Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 2): 132867, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838892

RESUMEN

Mounting an active immune response is energy intensive and demands the reallocation of nutrients to maintain the body's resistance and tolerance against infections. Central to this metabolic adaptation is Glucose-6-phosphate dehydrogenase (G6PDH), a housekeeping enzyme involve in pentose phosphate pathway (PPP). PPP play an essential role in generating ribose, which is critical for nicotinamide adenine dinucleotide phosphate (NADPH). It is vital for physiological and cellular processes such as generating nucleotides, fatty acids and reducing oxidative stress. The G6PDH is extremely conserved enzyme across species in PP shunt. The deficiency of enzymes leads to serious consequences on organism, particularly on adaptation and development. Acute deficiency can lead to impaired cell development, halted embryonic growth, reduce sensitivity to insulin, hypertension and increase inflammation. Historically, research focusing on G6PDH and PPP have primarily targeted diseases on mammalian. However, our review has investigated the unique functions of the G6PDH enzyme in insects and greatly improved mechanistic understanding of its operations. This review explore how G6PDH in insects plays a crucial role in managing the redox balance and immune related metabolism. This study aims to investigate the enzyme's role in different metabolic adaptations.


Asunto(s)
Glucosafosfato Deshidrogenasa , Insectos , Oxidación-Reducción , Animales , Glucosafosfato Deshidrogenasa/metabolismo , Vía de Pentosa Fosfato , Estrés Oxidativo
2.
Anal Chem ; 96(15): 5824-5831, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573047

RESUMEN

Infectious diseases pose a significant threat to global health, yet traditional microbiological identification methods suffer from drawbacks, such as high costs and long processing times. Raman spectroscopy, a label-free and noninvasive technique, provides rich chemical information and has tremendous potential in fast microbial diagnoses. Here, we propose a novel Combined Mutual Learning Net that precisely identifies microbial subspecies. It demonstrated an average identification accuracy of 87.96% in an open-access data set with thirty microbial strains, representing a 5.76% improvement. 50% of the microbial subspecies accuracies were elevated by 1% to 46%, especially for E. coli 2 improved from 31% to 77%. Furthermore, it achieved a remarkable subspecies accuracy of 92.4% in the custom-built fiber-optical tweezers Raman spectroscopy system, which collects Raman spectra at a single-cell level. This advancement demonstrates the effectiveness of this method in microbial subspecies identification, offering a promising solution for microbiology diagnosis.


Asunto(s)
Escherichia coli , Pinzas Ópticas , Espectrometría Raman/métodos
3.
Biomolecules ; 14(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38672496

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive form of glioma and the most common primary tumor of the central nervous system. Despite significant advances in clinical management strategies and diagnostic techniques for GBM in recent years, it remains a fatal disease. The current standard of care includes surgery, radiation, and chemotherapy, but the five-year survival rate for patients is less than 5%. The search for a more precise diagnosis and earlier intervention remains a critical and urgent challenge in clinical practice. The Notch signaling pathway is a critical signaling system that has been extensively studied in the malignant progression of glioblastoma. This highly conserved signaling cascade is central to a variety of biological processes, including growth, proliferation, self-renewal, migration, apoptosis, and metabolism. In GBM, accumulating data suggest that the Notch signaling pathway is hyperactive and contributes to GBM initiation, progression, and treatment resistance. This review summarizes the biological functions and molecular mechanisms of the Notch signaling pathway in GBM, as well as some clinical advances targeting the Notch signaling pathway in cancer and glioblastoma, highlighting its potential as a focus for novel therapeutic strategies.


Asunto(s)
Glioblastoma , Receptores Notch , Transducción de Señal , Humanos , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/terapia , Glioblastoma/tratamiento farmacológico , Receptores Notch/metabolismo , Progresión de la Enfermedad , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Terapia Molecular Dirigida , Animales
4.
Biomacromolecules ; 25(4): 2222-2242, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38437161

RESUMEN

Recent strides in molecular pathology have unveiled distinctive alterations at the molecular level throughout the onset and progression of diseases. Enhancing the in vivo visualization of these biomarkers is crucial for advancing disease classification, staging, and treatment strategies. Peptide-based molecular probes (PMPs) have emerged as versatile tools due to their exceptional ability to discern these molecular changes with unparalleled specificity and precision. In this Perspective, we first summarize the methodologies for crafting innovative functional peptides, emphasizing recent advancements in both peptide library technologies and computer-assisted peptide design approaches. Furthermore, we offer an overview of the latest advances in PMPs within the realm of biological imaging, showcasing their varied applications in diagnostic and therapeutic modalities. We also briefly address current challenges and potential future directions in this dynamic field.


Asunto(s)
Sondas Moleculares , Péptidos , Péptidos/química , Diagnóstico por Imagen/métodos , Biomarcadores
5.
Artículo en Inglés | MEDLINE | ID: mdl-38388683

RESUMEN

BACKGROUND AND PURPOSE: In-stent stenosis is commonly observed after stent implantation. There is no consensus on the contributing factors for in-stent stenosis, especially for aneurysms located at or beyond the circle of Willis in the anterior circulation. This study aimed to investigate the morbidity and determinants of in-stent stenosis in distal anterior circulation aneurysms following the implantation of Pipeline Embolization Devices. MATERIALS AND METHODS: Patients who underwent Pipeline Embolization Device treatment at our center between January 1, 2018, and June 15, 2023, were enrolled. Distal anterior circulation aneurysms were defined as those occurring at or beyond the circle of Willis, including anterior communicating artery aneurysms, anterior cerebral artery aneurysms, and MCA aneurysms. Baseline information, aneurysm characteristics, and follow-up data of patients were analyzed. Patients were divided into 2 groups: the in-stent stenosis group (patients with a loss of >25% of the lumen diameter of the parent artery) and the non-in-stent stenosis group. Binary logistic regression and restricted cubic spline curves were used to explore risk factors. RESULTS: We included 85 cases of 1213 patients treated with flow-diverter devices at our hospital. During an average follow-up period of 9.07 months, the complete occlusion rate was 77.64%. The overall incidence of in-stent stenosis was 36.47% (31/85), of which moderate stenosis accounted for 9.41% (8/85), and severe stenosis, 5.88% (5/85) (triglyceride-glucose index ≥ 8.95; OR = 6.883, P = .006). The difference in diameters between the stent and parent artery of ≥0.09 mm (OR = 6.534, P = .015) and 55 years of age or older (OR = 3.507, P = .036) were risk factors for in-stent stenosis. The restricted cubic spline curves indicated that the risk of in-stent stenosis increased as the difference in diameter between stent and parent artery and the triglyceride-glucose index increased. CONCLUSIONS: Compared with the on-label use of Pipeline Embolization Devices, the rate of in-stent stenosis did not obviously increase when treating distal anterior circulation aneurysms with these devices. The incidence of in-stent stenosis was 36.47% when defined as a lumen diameter loss of >25%, and 15.2% when defined as a lumen diameter loss of >50%. Stent-size selection and biochemical indicators can potentially impact the incidence of in-stent stenosis.

6.
Neurosurg Rev ; 47(1): 74, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315259

RESUMEN

Few studies have explored the effect of a flow-diverter device (FD) on blood flow in the A1 segment of the anterior cerebral artery (ACA), after treatment of intracranial aneurysms in the bifurcation region of the internal carotid artery (ICA). The main objective of this article is to investigate the factors that affect A1 blood flow after FD covers the A1 artery. This is a single-center, retrospective study. Data were collected retrospectively from our center, and patients whose FDs were placed for treatment from the terminal of the ICA to the M1 segment were analyzed. A total of 42 patients were included in the study. Immediate post-procedural angiography following device placement revealed decreased blood flow in the A1 of 15 (35.7%) patients and complete occlusion of the A1 segment in 11 (26.2%) patients. During an average follow-up period of 9.8 months, the A1 segment was ultimately occluded in 25 patients (59.5%) and decreased blood flow in 4 patients (9.5%). When using FD to cover the A1 artery for the treatment of intracranial aneurysms, patients with preoperative opening of the anterior communicating artery (AcomA) are more prone to occlusion or decreased blood flow of the A1 artery, compared to patients without opening.


Asunto(s)
Embolización Terapéutica , Aneurisma Intracraneal , Humanos , Arteria Cerebral Anterior/cirugía , Estudios Retrospectivos , Aneurisma Intracraneal/terapia , Resultado del Tratamiento , Hemodinámica , Stents
7.
Light Sci Appl ; 13(1): 52, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38374161

RESUMEN

Raman spectroscopy has tremendous potential for material analysis with its molecular fingerprinting capability in many branches of science and technology. It is also an emerging omics technique for metabolic profiling to shape precision medicine. However, precisely attributing vibration peaks coupled with specific environmental, instrumental, and specimen noise is problematic. Intelligent Raman spectral preprocessing to remove statistical bias noise and sample-related errors should provide a powerful tool for valuable information extraction. Here, we propose a novel Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL) with high capacity and spectral fidelity. It can preprocess arbitrary Raman spectra without further training at a speed of ~1 900 spectra per second without human interference. The experimental data preprocessing trial demonstrated its excellent capacity and signal fidelity with an 88% reduction in root mean square error and a 60% reduction in infinite norm ([Formula: see text]) compared to established techniques. With this advantage, it remarkably enhanced various biomedical applications with a 400% accuracy elevation (ΔAUC) in cancer diagnosis, an average 38% (few-shot) and 242% accuracy improvement in paraquat concentration prediction, and unsealed the chemical resolution of biomedical hyperspectral images, especially in the spectral fingerprint region. It precisely preprocessed various Raman spectra from different spectroscopy devices, laboratories, and diverse applications. This scheme will enable biomedical mechanism screening with the label-free volumetric molecular imaging tool on organism and disease metabolomics profiling with a scenario of high throughput, cross-device, various analyte complexity, and diverse applications.

8.
Theor Appl Genet ; 137(3): 54, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381205

RESUMEN

KEY MESSAGE: Integrated phenomics, ionomics, genomics, transcriptomics, and functional analyses present novel insights into the role of pectin demethylation-mediated cell wall Na+ retention in positively regulating salt tolerance in oilseed rape. Genetic variations in salt stress tolerance identified in rapeseed genotypes highlight the complicated regulatory mechanisms. Westar is ubiquitously used as a transgenic receptor cultivar, while ZS11 is widely grown as a high-production and good-quality cultivar. In this study, Westar was found to outperform ZS11 under salt stress. Through cell component isolation, non-invasive micro-test, X-ray energy spectrum analysis, and ionomic profile characterization, pectin demethylation-mediated cell wall Na+ retention was proposed to be a major regulator responsible for differential salt tolerance between Westar and ZS11. Integrated analyses of genome-wide DNA variations, differential expression profiling, and gene co-expression networks identified BnaC9.PME47, encoding a pectin methylesterase, as a positive regulator conferring salt tolerance in rapeseed. BnaC9.PME47, located in two reported QTL regions for salt tolerance, was strongly induced by salt stress and localized on the cell wall. Natural variation of the promoter regions conferred higher expression of BnaC9.PME47 in Westar than in several salt-sensitive rapeseed genotypes. Loss of function of AtPME47 resulted in the hypersensitivity of Arabidopsis plants to salt stress. The integrated multiomics analyses revealed novel insights into pectin demethylation-mediated cell wall Na+ retention in regulating differential salt tolerance in allotetraploid rapeseed genotypes. Furthermore, these analyses have provided key information regarding the rapid dissection of quantitative trait genes responsible for nutrient stress tolerance in plant species with complex genomes.


Asunto(s)
Arabidopsis , Brassica napus , Brassica rapa , Tolerancia a la Sal/genética , Brassica napus/genética , Pectinas , Estrés Salino , Pared Celular , Desmetilación
9.
J Agric Food Chem ; 72(4): 2381-2396, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38232380

RESUMEN

Variations in the resistance to potassium (K) deficiency among rapeseed genotypes emphasize complicated regulatory mechanisms. In this study, a low-K-sensitivity accession (L49) responded to K deficiency with smaller biomasses, severe leaf chlorosis, weaker photosynthesis ability, and deformed stomata morphology compared to a low-K resistant accession (H280). H280 accumulated more K+ than L49 under low K. Whole-genome resequencing (WGS) revealed a total of 5,538,622 single nucleotide polymorphisms (SNPs) and 859,184 insertions/deletions (InDels) between H280 and L49. RNA-seq identified more differentially expressed K+ transporter genes with higher expression in H280 than in L49 under K deficiency. Based on the K+ profiles, differential expression profiling, weighted gene coexpression network analysis, and WGS data between H280 and L49, BnaC4.AKT1 was proposed to be mainly responsible for root K absorption-mediated low K resistance. BnaC4.AKT1 was expressed preferentially in the roots and localized on the plasma membrane. An SNP and an InDel found in the promoter region of BnaC4.AKT1 were proposed to be responsible for its differential expression between rapeseed genotypes. This study identified a gene resource for improving low-K resistance. It also facilitates an integrated knowledge of the differential physiological and transcriptional responses to K deficiency in rapeseed genotypes.


Asunto(s)
Brassica napus , Brassica rapa , Deficiencia de Potasio , Brassica napus/genética , Brassica napus/metabolismo , Deficiencia de Potasio/genética , Brassica rapa/metabolismo , Genotipo , Genómica , Regulación de la Expresión Génica de las Plantas
10.
Quant Imaging Med Surg ; 14(1): 432-446, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223051

RESUMEN

Background: Risk factors for colorectal cancer (CRC) affect the way patients are subsequently treated and their prognosis. Dual-energy computerized tomography (DECT) is an advanced imaging technique that enables the quantitative evaluation of lesions. This study aimed to evaluate the quality of DECT images based on the Mono+ algorithm in CRC, and based on this, to assess the value of DECT in the diagnosis of CRC risk factors. Methods: This prospective study was performed from 2021 to 2023. A dual-phase DECT protocol was established for consecutive patients with primary CRC. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), overall image quality, lesion delineation, and image noise of the dual-phase DECT images were assessed. Next, the optimal energy-level image was selected to analyze the iodine concentration (IC), normalized iodine concentration (NIC), effective atomic number, electron density, dual-energy index (DEI), and slope of the energy spectrum curve within the tumor for the high- and low-risk CRC groups. A multifactor binary logistic regression analysis was used to construct a differential diagnostic regression model for high- and low-risk CRC, receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was calculated to assess the diagnostic value of the model. Results: A total of 74 patients were enrolled in this study, of whom 41 had high-risk factors and 33 had low-risk factors. The SNR and CNR were best at 40 keV virtual monoenergetic imaging (VMI) based on the Mono+ algorithm (VMI+) (SNR 8.79±1.27, P<0.001; CNR 14.89±1.77, P=0.027). The overall image quality and lesion contours were best at 60 keV VMI+ and 40 keV VMI+, respectively (P=0.001). Among all the DECT parameters, the arterial phase (AP)-IC, NIC, DEI, energy spectrum curve, and venous phase-NIC differed significantly between the two groups. The AP-IC was the optimal DECT parameter for predicting high- and low-risk CRC with AUC, sensitivity, specificity, and cut-off values of 0.96, 97.06%, 87.80%, and 2.94, respectively, and the 95% confidence interval (CI) of the AUC was 0.88-0.99. Integrating the clinical factors and DECT parameters, the AUC, sensitivity, specificity, and predictive accuracy of the model were 0.99, 100.00%, 92.68%, and 94.67%, respectively, and the 95% CI of the AUC was 0.93-1.00. Conclusions: The DECT parameters based on 40 keV noise-optimized VMI+ reconstruction images depicted the CRC tumors best, and the clinical DECT model may have significant implications for the preoperative prediction of high-risk factors in CRC patients.

11.
Gene ; 894: 148025, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38007163

RESUMEN

Rapeseed (Brassica napus L.) is susceptible to nutrient stresses during growth and development; however, the CPA (cation proton antiporter) family genes have not been identified in B. napus and their biological functions remain unclear. This study was aimed to identify the molecular characteristics of rapeseed CPAs and their transcriptional responses to multiple nutrient stresses. Through bioinformatics analysis, 117 BnaCPAs, consisting of three subfamilies: Na+/H+ antiporter (NHX), K+ efflux antiporter (KEA), and cation/H+ antiporter (CHX), were identified in the rapeseed genome. Transcriptomic profiling showed that BnaCPAs, particularly BnaNHXs, were transcriptionally responsive to diverse nutrient stresses, including Cd toxicity, K starvation, salt stress, NH4+ toxicity, and low Pi. We found that the salt tolerance of the transgenic rapeseed lines overexpressing BnaA05.NHX2 was significantly higher than that of wild type. Subcellular localization showed that BnaA05.NHX2 was localized on the tonoplast, and TEM combined with X-ray energy spectrum analysis revealed that the vacuolar Na+ concentrations of the BnaA05.NHX2-overexpressing rapeseed plants were significantly higher than those of wild type. The findings of this study will provide insights into the complexity of the BnaCPA family and a valuable resource to explore the in-depth functions of CPAs in B. napus.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Antiportadores/genética , Protones , Brassica rapa/genética , Vacuolas , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
12.
Ann Transl Med ; 11(8): 302, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37181334

RESUMEN

Background and Objective: Astrocytes play an important role in healthy brain function, including the development and maintenance of blood-brain barrier (BBB), structural support, brain homeostasis, neurovascular coupling and secretion of neuroprotective factors. Reactive astrocytes participate in various pathophysiology after subarachnoid hemorrhage (SAH) including neuroinflammation, glutamate toxicity, brain edema, vasospasm, BBB disruption, cortical spreading depolarization (SD). Methods: We searched PubMed up to 31 May, 2022 and evaluated the articles for screening and inclusion for subsequent systemic review. We found 198 articles with the searched terms. After exclusion based on the selection criteria, we selected 30 articles to start the systemic review. Key Content and Findings: We summarized the response of astrocytes induced by SAH. Astrocytes are critical for brain edema formation, BBB reconstruction and neuroprotection in the acute stage of SAH. Astrocytes clear extracellular glutamate by increasing the uptake of glutamate and Na+/K+ ATPase activity after SAH. Neurotrophic factors released by astrocytes contribute to neurological recovery after SAH. Meanwhile, Astrocytes also form glial scars which hinder axon regeneration, produce proinflammatory cytokines, free radicals, and neurotoxic molecules. Conclusions: Preclinical studies showed that therapeutic targeting the astrocytes response could have a beneficial effect in ameliorating neuronal injury and cognitive impairment after SAH. Clinical trials and preclinical animal studies are still urgently needed in order to determine where astrocytes stand in various pathway of brain damage and repair after SAH and, above all, to develop therapeutic approaches which benefit patient outcomes.

13.
Opt Lett ; 48(10): 2571-2574, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186711

RESUMEN

Two-dimensional (2D) antiferromagnetic semiconductor chromium thiophosphate (CrPS4) has gradually become a major candidate material for low-dimensional nanoelectromechanical devices due to its remarkable structural, photoelectric characteristics and potentially magnetic properties. Here, we report the experimental study of a new few-layer CrPS4 nanomechanical resonator demonstrating excellent vibration characteristics through the laser interferometry system, including the uniqueness of resonant mode, the ability to work at the very high frequency, and gate tuning. In addition, we demonstrate that the magnetic phase transition of CrPS4 strips can be effectively detected by temperature-regulated resonant frequencies, which proves the coupling between magnetic phase and mechanical vibration. We believe that our findings will promote the further research and applications of the resonator for 2D magnetic materials in the field of optical/mechanical signal sensing and precision measurement.

14.
Differentiation ; 132: 15-23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37055300

RESUMEN

BACKGROUND: Aging and regeneration are heavily linked processes. While it is generally accepted that regenerative capacity declines with age, some vertebrates, such as newts, can bypass the deleterious effects of aging and successfully regenerate a lens throughout their lifetime. RESULTS: Here, we used Spectral-Domain Optical Coherence Tomography (SD-OCT) to monitor the lens regeneration process of larvae, juvenile, and adult newts. While all three life stages were able to regenerate a lens through transdifferentiation of the dorsal iris pigment epithelial cells (iPECs), an age-related change in the kinetics of the regeneration process was observed. Consistent with these findings, iPECs from older animals exhibited a delay in cell cycle re-entry. Furthermore, it was observed that clearance of the extracellular matrix (ECM) was delayed in older organisms. CONCLUSIONS: Collectively, our results suggest that although lens regeneration capacity does not decline throughout the lifespan of newts, the intrinsic and extrinsic cellular changes associated with aging alter the kinetics of this process. By understanding how these changes affect lens regeneration in newts, we can gain important insights for restoring the age-related regeneration decline observed in most vertebrates.


Asunto(s)
Cristalino , Pleurodeles , Animales , Salamandridae , Matriz Extracelular , División Celular
15.
Plant Cell Environ ; 46(2): 567-591, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36358019

RESUMEN

Wheat plants are ubiquitously simultaneously exposed to salinity and limited iron availability caused by soil saline-alkalisation. Through this study, we found that both low Fe and NaCl severely inhibited the growth of seminal roots in wheat seedlings; however, sufficient Fe caused greater growth cessation of seminal roots than low Fe under salt stress. Low Fe improved the root meristematic division activity, not altering the mature cell sizes compared with sufficient Fe under salt stress. Foliar Fe spray and split-root experiments showed that low Fe-alleviating the salinity-induced growth cessation of seminal roots was dependent on local low Fe signals in the roots. Ionomics combined with TEM/X-ray few differences in the root Na+ uptake and vacuolar Na+ sequestration between two Fe levels under salt stress. Phytohormone profiling and metabolomics revealed salinity-induced overaccumulation of ACC/ethylene and tryptophan/auxin in the roots under sufficient Fe than under low Fe. Differential gene expression, pharmacological inhibitor addition and the root growth performance of transgenic wheat plants revealed that the rootward auxin efflux and was responsible for the low Fe-mediated amelioration of the salinity-induced growth cessation of seminal roots. Our findings will provide novel insights into the modulation of crop root growth under salt stress.


Asunto(s)
Plantones , Triticum , Plantones/metabolismo , Triticum/genética , Salinidad , Plantas Modificadas Genéticamente , Hierro/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo
16.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430962

RESUMEN

The GARP genes are plant-specific transcription factors (TFs) and play key roles in regulating plant development and abiotic stress resistance. However, few systematic analyses of GARPs have been reported in allotetraploid rapeseed (Brassica napus L.) yet. In the present study, a total of 146 BnaGARP members were identified from the rapeseed genome based on the sequence signature. The BnaGARP TFs were divided into five subfamilies: ARR, GLK, NIGT1/HRS1/HHO, KAN, and PHL subfamilies, and the members within the same subfamilies shared similar exon-intron structures and conserved motif configuration. Analyses of the Ka/Ks ratios indicated that the GARP family principally underwent purifying selection. Several cis-acting regulatory elements, essential for plant growth and diverse biotic and abiotic stresses, were identified in the promoter regions of BnaGARPs. Further, 29 putative miRNAs were identified to be targeting BnaGARPs. Differential expression of BnaGARPs under low nitrate, ammonium toxicity, limited phosphate, deficient boron, salt stress, and cadmium toxicity conditions indicated their potential involvement in diverse nutrient stress responses. Notably, BnaA9.HHO1 and BnaA1.HHO5 were simultaneously transcriptionally responsive to these nutrient stresses in both hoots and roots, which indicated that BnaA9.HHO1 and BnaA1.HHO5 might play a core role in regulating rapeseed resistance to nutrient stresses. Therefore, this study would enrich our understanding of molecular characteristics of the rapeseed GARPs and will provide valuable candidate genes for further in-depth study of the GARP-mediated nutrient stress resistance in rapeseed.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Nutrientes , Desarrollo de la Planta , Familia
17.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232619

RESUMEN

Autophagy is a common physiological process in organisms, including higher plants. The ATG8 subfamily, the core member of the autophagy-related gene (ATG) family, plays a key role in plant growth and development and nutrient stress responses. However, the core ATG8 homologs and their roles in stress resistance remain elusive in allotetraploid rapeseed (AACC, Brassica napus L.). In this study, we identified 29 ATG8 subgroup members, consisting of three phylogenetic clades, based on the analysis of genomic annotation and conserved motifs. Differential transcriptional responses of BnaATG8s to salt stress, nitrogen limitation, and other nutrient stresses were investigated, and we identified BnaA8.ATG8F as the core ATG8 member through gene co-expression network analysis. Decreased BnaA8.ATG8F expression repressed the salt tolerance of transgenic rapeseed plants by significantly reducing the root Na+ retention under salt stress. Moreover, downregulation of BnaA8.ATG8F increased nitrogen (N) limitation sensitivity of transgenic rapeseed plants through decreasing N uptake, translocation, and enhancing N remobilization under nitrogen starvation. In summary, we identified the core ATG8 homologs and characterized their physiological and molecular mechanisms underlying salt stress tolerance and nitrogen limitation adaptation. Our results may provide elite genetic resources for the genetic improvement of nutrient stress tolerance in rapeseed.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Filogenia , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
18.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233342

RESUMEN

Melanoma originates from the malignant transformation of melanocytes. Compared with other skin cancers, melanoma has a higher fatality rate. The 5-year survival rate of patients with early-stage primary melanoma through surgical resection can reach more than 90%. However, the 5-year survival rate of patients with metastatic melanoma is only 25%. Therefore, accurate assessment of melanoma progression is critical. Previous studies have found that Retinoic Acid Induced 14(RAI14) is critical in tumorigenesis. However, the biological function of RAI14 for the development of melanoma is unclear. In this study, RAI14 is highly expressed in melanoma and correlated with prognosis. The expression of RAI14 can affect the proliferation, migration and invasion of melanoma cells. F-Box Protein 32(FBXO32) is an E3 ubiquitin ligase of c-MYC. We found that RAI14 affects the transcriptional expression of FBXO32 and regulates the stability of c-MYC. These results suggest that RAI14 play an important role in the growth of melanoma and is expected to be a therapeutic target for melanoma.


Asunto(s)
Proteínas del Citoesqueleto , Proteínas F-Box , Melanoma , Neoplasias Cutáneas , Factores de Transcripción , Proliferación Celular/genética , Transformación Celular Neoplásica , Proteínas del Citoesqueleto/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Melanoma/genética , Melanoma/patología , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
19.
BMC Plant Biol ; 22(1): 502, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36289462

RESUMEN

BACKGROUND: Soil salinization has become a global problem restricting the seed yield and quality of crops, including wheat (Triticum aestivum L.). Salinity significantly alters plant morphology and severely disrupts physiological homeostasis. Salt tolerance of wheat has been widely studied whereas core ion transporters responsive to salt stress remain elusive. RESULTS: In this study, the wheat seedlings were subjected to salinity toxicity for morpho-physiological and transcriptomic analysis of wheat salt tolerance. There was a inversely proportional relationship between salt concentrations and morpho-physiological parameters. Under the condition of 100 mM NaCl, the H2O2, O2-, MDA content and membrane permeability were significantly increased whereas the chlorophyll content was markedly decreased. Under salt stress, a larger proportion of Na+ was partitioned in the roots than in the shoots, which had a lower Na+/K+ ratio and proline content. Salt stress also obviously affected the homeostasis of other cations. Genome-wide transcriptomic analysis showed that a total of 2,807 and 5,570 differentially expressed genes (DEGs) were identified in the shoots and roots, respectively. Functionality analysis showed that these DEGs were mainly enriched in the KEGG pathways related to carbon metabolism, phenylalanine, and amino acid biosynthesis, and were primarily enriched in the GO terms involving proline metabolism and redox processes. The Na+ transporter genes were upregulated under salt stress, which repressed the gene expression of the K+ transporters. Salt stress also significantly elevated the expression of the genes involved in osmoregulation substances biosynthesis, and obviously affected the expression profiling of other cation transporters. Co-expression network analysis identified TaNHX6-D5/TaNHX4-B7 and TaP5CS2-B3 potentially as core members regulating wheat salt tolerance. CONCLUSIONS: These results might help us fully understand the morpho-physiological and molecular responses of wheat seedlings to salt stress, and provide elite genetic resources for the genetic modification of wheat salt tolerance.


Asunto(s)
Plantones , Triticum , Triticum/metabolismo , Plantones/genética , Plantones/metabolismo , Osmorregulación , Peróxido de Hidrógeno/metabolismo , Cloruro de Sodio/metabolismo , Estrés Salino/genética , Salinidad , Sodio/metabolismo , Clorofila/metabolismo , Prolina/metabolismo , Carbono/metabolismo , Nutrientes , Suelo , Fenilalanina/metabolismo , Aminoácidos/metabolismo , Estrés Fisiológico/genética
20.
J Exp Bot ; 73(22): 7516-7537, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36063365

RESUMEN

Cadmium (Cd) is a highly toxic heavy metal that readily enters cereals, such as wheat, via the roots and is translocated to the shoots and grains, thereby posing high risks to human health. However, the vast and complex genome of allohexaploid wheat makes it challenging to understand Cd resistance and accumulation. In this study, a Cd-resistant cultivar of wheat, 'ZM1860', and a Cd-sensitive cultivar, 'ZM32', selected from a panel of 442 accessions, exhibited significantly different plant resistance and grain accumulation. We performed an integrated comparative analysis of the morpho-physiological traits, ionomic and phytohormone profiles, genomic variations, transcriptomic landscapes, and gene functionality in order to identify the mechanisms underlying these differences. Under Cd toxicity, 'ZM1860' outperformed 'ZM32', which showed more severe leaf chlorosis, poorer root architecture, higher accumulation of reactive oxygen species, and disordered phytohormone homeostasis. Ionomics showed that 'ZM32' had a higher root-to-shoot translocation coefficient of Cd and accumulated more Cd in the grains than 'ZM1860'. Whole-genome re-sequencing (WGS) and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in abiotic stress responses and ion transport between the two genotypes. Combined ionomics, transcriptomics, and functional gene analysis identified the plasma membrane-localized heavy metal ATPase TaHMA2b-7A as a crucial Cd exporter regulating long-distance Cd translocation in wheat. WGS- and PCR-based analysis of sequence polymorphisms revealed a 25-bp InDel site in the promoter region of TaHMA2b-7A, and this was probably responsible for the differential expression. Our multiomics approach thus enabled the identification of a core transporter involved in long-distance Cd translocation in wheat, and it may provide an elite genetic resource for improving plant Cd resistance and reducing grain Cd accumulation in wheat and other cereal crops.


Asunto(s)
Cadmio , Triticum , Multiómica , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA