and size of the nematode-induced feeding structures. RNA-sequencing of nematode-infected roots of the tcp9 mutants revealed differential regulation of enzymes involved in reactive oxygen species (ROS) homeostasis and responses to oxidative stress. We also found that root and shoot growth of tcp9 mutants is less sensitive to exogenous hydrogen peroxide and that ROS accumulation in nematode infection sites in these mutants is reduced. Altogether, these observations demonstrate that TCP9 modulates the root system architectural plasticity to nematode infections via ROS-mediated processes. Our study further points at a novel regulatory mechanism contributing to the tolerance of plants to root-feeding nematodes by mitigating the impact of belowground biotic stresses.


Arabidopsis Proteins , Arabidopsis , Cysts , Nematode Infections , Tylenchoidea , Animals , Arabidopsis/physiology , Reactive Oxygen Species , Transcription Factors/genetics , Plant Roots/genetics , Plant Roots/parasitology , Plant Diseases/parasitology , Tylenchoidea/physiology , Arabidopsis Proteins/genetics
15.
Org Lett ; 24(33): 6117-6121, 2022 Aug 26.
Article En | MEDLINE | ID: mdl-35796494

The activation of CS2 by the 2H-phosphindole complex with a low-coordinate phosphadiene moiety is reported. The successive hetero-Diels-Alder reaction between 2H-phosphindoles and CS2 constructs two bridged rings and one spirocycle simultaneously, affording structurally complex P,S-polycyclic products. The two 2H-phosphindoles approach the C═S bond in a head-to-head disposition to minimize steric hindrance. This work reveals the unique reactivity of low-coordinate organophosphorus species and their potential applications in small molecule activation.

16.
Small ; 18(34): e2202799, 2022 Aug.
Article En | MEDLINE | ID: mdl-35908162

Aqueous alkaline rechargeable nickel-zinc (Ni-Zn) batteries possess great potential for large-scale energy storage systems because of their high output voltage, cheap cost, and intrinsic safety. However, the practical applicability of Ni-Zn batteries has been limited by traditional Ni-based cathodes with low capacity and poor cycle stability. Rational design of electrode structure and composition is highly desired but still significantly challenging. Herein, uniform self-supported hierarchical heterostructure composites interacting NiCo-layered double hydroxide with 1D nickel sulfides heteronanowire rooted on Ni foam (NF\Ni3 S2 /NiS@NiCo-LDH) are successfully developed by a hydrothermal sulfurization-electrodeposition process. The self-supported 3D hierarchical heterostructured composites nanoarray provides abundant reactive sites, rapid ion diffusion channels, and fast electron transfer routes, as well as strong structural stability. More significantly, the strong interfacial charge transfer between Ni3 S2 /NiS heteronanowire and NiCo-LDH effectively modifies the electronic structure of the composites and thereby improving the reaction kinetics. Consequently, the NF\Ni3 S2 /NiS@NiCo-LDH electrode presents a superior capacity of 434.5 mAh g-1 (1.73 mAh cm-2 ) at 3 mA cm-2 . In addition, the fabricated NF\Ni3 S2 /NiS@NiCo-LDH//Zn battery can offer a maximal energy density and power density as large as 556.3 Wh kg-1 and 26.3 kW kg-1 , respectively, as well as an exceptional cycling performance.

17.
Mol Biol Rep ; 49(9): 8473-8483, 2022 Sep.
Article En | MEDLINE | ID: mdl-35752700

BACKGROUND: Altered phenotype of Fibroblast-like synoviocyte(FLS) is an important cause of the pathogenesis and progression of rheumatoid arthritis(RA), but the specific mechanism causing this change has not yet been fully explained. The exact mechanism by which the biological properties of FLS change in RA is still unclear. microRNAs (miRNAs) have been shown to affect changes in the biological properties of RA-FLS, but the critical miRNAs remain to be discovered. Thus, we first used miRNA microarray and WGCNA to confirm the RA-FLS miRNA landscape and establish their biological functions via network analyses at the system level, as well as to provide a platform for modulating the overall phenotypic effects of RA-FLS. METHODS: We enrolled a total of 3 patients with RA and 3 healthy participants, constructed a network analysis of via miRNA microarray and RNA-sequencing. Furthermore, the coexpression analyses of miR-7 and ciRS-7 were verified by siRNA transfection, overexpression and qPCR analyses. Finally, we evaluated the effects of adjusting the expression levels of miR-7 and ciRS-7 on RA-FLS, respectively. RESULTS: We identified distinct miRNA features in RA-FLS, including miR-7, which was significantly lower expressed. Furthermore, we discovered the negative regulatory relationship between ciRS-7 and miR-7 in RA-FLS. Finally, we overexpressed miR-7 in RA-FLS and discovered that miR-7 inhibited RA-FLS hyperproliferation, migration, invasion, and apoptosis, whereas ciRS-7 overexpression reversed these effects. CONCLUSIONS: The results indicate that the dysregulation of miR-7 in FLS may be involved in the pathological processes of RA and that ciRS-7 induced the suppression of tumor-like biological characters of RA-FLS via modulation of miR-7. These findings help us understand the essential roles of a regulatory interaction between ciRS-7 and miR-7 mediating disease activity of RA, and will facilitate to develop potential intervention target for RA.


Arthritis, Rheumatoid , MicroRNAs , Neoplasms , Synoviocytes , Arthritis, Rheumatoid/pathology , Cell Proliferation/genetics , Cells, Cultured , Fibroblasts/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/metabolism , Synoviocytes/metabolism
18.
Polymers (Basel) ; 14(9)2022 Apr 20.
Article En | MEDLINE | ID: mdl-35566842

Commercial diol chain extenders generally could only form two urethane bonds, while abundant hydrogen bonds were required to construct self-healing thermoplastic polyurethane elastomers (TPU). Herein, two diol chain extenders bis(2-hydroxyethyl) (1,3-pheny-lene-bis-(methylene)) dicarbamate (BDM) and bis(2-hydroxyethyl) (methylenebis(cyclohexane-4,1-diy-l)) dicarbamate (BDH), containing two carbamate groups were successfully synthesized through the ring-opening reaction of ethylene carbonate (EC) with 1,3-benzenedimetha-namine (MX-DA) and 4, 4'-diaminodicyclohexylmethane (HMDA). The two chain extenders were applied to successfully achieve both high strength and high self-healing ability. The BDM-1.7 and BDH-1.7 elastomers had high comprehensive self-healing efficiency (100%, 95%) after heated treatment at 60 °C, and exhibited exceptional comprehensive mechanical performances in tensile strength (20.6 ± 1.3 MPa, 37.1 ± 1.7 MPa), toughness (83.5 ± 2.0 MJ/m3, 118.8 ± 5.1 MJ/m3), puncture resistance (196.0 mJ, 626.0 mJ), and adhesion (4.6 MPa, 4.8 MPa). The peculiar mechanical and self-healing properties of TPUs originated from the coexisting short and long hard segments, strain-induced crystallization (SIC). The two elastomers with excellent properties could be applied to engineering-grade fields such as commercial sealants, adhesives, and so on.

19.
Sci Total Environ ; 839: 156221, 2022 Sep 15.
Article En | MEDLINE | ID: mdl-35623532

Bisphenol F (BPF) is becoming the main substitute for bisphenol A (BPA) in plastics for food and beverage applications. Previous studies have demonstrated the neurotoxicity of BPF; however, its lifecycle toxicity and the underlying mechanisms remain poorly understood. In the current study, zebrafish were continuously exposed to BPF for four months from the embryo to adult stages in order to assess its neurotoxicity. Locomotor behaviors significantly decreased after BPF exposure, which was accompanied by a decrease in body weight, length, and hatching rate. Additionally, BPF increased the expression of inflammatory genes in the brain and destroyed the zebrafishes' intestinal integrity. Meanwhile, the 16S rRNA gene sequence results showed a significantly decreased microbiota abundance and diversity following BPF treatment. Neurotransmitter metabolites were also altered by BPF. Notably, the correlation analysis between microbiota and neurotransmitter metabolism verified that gut microbiota dysbiosis was closely related to the disturbance of neurotransmitter metabolites. Therefore, the present study evaluated the neurotoxicity of lifecycle exposure to BPF and unraveled a novel mechanism involving disturbance of neurotransmitter metabolism and gut dysbiosis, which may provide potential targets for BPF-mediated neurotoxicity.


Gastrointestinal Microbiome , Zebrafish , Animals , Benzhydryl Compounds/toxicity , Dysbiosis , Metabolomics , Phenols , RNA, Ribosomal, 16S
20.
Front Immunol ; 13: 793855, 2022.
Article En | MEDLINE | ID: mdl-35350778

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory in joints. Invasive pannus is a characteristic pathological feature of RA. RA fibroblast-like synoviocytes (FLSs) are showed tumor-like biological characters that facilitate pannus generation. Importantly, it has been documented that extracellular vesicle (EVs) derived microRNAs have a vital role of angiogenesis in various immune inflammatory diseases. However, whether RA FLSs derived EVs can facilitate angiogenesis and the underlying mechanism is undefined. Herein, we aim to investigate the key role of RA FLSs derived EVs on angiogenesis in endothelial cells (ECs). We indicate that RA FLSs derived EVs promote ECs angiogenesis by enhancing migration and tube formation of ECs in vitro. Also, we confirm that RA FLSs derived EVs can significantly facilitate ECs angiogenesis with a matrigel angiogenesis mice model. In terms of the mechanisms, both RNAs and proteins in EVs play roles in promoting ECs angiogenesis, but the RNA parts are more fundamental in this process. By combining microRNA sequencing and qPCR results, miR-1972 is identified to facilitate ECs angiogenesis. The blockage of miR-1972 significantly abrogated the angiogenesis stimulative ability of RA FLSs derived EVs in ECs, while the overexpression of miR-1972 reversed the effect in ECs. Specifically, the p53 level is decreased, and the phosphorylated mTOR is upregulated in miR-1972 overexpressed ECs, indicating that miR-1972 expedites angiogenesis through p53/mTOR pathway. Collectively, RA FLSs derived EVs can promote ECs angiogenesis via miR-1972 targeted p53/mTOR signaling, targeting on RA FLSs derived EVs or miR-1972 provides a promising strategy for the treatment of patients with RA.


Arthritis, Rheumatoid , Extracellular Vesicles , MicroRNAs , Synoviocytes , Animals , Arthritis, Rheumatoid/metabolism , Cell Proliferation/genetics , Cells, Cultured , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Synoviocytes/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
...