Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 326
1.
Mol Med ; 30(1): 58, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720283

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


AMP-Activated Protein Kinases , Exenatide , Glucagon-Like Peptide-1 Receptor , Mitophagy , Signal Transduction , Vascular Calcification , Animals , Mitophagy/drug effects , Vascular Calcification/etiology , Vascular Calcification/metabolism , Vascular Calcification/drug therapy , Signal Transduction/drug effects , Mice , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Humans , Exenatide/pharmacology , Exenatide/therapeutic use , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Mice, Inbred C57BL
2.
BMC Plant Biol ; 24(1): 376, 2024 May 08.
Article En | MEDLINE | ID: mdl-38714947

BACKGROUND: Casuarina equisetifolia (C. equisetifolia) is a woody species with many excellent features. It has natural resistance against drought, salt and saline-alkali stresses. WRKY transcription factors (TFs) play significant roles in plant response to abiotic stresses, therefore, molecular characterization of WRKY gene family under abiotic stresses holds great significance for improvement of forest trees through molecular biological tools. At present, WRKY TFs from C. equisetifolia have not been thoroughly studied with respect to their role in salt and saline-alkali stresses response. The current study was conducted to bridge the same knowledge gap. RESULTS: A total of 64 WRKYs were identified in C. equisetifolia and divided into three major groups i.e. group I, II and III, consisting of 10, 42 and 12 WRKY members, respectively. The WRKY members in group II were further divided into 5 subgroups according to their homology with Arabidopsis counterparts. WRKYs belonging to the same group exhibited higher similarities in gene structure and the presence of conserved motifs. Promoter analysis data showed the presence of various response elements, especially those related to hormone signaling and abiotic stresses, such as ABRE (ABA), TGACG (MeJA), W-box ((C/T) TGAC (T/C)) and TC-rich motif. Tissue specific expression data showed that CeqWRKYs were mainly expressed in root under normal growth conditions. Furthermore, most of the CeqWRKYs were up-regulated by NaCl and NaHCO3 stresses with few of WRKYs showing early responsiveness to both stresses while few others exhibiting late response. Although the expressions of CeqWRKYs were also induced by cold stress, the response was delayed compared with other stresses. Transgenic C. equisetifolia plants overexpressing CeqWRKY11 displayed lower electrolyte leakage, higher chlorophyll content, and enhanced tolerance to both stresses. The higher expression of abiotic stress related genes, especially CeqHKT1 and CeqPOD7, in overexpression lines points to the maintenance of optimum Na+/K+ ratio, and ROS scavenging as possible key molecular mechanisms underlying salt stress tolerance. CONCLUSIONS: Our results show that CeqWRKYs might be key regulators of NaCl and NaHCO3 stresses response in C. equisetifolia. In addition, positive correlation of CeqWRKY11 expression with increased stress tolerance in C. equisetifolia encourages further research on other WRKY family members through functional genomic tools. The best candidates could be incorporated in other woody plant species for improving stress tolerance.


Plant Proteins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Sodium Chloride/pharmacology , Phylogeny , Sodium Bicarbonate/pharmacology , Salt Stress/genetics , Stress, Physiological/genetics , Genome, Plant
3.
Sensors (Basel) ; 24(8)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38676276

Partial discharge detection is considered a crucial technique for evaluating insulation performance and identifying defect types in cable terminals of high-speed electric multiple units (EMUs). In this study, terminal samples exhibiting four typical defects were prepared from high-speed EMUs. A cable discharge testing system, utilizing high-frequency current sensing, was developed to collect discharge signals, and datasets corresponding to these defects were established. This study proposes the use of the convolutional neural network (CNN) for the classification of discharge signals associated with specific defects, comparing this method with two existing neural network (NN)-based classification models that employ the back-propagation NN and the radial basis function NN, respectively. The comparative results demonstrate that the CNN-based model excels in accurately identifying signals from various defect types in the cable terminals of high-speed EMUs, surpassing the two existing NN-based classification models.

4.
Article En | MEDLINE | ID: mdl-38686647

Nanocarriers have been researched comprehensively for the development of novel boron-containing agents in boron neutron capture therapy (BNCT). We designed and synthesized a multifunctional mesoporous silica nanoparticle (MSN)-based boron-containing agent. The latter was coated with a lipid bilayer (LB) and decorated with SP94 peptide (SFSIIHTPILPL) on the surface as SP94-LB@BA-MSN. The latter incorporated boric acid (BA) into hydrophobic mesopores, coated with an LB, and modified with SP94 peptide on the LB. SP94-LB@BA-MSN enhanced nano interface tumor-targeting ability but also prevented the premature release of drugs, which is crucial for BNCT because adequate boron content in tumor sites is required. SP94-LB@BA-MSN showed excellent efficacy in the BNCT treatment of HepG-2 cells. In animal studies with tumor-bearing mice, SP94-LB@BA-MSN exhibited a satisfactory accumulation at the tumor site. The boron content reached 40.18 ± 5.41 ppm in the tumor site 4 h after injection, which was 8.12 and 15.51 times higher than those in mice treated with boronated phenylalanine and those treated with BA. For boron, the tumor-to-normal tissue ratio was 4.41 ± 1.13 and the tumor-to-blood ratio was 5.92 ± 0.45. These results indicated that nanoparticles delivered boron to the tumor site effectively while minimizing accumulation in normal tissues. In conclusion, this composite (SP94-LB@BA-MSN) shows great promise as a boron-containing delivery agent for the treatment of hepatocellular carcinoma using BNCT. These findings highlight the potential of MSNs in the field of BNCT.

5.
Diagn Microbiol Infect Dis ; 109(3): 116289, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38663334

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening immune disorder categorized as familial HLH or secondary HLH. Our case report describes a 63-year-old woman with epilepsy whose clinical signs were unremitting fever and altered consciousness. Primary abnormalities consisted of fever, splenomegaly, cytopenia, hypertriglyceridemia, hyperferritinemia and hemophagocytosis in the bone marrow. Results of blood next generation sequencing and blood culture confirmed Brucella infection. This report illustrates a sHLH case caused by Brucella melitensis infection. Here, we review the classification, clinical features, diagnostic methods, treatment regimens, differential diagnosis, and prognosis of HLH and brucellosis.

8.
Clin Neurol Neurosurg ; 240: 108245, 2024 May.
Article En | MEDLINE | ID: mdl-38518629

BACKGROUND: The percutaneous balloon compression (PBC) is a safe and simple treatment for trigeminal neuralgia. It works by compressing the Gasserian ganglion to block pain signals from the trigeminal nerve. To ensure effectiveness, it is important to focus the compression on the lower part of the balloon. OBJECTIVE: To validate the efficacy of a riveting technique, specifically pulling an inflated balloon, in order to apply enhanced compression on the ganglion. METHODS: To compare this novel technique with the conventional approach, a retrospective investigation was conducted on consecutive PBCs performed in our department between 2019 and 2022. For postoperative outcome assessment, efficacy was defined as achieving a VAS score of 0 or an improvement exceeding 5 points. Postoperative numbness was graded as none, mild, or severe based on its impact on daily life and tolerance level. RESULTS: Excluding cases with missed follow-up, a total of 179 participants were included in the study, and their follow-up period ranged up to 40 months. Postoperatively, symptomatic remission was achieved by 98.1% (52/53) of patients in the riveting technique group compared to 87.3% (110/126) in the conventional group (P<0.05). At the last follow-up period, with recurrence observed over time, the long-term efficacy of riveting and conventional groups were 94.3% and 74.6%, respectively (P<0.05). The majority of cases in both groups experienced ipsilateral facial numbness immediately following PBC, which appeared to diminish after 3 months in both groups without significant difference between them (P>0.05).


Trigeminal Neuralgia , Trigeminal Neuralgia/surgery , Trigeminal Neuralgia/therapy , Humans , Female , Male , Middle Aged , Aged , Retrospective Studies , Treatment Outcome , Trigeminal Ganglion/surgery , Adult , Aged, 80 and over
10.
J Ethnopharmacol ; 325: 117868, 2024 May 10.
Article En | MEDLINE | ID: mdl-38325668

ETHNOPHARMACOLOGICAL RELEVANCE: Da Chuanxiong Formula (DCX) is a traditional herbal compound composed of Gastrodia elata Bl. and Ligusticum chuanxiong Hort, which could significantly enhance blood circulation and neuroprotection, showing promise in treating Vascular Cognitive Impairment (VCI). AIM OF STUDY: This study aims to elucidate the potential of DCX in treating VCI and its underlying mechanism. MATERIALS AND METHODS: Firstly, the cognitive behavior level, blood flow changes, and brain pathology changes were evaluated through techniques such as the Morris water maze, step-down, laser speckle, coagulation analysis, and pathological staining to appraise the DCX efficacy. Then, the DCX targeting pathways were decoded by merging metabolomics with transcriptomics. Finally, the levels of reactive oxygen species (ROS), Fe2+, and lipid peroxidation related to the targeting signaling pathways of DCX were detected by kit, and the expression levels of mRNAs or proteins related to ferroptosis were determined by qPCR or Western blot assays respectively. RESULTS: DCX improved cognitive abilities and cerebral perfusion significantly, and mitigated pathological damage in the hippocampal region of VCI model rats. Metabolomics revealed that DCX was able to call back 33 metabolites in plasma and 32 metabolites in brain samples, and the majority of the differential metabolites are phospholipid metabolites. Transcriptomic analysis revealed that DCX regulated a total of 3081 genes, with the ferroptosis pathway exhibiting the greatest impact. DCX inhibited ferroptosis of VCI rates by decreasing the levels of ferrous iron, ROS, and malondialdehyde (MDA) while increasing the level of superoxide dismutase (SOD) and glutathione (GSH) in VCI rats. Moreover, the mRNA and protein levels of ACSL4, LPCAT3, ALOX15, and GPX4, which are related to lipid metabolism in ferroptosis, were also regulated by DCX. CONCLUSION: Our research findings indicated that DCX could inhibit ferroptosis through the ACSL4/GPX4 signaling pathway, thereby exerting its therapeutic benefits on VCI.


Cognitive Dysfunction , Ferroptosis , Animals , Rats , Reactive Oxygen Species , Metabolomics , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Gene Expression Profiling , Glutathione
11.
J Ethnopharmacol ; 326: 117841, 2024 May 23.
Article En | MEDLINE | ID: mdl-38310988

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prominent cause of liver-related death that poses a threat to global health and is characterized by severe hepatic steatosis, lobular inflammation, and ballooning degeneration. To date, no Food and Drug Administration-approved medicine is commercially available. The Chaihu Guizhi Ganjiang Decoction (CGGD) shows potential curative effects on regulation of blood lipids and blood glucose, mitigation of organism inflammation, and amelioration of hepatic function. However, the overall regulatory mechanisms underlying its effects on NASH remain unclear. PURPOSE: This study aimed to investigate the efficiency of CGGD on methionine- and choline-deficient (MCD)-induced NASH and unravel its underlying mechanisms. METHODS: A NASH model of SD rats was established using an MCD diet for 8 weeks, and the efficacy of CGGD was evaluated based on hepatic lipid accumulation, inflammatory response, and fibrosis. The effects of CGGD on the intestinal barrier, metabolic profile, and differentially expressed genes (DEGs) profile were analyzed by integrating gut microbiota, metabolomics, and transcriptome sequencing to elucidate its mechanisms of action. RESULTS: In MCD-induced NASH rats, pathological staining demonstrated that CGGD alleviated lipid accumulation, inflammatory cell infiltration, and fibrosis in the hepatic tissue. After CGGD administration, liver index, liver weight, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) contents, liver triglycerides (TG), and free fatty acids (FFAs) were decreased, meanwhile, it down-regulated the level of proinflammatory mediators (TNF-α, IL-6, IL-1ß, MCP-1), and up-regulated the level of anti-inflammatory factors (IL-4, IL-10), and the expression of liver fibrosis markers TGFß, Acta2, Col1a1 and Col1a2 were weakened. Mechanistically, CGGD treatment altered the diversity of intestinal flora, as evidenced by the depletion of Allobaculum, Blautia, norank_f_Erysipelotrichaceae, and enrichment of the probiotic genera Roseburia, Lactobacillus, Lachnoclostridium, etc. The colonic histopathological results indicated that the gut barrier damage recovered in the CGGD treatment group, and the expression levels of colonic short-chain fatty acids (SCFAs)-specific receptors FFAR2, FFAR3, and tight junction (TJs) proteins ZO-1, Occludin, Claudin-1 were increased compared with those in the model group. Further metabolomic and transcriptomic analyses suggested that CGGD mitigated the lipotoxicity caused by glycerophospholipid and eicosanoid metabolism disorders by decreasing the levels of PLA2G4A, LPCAT1, COX2, and LOX5. In addition, CGGD could activate the inhibitory lipotoxic transcription factor PPARα, regulate the proteins of FABP1, APOC2, APOA2, and LPL to promote fatty acid catabolism, and suppress the TLR4/MyD88/NFκB pathway to attenuate NASH. CONCLUSION: Our study demonstrated that CGGD improved steatosis, inflammation, and fibrosis on NASH through enhancing intestinal barrier integrity and alleviating PPARα mediated lipotoxicity, which makes it an attractive candidate for potential new strategies for NASH prevention and treatment.


Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , Rats , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Rats, Sprague-Dawley , Liver , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Inflammation/pathology , Lipids/pharmacology , Methionine/metabolism , Mice, Inbred C57BL
12.
Sci Total Environ ; 918: 170622, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38325490

In this study, the aerosol size distributions, cloud condensation nuclei (CCN) number concentration (NCCN), single-particle chemical composition and meteorological data were collected from May 12 to June 8, 2017, at the summit of Mt. Tai. The effects of new particle formation (NPF) events and aerosol chemical components on CCN at Mt. Tai were analyzed in detail. The results showed that, NPF events significantly enhanced the CCN population, and the enhancement effect increased with increasing supersaturation (SS) value at Mt.Tai. NCCN at SS ranging from 0.1 to 0.9 % on NPF days was 10.9 %, 36.5 %, 44.6 %, 53.5 % and 51.5 % higher than that on non-NPF days from 10:00-13:00 as NPF events progressed. The effect of chemical components on CCN activation under the influence of NPF events was greater than that in the absence of NPF events. The correlation coefficients of EC-Nitrate particles (EC-Sulfate particles) and CCN at all SS levels on NPF days were 1.31-1.59 times (1.17-1.35 times) higher than those on non-NPF days. Nitrate particles promoted CCN activation but sulfate particles inhibited activation at Mt. Tai. There are differences or even opposite effects of the same group of particles on CCN activation under the influence of NPF events in different air masses. EC-Sulfate particles inhibited CCN activation at all SS levels for type I but weakly promoted activation at lower SS ranging from 0.1 to 0.3 % and weakly inhibited it at higher 0.9 % SS for type II. OCEC particles significantly inhibited CCN activation for type II, and this effect decreased with increasing SS. OCEC particles only weakly inhibited activation at SS ranging from 0.5 to 0.7 % for type I. OCEC particles only weakly inhibited this process at 0.1 % SS, while they very weakly promoted activation for SS > 0.1 %. This reveals that the CCN activity is not only related to the chemical composition of the particles, but the mixing state also has an important effect on the CCN activity.

13.
Brain ; 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38226680

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment. Synaptic dysfunction has appeared in the early stage of AD and is significantly correlated with cognitive impairment. However, the specific regulatory mechanism remains unclear. Here we found upregulated Maf1 transcription factor in AD, and Maf1 conditional knockout in AD transgenic mice restored learning and memory function. Downregulation of Maf1 reduced intraneuronal Ca2+ concentration and restored neuronal synaptic morphology. We also demonstrated that Maf1 regulates the expression of NMDAR1 by binding to the promoter region of Grin1, further regulating calcium homeostasis and synaptic remodeling in neurons. Therefore, our results clarified the important role and mechanism of the Maf1-NMDAR1 signaling pathway in the stability of the synaptic structure, neuronal function, and behavior during the pathogenesis of AD, serving as a potential diagnostic and therapeutic target for the early onset of AD.

14.
ACS Appl Mater Interfaces ; 16(3): 3232-3242, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38221726

Accurate prediction of the relative biological effectiveness (RBE) of boron neutron capture therapy (BNCT) is challenging. The therapy is different from other radiotherapy; the dynamic distribution of boron-containing compounds in tumor cells affects the therapeutic outcome considerably and hampers accurate measurement of the neutron-absorbed dose. Herein, we used boron-containing metal-organic framework nanoparticles (BMOFs) with high boron content to target U87-MG cells and maintain the concentration of the 10B isotope in cells. The content of boron in the cells could maintain 90% (60 ppm) within 20 min compared with that at the beginning; therefore, the accurate RBE of BNCT can be acquired. The effects of BNCT upon cells after neutron irradiation were observed, and the neutron-absorbed dose was obtained by Monte Carlo simulations. The RBE of BMOFs was 6.78, which was 4.1-fold higher than that of a small-molecule boron-containing agent (boric acid). The energy spectrum of various particles was analyzed by Monte Carlo simulations, and the RBE was verified theoretically. Our results suggested that the use of nanoparticle-based boron carriers in BNCT may have many advantages and that maintaining a stable boron distribution within cells may significantly improve the efficiency of BNCT.


Boron Neutron Capture Therapy , Boron , Boron Neutron Capture Therapy/methods , Relative Biological Effectiveness , Neutrons
15.
Acta Pharmacol Sin ; 45(2): 327-338, 2024 Feb.
Article En | MEDLINE | ID: mdl-37845344

Tricyclic antidepressants (TCAs) are widely used to treat depression and anxiety-related mood disorders. But evidence shows that TCAs elevate blood glucose levels and inhibit insulin secretion, suggesting that TCAs are a risk factor, particularly for individuals with diabetes. Curcumin is a bioactive molecule from the rhizome of the Curcuma longa plant, which has shown both antidepressant and anti-diabetic activities. In the present study, we investigated the protective effect of curcumin against desipramine-induced apoptosis in ß cells and the underlying molecular mechanisms. In the mouse forced swimming test (FST), we found that lower doses of desipramine (5 and 10 mg/kg) or curcumin (2.5 mg/kg) alone did not affect the immobility time, whereas combined treatment with curcumin (2.5 mg/kg) and desipramine (5, 10 mg/kg) significantly decreased the immobility time. Furthermore, desipramine dose-dependently inhibited insulin secretion and elevated blood glucose levels, whereas the combined treatment normalized insulin secretion and blood glucose levels. In RIN-m5F pancreatic ß-cells, desipramine (10 µM) significantly reduced the cell viability, whereas desipramine combined with curcumin dose-dependently prevented the desipramine-induced impairment in glucose-induced insulin release, most effectively with curcumin (1 and 10 µM). We demonstrated that desipramine treatment promoted the cleavage and activation of Caspase 3 in RIN-m5F cells. Curcumin treatment inhibited desipramine-induced apoptosis, increased mitochondrial membrane potential and Bcl-2/Bax ratio. Desipramine increased the generation of reactive oxygen species, which was reversed by curcumin treatment. Curcumin also inhibited the translocation of forkhead box protein O1 (FOXO1) from the cytoplasm to the nucleus and suppressed the binding of A-kinase anchor protein 150 (AKAP150) to protein phosphatase 2B (PP2B, known as calcineurin) that was induced by desipramine. These results suggest that curcumin protects RIN-m5F pancreatic ß-cells against desipramine-induced apoptosis by inhibiting the phosphoinositide 3-kinase/AKT/FOXO1 pathway and the AKAP150/PKA/PP2B interaction. This study suggests that curcumin may have therapeutic potential as an adjunct to antidepressant treatment.


Curcumin , Mice , Animals , Curcumin/pharmacology , Desipramine/pharmacology , Blood Glucose , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis , Antidepressive Agents/pharmacology
16.
Small ; 20(14): e2307756, 2024 Apr.
Article En | MEDLINE | ID: mdl-37987091

Organic photomechanical molecular crystals are promising candidates for photoactuators, which have potential applications as smart materials in various fields. However, it is still challenging to fabricate photomechanical molecular crystals with flexibility because most of the molecular crystals are brittle and the mechanism of flexible crystals remains controversial. Here, a plastically flexible α-cyanostilbene crystal has been synthesized that can undergo solid-state [2+2] cycloaddition reaction under violet or UV irradiation and exhibits excellent photomechanical bending properties. A hook-shaped crystal can lift 0.7 mg object upward by 1.5 cm, which proves its potential for application as photoactuators. When complex with the agarose polymer, the molecules will be in the form of macroscopic crystals, which can drive the composite films to exhibit excellent photomechanical bending performance. Upon irradiation with UV light, the composite film can quickly lift 18.0 mg object upward by 0.3 cm. The results of this work may facilitate the application of macroscale crystals as photoactuators.

17.
Nat Cancer ; 5(1): 66-84, 2024 Jan.
Article En | MEDLINE | ID: mdl-38151625

Chromosomal instability (CIN) is a hallmark of cancer, caused by persistent errors in chromosome segregation during mitosis. Aggressive cancers like high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) have a high frequency of CIN and TP53 mutations. Here, we show that inhibitors of the KIF18A motor protein activate the mitotic checkpoint and selectively kill chromosomally unstable cancer cells. Sensitivity to KIF18A inhibition is enriched in TP53-mutant HGSOC and TNBC cell lines with CIN features, including in a subset of CCNE1-amplified, CDK4-CDK6-inhibitor-resistant and BRCA1-altered cell line models. Our KIF18A inhibitors have minimal detrimental effects on human bone marrow cells in culture, distinct from other anti-mitotic agents. In mice, inhibition of KIF18A leads to robust anti-cancer effects with tumor regression observed in human HGSOC and TNBC models at well-tolerated doses. Collectively, our results provide a rational therapeutic strategy for selective targeting of CIN cancers via KIF18A inhibition.


Kinesins , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Kinesins/genetics , Kinesins/metabolism , Mitosis/genetics , Cell Line , M Phase Cell Cycle Checkpoints
18.
Comput Biol Med ; 169: 107808, 2024 Feb.
Article En | MEDLINE | ID: mdl-38101119

The Traditional Chinese Medicine (TCM) has demonstrated its significant medical value over the decades, particularly during the COVID-19 pandemic. TCM-AI interdisciplinary models have been proposed to model TCM knowledge, diagnosis, and treatment experiments in clinical practice. Among them, numerous models have been developed to simulate the syndrome differentiation process of human TCM doctors for automatic syndrome diagnosis. However, these models are designed for normal scenarios and trained using a supervised learning paradigm which needs tens of thousands of training samples. They fail to effectively differentiate syndromes in rare disease scenarios where the available TCM electronic medical records (EMRs) are very limited for each unique syndrome. To address the challenge of rare diseases, this study proposes a simple yet effective method called Transfer Learning based Dual-Augmentation (TLDA). TLDA aims to augment the limited EMRs at both the sample-level and feature-level, enriching the pathological and medical information during training. Extended experiments involving 11 comparison models, including the state-of-the-art model, demonstrate the effectiveness of TLDA. TLDA outperforms all comparison models by a significant margin. Furthermore, TLDA can also be extended to other medical tasks when the EMRs for diagnosis are limited in samples.


Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Medicine, Chinese Traditional/methods , Rare Diseases/drug therapy , Pandemics , Syndrome , Machine Learning
19.
Front Nutr ; 10: 1239996, 2023.
Article En | MEDLINE | ID: mdl-38094922

Background: The impact of weight loss and/or improved metabolic status on the risk of non-alcoholic fatty liver disease (NAFLD) has yet to be determined. Methods: A total of 35,322 participants without NAFLD were followed. NAFLD risk was compared between consistently metabolically healthy non-obese (MHNO) and non-MHNO who lost weight to become non-obese and/or improved their metabolic health, using Cox proportional hazards and logistic regression models. Results: Following 148,186 person-years, 8,409 participants had onset NAFLD, with an incidence rate of 56.75 (95% CI: 55.57, 57.94) per 1,000 person-years. Metabolically healthy obese (MHO), metabolically unhealthy obese (MUO), and metabolically unhealthy non-obese (MUNO) at baseline were associated with increased NAFLD risk, with hazard ratios of 4.48 (95%CI:4.24, 4.73), 8.85 (95%CI:7.95, 9.84), and 10.70 (95%CI:9.73, 11.78). Weight loss and/or metabolic status improvements could significantly reduce NAFLD risk by 79.46 to 41.46%. Specifically, after weight loss from MHO to MHNO, the reduction in NAFLD risk [OR decreased from 12.01 (95%CI:9.40, 15.35) to 4.14 (95%CI:3.08, 5.57)] was greater than that of the MUNO subgroup whose metabolic status improved to MHNO [OR decreased from 5.53 (95%CI:5.15, 5.94) to 2.71 (95%CI:2.50, 3.93)]. In the MUO subgroup, the group with the greatest risk reduction of NAFLD was the weight and metabolic state both improvement group [MUO to MHNO, OR decreased from 22.74 (95%CI:17.61, 29.37) to 4.67 (95%CI:3.05, 7.16)], followed by the weight loss only group [MUO to MUNO, OR decreased to 6.83 (95%CI:4.87, 9.57)], and finally the group with the least and insignificant risk reduction was the metabolic state improvement group [MUO to MHO, OR decreased to 13.38 (95%CI:9.17,19.53)]. NAFLD risk was negatively correlated with the duration of improvement (p < 0.001). Conclusion: Individuals with non-MHNO were more likely to develop NAFLD than those with consistent MHNO, but metabolic improvements and weight loss can alleviate the risk. Their NAFLD risk was negatively correlated with improvement duration. However, it remained higher than in individuals with consistent MHNO at an average follow-up of 4.2 years.

20.
Sensors (Basel) ; 23(24)2023 Dec 18.
Article En | MEDLINE | ID: mdl-38139739

Head pose estimation serves various applications, such as gaze estimation, fatigue-driven detection, and virtual reality. Nonetheless, achieving precise and efficient predictions remains challenging owing to the reliance on singular data sources. Therefore, this study introduces a technique involving multimodal feature fusion to elevate head pose estimation accuracy. The proposed method amalgamates data derived from diverse sources, including RGB and depth images, to construct a comprehensive three-dimensional representation of the head, commonly referred to as a point cloud. The noteworthy innovations of this method encompass a residual multilayer perceptron structure within PointNet, designed to tackle gradient-related challenges, along with spatial self-attention mechanisms aimed at noise reduction. The enhanced PointNet and ResNet networks are utilized to extract features from both point clouds and images. These extracted features undergo fusion. Furthermore, the incorporation of a scoring module strengthens robustness, particularly in scenarios involving facial occlusion. This is achieved by preserving features from the highest-scoring point cloud. Additionally, a prediction module is employed, combining classification and regression methodologies to accurately estimate head poses. The proposed method improves the accuracy and robustness of head pose estimation, especially in cases involving facial obstructions. These advancements are substantiated by experiments conducted using the BIWI dataset, demonstrating the superiority of this method over existing techniques.

...