Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Proc Natl Acad Sci U S A ; 121(24): e2400639121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838018

Leaf wounding triggers rapid long-range electrical signaling that initiates systemic defense responses to protect the plants from further attack. In Arabidopsis, this process largely depends on clade three GLUTAMATE RECEPTOR-LIKE (GLR) genes GLR3.3 and GLR3.6. In the cellular context, phloem sieve elements and xylem contact cells where GLRs were mostly present are implicated in the signaling events. In spite of that, the spatial requirements of different leaf cell types for leaf-to-leaf signaling remain poorly investigated. In this study, we dissected cell-type-specific long-distance wound signaling mediated by GLR3s and showed that phloem companion cells are critical in shaping the functions of GLR3.3 and GLR3.6 in the signaling pathway. GLR3.3-mediated response is phloem-specific, during which, GLR3.3 has to be renewed from companion cells to allow its function in sieve elements. GLR3.6 functions dually in ectopic phloem companion cells, in addition to xylem contact cells. Furthermore, the action of GLR3.6 in phloem is independent of its paralog GLR3.3 and probably requires synthesis of GLR3.6 from xylem contact cells. Overall, our work highlights that the phloem companion cell is crucial for both GLRs in controlling leaf-to-leaf electrical signaling.


Arabidopsis Proteins , Arabidopsis , Phloem , Plant Leaves , Signal Transduction , Plant Leaves/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Phloem/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Receptors, Glutamate/metabolism , Xylem/metabolism , Gene Expression Regulation, Plant
2.
Abdom Radiol (NY) ; 2024 May 27.
Article En | MEDLINE | ID: mdl-38801559

PURPOSE: To assess changes in laboratory indices, paravertebral muscle (PVM) fat infiltration and multi b-value DWI parameters and their potential correlation with NAFLD. METHODS: This retrospective analysis included 178 patients with histopathologically confirmed NAFLD, incluiding 76 with non-alcoholic steatohepatitis (NASH). Differences in PVM fat infiltration ratio (FIR), DWI parameters, and laboratory indices were compared between two groups. The correlation between FIR and NAFLD activity score (NAS) was also analysed. Binary logistic regression was used to identify the independent risk factors for NASH. The clinical utility of PVM fat infiltration, DWI parameters, and laboratory indices for diagnosing NASH in patients with NAFLD was evaluated using receiver operating characteristic (ROC) curves. RESULTS: The FIRs at the L2 and L3 levels were significantly higher in the with NASH group than those in the without NASH group. The heterogeneity index (α) and perfusion fraction (f) values at the L3 level of PVM were lower in the with NASH group. Moreover, the FIR at the L3 level was positively correlated with NAS. FIR at the L3 level was an independent risk factor for NASH along with alanine aminotransferase level. The area under the ROC curve (AUC) using L3 level PVM radiological parameters and laboratory indices for diagnosing NASH in patients with NAFLD was significantly higher than that using the degree of PVM fat infiltration, DWI parameters, or laboratory indices alone. CONCLUSIONS: Radiological parameters of the PVM were correlated with NAFLD. An integrated curve combining PVM radiological parameters may help distinguish NASH from NAFLD, thereby offering novel insights into the diagnosis of NASH.

3.
Quant Imaging Med Surg ; 14(5): 3593-3605, 2024 May 01.
Article En | MEDLINE | ID: mdl-38720864

Background: The degeneration and functional decline of paravertebral muscles (PVMs) are reported to be closely linked to the incidence of degenerative lumbar scoliosis (DLS), a spinal deformity of the mature skeleton. However, the functional role and degeneration of PVMs and their relationship to the development of spinal deformities remain controversial. Therefore, the present study analyzed the morphological changes in the PVMs of patients with DLS, and explored the relationship between PVM degeneration and spinal osseous parameters. Methods: In this retrospective case-control study, we evaluated the PVM parameters of patients with DLS (n=120) and compared them with patients free of DLS (control group, n=120). The cross-sectional area (CSA) and computed tomography (CT) values of the PVM at the lumbar vertebra 1-5 levels were measured. Further, the lumbar scoliosis Cobb, lumbar lordotic, and apical vertebral rotation angles were measured on CT and radiographs in the DLS group, and the relationship between PVM changes and these factors was analyzed. Results: In the control group, the PVM CSA and CT values differed insignificantly between the bilateral sides at all levels (P>0.05). In the DLS group, the CSAs of the multifidus (MF) and erector spinae (ES) were larger on the convex side than the concave side (P>0.05), whereas that of the psoas major (PM) was smaller on the convex side than the concave side (P<0.05). The CT value of the PVM was lower on the convex side at all levels (P<0.05). The CSA and CT values on both sides of the patients were lower in the DLS group than the control group at all levels (P<0.05). Further, the degree of PVM asymmetry at the apical vertebral level was positively correlated with the lumbar scoliosis (P<0.01) and apical vertebral rotation angles (P<0.05), but negatively correlated with the lumbar lordotic angle (P<0.05). Conclusions: Asymmetric degeneration of the PVM was observed bilaterally in DLS patients, and the degeneration was more pronounced on the concave side than the convex side. This asymmetrical degeneration was closely associated with the severity of lumbar scoliosis, vertebral rotation, and loss of lumbar lordosis, and a stronger correlation was observed with the MF and ES than with the PM.

4.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732191

Acacia melanoxylon is highly valued for its commercial applications, with the heartwood exhibiting a range of colors from dark to light among its various clones. The underlying mechanisms contributing to this color variation, however, have not been fully elucidated. In an effort to understand the factors that influence the development of dark heartwood, a comparative analysis was conducted on the microstructure, substance composition, differential gene expression, and metabolite profiles in the sapwood (SW), transition zone (TZ), and heartwood (HW) of two distinct clones, SR14 and SR25. A microscopic examination revealed that heartwood color variations are associated with an increased substance content within the ray parenchyma cells. A substance analysis indicated that the levels of starches, sugars, and lignin were more abundant in SP compared to HW, while the concentrations of phenols, flavonoids, and terpenoids were found to be higher in HW than in SP. Notably, the dark heartwood of the SR25 clone exhibited greater quantities of phenols and flavonoids compared to the SR14 clone, suggesting that these compounds are pivotal to the color distinction of the heartwood. An integrated analysis of transcriptome and metabolomics data uncovered a significant accumulation of sinapyl alcohol, sinapoyl aldehyde, hesperetin, 2', 3, 4, 4', 6'-peptahydroxychalcone 4'-O-glucoside, homoeriodictyol, and (2S)-liquiritigenin in the heartwood of SR25, which correlates with the up-regulated expression of CCRs (evm.TU.Chr3.1751, evm.TU.Chr4.654_667, evm.TU.Chr4.675, evm.TU.Chr4.699, and evm.TU.Chr4.704), COMTs (evm.TU.Chr13.3082, evm.TU.Chr13.3086, and evm.TU.Chr7.1411), CADs (evm.TU.Chr10.2175, evm.TU.Chr1.3453, and evm.TU.Chr8.1600), and HCTs (evm.TU.Chr4.1122, evm.TU.Chr4.1123, evm.TU.Chr8.1758, and evm.TU.Chr9.2960) in the TZ of A. melanoxylon. Furthermore, a marked differential expression of transcription factors (TFs), including MYBs, AP2/ERFs, bHLHs, bZIPs, C2H2s, and WRKYs, were observed to be closely linked to the phenols and flavonoids metabolites, highlighting the potential role of multiple TFs in regulating the biosynthesis of these metabolites and, consequently, influencing the color variation in the heartwood. This study facilitates molecular breeding for the accumulation of metabolites influencing the heartwood color in A. melanoxylon, and offers new insights into the molecular mechanisms underlying heartwood formation in woody plants.


Acacia , Gene Expression Regulation, Plant , Wood , Acacia/metabolism , Acacia/genetics , Wood/metabolism , Wood/chemistry , Flavonoids/metabolism , Lignin/metabolism , Transcriptome , Phenols/metabolism , Gene Expression Profiling/methods , Metabolomics/methods
5.
Plants (Basel) ; 13(6)2024 Mar 18.
Article En | MEDLINE | ID: mdl-38592868

Acacia melanoxylon is a fast-growing macrophanerophyte with strong adaptability whose leaf enables heteromorphic development. Light is one of the essential environmental factors that induces the development of the heteroblastic leaf of A. melanoxylon, but its mechanism is unclear. In this study, the seedlings of A. melanoxylon clones were treated with weak light (shading net with 40% of regular light transmittance) and normal light (control) conditions for 90 d and a follow-up observation. The results show that the seedlings' growth and biomass accumulation were inhibited under weak light. After 60 days of treatment, phyllodes were raised under the control condition while the remaining compound was raised under weak light. The balance of root, stem, and leaf biomass changed to 15:11:74 under weak light, while it was 40:15:45 under control conditions. After comparing the anatomical structures of the compound leaves and phyllode, they were shown to have their own strategies for staying hydrated, while phyllodes were more able to control water loss and adapt to intense light. The compound leaves exhibited elevated levels of K, Cu, Ca, and Mg, increased antioxidant enzyme activity and proline content, and higher concentrations of chlorophyll a, carotenoids, ABA, CTK, and GA. However, they displayed a relatively limited photosynthetic capacity. Phyllodes exhibited higher levels of Fe, cellulose, lignin, IAA content, and high photosynthetic capacity with a higher maximum net photosynthetic rate, light compensation point, dark respiration rate, and water use efficiency. The comparative analysis of compound leaves and phyllodes provides a basis for understanding the diverse survival strategies that heteroblastic plants employ to adapt to environmental changes.

6.
Sci China Life Sci ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38676814

Plant genomics and crop breeding are at the intersection of biotechnology and information technology. Driven by a combination of high-throughput sequencing, molecular biology and data science, great advances have been made in omics technologies at every step along the central dogma, especially in genome assembling, genome annotation, epigenomic profiling, and transcriptome profiling. These advances further revolutionized three directions of development. One is genetic dissection of complex traits in crops, along with genomic prediction and selection. The second is comparative genomics and evolution, which open up new opportunities to depict the evolutionary constraints of biological sequences for deleterious variant discovery. The third direction is the development of deep learning approaches for the rational design of biological sequences, especially proteins, for synthetic biology. All three directions of development serve as the foundation for a new era of crop breeding where agronomic traits are enhanced by genome design.

7.
J Cosmet Dermatol ; 23(6): 2015-2021, 2024 Jun.
Article En | MEDLINE | ID: mdl-38426374

BACKGROUND: Acne vulgaris is a common inflammatory disease associated with various sequelae after skin lesion remission. Acne erythema has been considered simple erythema or a vascular lesion; however, because the understanding of this disease has improved, acne erythema is currently considered an early scar with erythematous components. AIMS: This study evaluated the efficacy of using both a 595-nm pulsed dye laser (PDL) and 1565-nm nonablative fractional laser (NAFL) for the treatment of erythematous scars caused by acne. METHODS: Ninety patients with acne scars were equally randomized to two groups. Group A (n = 45) received treatment with the NAFL. Group B (n = 45) received treatment with the PDL and NAFL. Each patient underwent one treatment session and 4 weeks of follow-up. RESULTS: Qualitative (χ2 = 12.415; p < 0.05) and quantitative (t = 2.675; p < 0.05) scores of Groups A and B were determined using a global scarring grading system and exhibited statistically significant differences. The quantitative score of Group A was higher than that of Group B (6.67 ± 3.46 vs. 4.98 ± 2.44). The erythema areas of the groups differed significantly after treatment, with Group B exhibiting more notable score improvements (5.00 [3.10, 7.10] vs. 2.80 [1.65, 4.60]; Z = 3.072; p < 0.05). The erythema regression rate of Group B (88.9%) was significantly higher than that of Group A (66.7%) (χ2 = 20.295; p < 0.001). Adverse events, including redness and swelling (86.6%), scabbing (78.8%), and purpura (36.6%), occurred within 7 days for 86.6% of patients. CONCLUSIONS: The combined use of the PDL and NAFL is safe and effective for erythematous acne scars.


Acne Vulgaris , Cicatrix , Erythema , Lasers, Dye , Humans , Lasers, Dye/therapeutic use , Lasers, Dye/adverse effects , Acne Vulgaris/complications , Acne Vulgaris/radiotherapy , Cicatrix/etiology , Cicatrix/therapy , Cicatrix/diagnosis , Cicatrix/radiotherapy , Female , Male , Erythema/etiology , Adult , Young Adult , Treatment Outcome , Low-Level Light Therapy/adverse effects , Low-Level Light Therapy/methods , Low-Level Light Therapy/instrumentation , Lasers, Solid-State/therapeutic use , Lasers, Solid-State/adverse effects , Combined Modality Therapy/methods , Combined Modality Therapy/adverse effects , Severity of Illness Index , Adolescent
8.
BMC Plant Biol ; 24(1): 19, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38166635

BACKGROUND: Camellia olelfera petals are colorful, and have high ornamental value. However, the color formation mechanism of C. olelfera petals with different color is still unclear. In our study, WGCNA method was applied to integrate metabolites and transcriptomes to investigate the coloration mechanism of four C. olelfera cultivars with different petal colors. RESULTS: Here, a total of 372 flavonoids were identified (including 27 anthocyanins), and 13 anthocyanins were significantly differentially accumulated in C. olelfera petals. Among them, cyanidin-3-O-(6''-O-p-Coumaroyl) glucoside was the main color constituent in pink petals, cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-(6''-O-malonyl) glucoside were the main contributors to candy pink petals, and peonidin-3-O-glucoside was the important color substance responsible for the red petals of C. oleifera. Furthermore, six structural genes (Co4CL1, CoF3H1, CoF3'H, CoANS, CoUGT75C1-4, and CoUGT75C1-5), three MYBs (CoMYB1, CoMYB4, and CoMYB44-3), three bHLHs (CobHLH30, CobHLH 77, and CobHLH 79-1), and two WRKYs (CoWRKY7 and CoWRKY22) could be identified candidate genes related to anthocyanins biosynthesis and accumulation, and lead to the pink and red phenotypes. The regulatory network of differentially accumulated anthocyanins and the anthocyanins related genes in C. olelfera petals were established. CONCLUSIONS: These findings elucidate the molecular basis of the coloration mechanisms of pink and red color in C. olelfera petals, and provided valuable target genes for future improvement of petals color in C. olelfera.


Anthocyanins , Camellia , Anthocyanins/metabolism , Camellia/genetics , Camellia/metabolism , Flowers/metabolism , Gene Expression Profiling , Transcriptome , Metabolome , Glucosides/metabolism , Color
9.
Front Plant Sci ; 14: 1305069, 2023.
Article En | MEDLINE | ID: mdl-38126008

Biological effects of magnetic fields have been extensively studied in plants, microorganisms and animals, and applications of magnetic fields in regulation of plant growth and phytoprotection is a promising field in sustainable agriculture. However, the effect of magnetic fields especially ultra-high static magnetic field (UHSMF) on genomic stability is largely unclear. Here, we investigated the mutagenicity of 24.5, 30.5 and 33.0 T UHSMFs with the gradient of 150, 95 and 0 T/m, respectively, via whole genome sequencing. Our results showed that 1 h exposure of Arabidopsis dried seeds to UHSMFs has no significant effect on the average rate of DNA mutations including single nucleotide variations and InDels (insertions and deletions) in comparison with the control, but 33.0 T and 24.5 T treatments lead to a significant change in the rate of nucleotide transitions and InDels longer than 3 bp, respectively, suggesting that both strength and gradient of UHSMF impact molecular spectrum of DNA mutations. We also found that the decreased transition rate in UHSMF groups is correlated with the upstream flanking sequences of G and C mutation sites. Furthermore, the germination rate of seeds exposed to 24.5 T SMF with -150 T/m gradient showed a significant decrease at 24 hours after sowing. Overall, our data lay a basis for precisely assessing the potential risk of UHSMF on DNA stability, and for elucidating molecular mechanism underlying gradient SMF-regulated biological processes in the future.

10.
Molecules ; 28(21)2023 Oct 24.
Article En | MEDLINE | ID: mdl-37959668

To systematically and comprehensively investigate the metabolic characteristics of coloring substances and floral aroma substances in Camellia oleifera petals with different colors, ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) and headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics methods were applied to determine the metabolic profiles of white, candy-pink and dark-red petals. The results revealed that 270 volatile organic compounds were detected, mainly terpenoids, heterocyclic, esters, hydrocarbons, aldehydes, and alcohols, in which phenylethyl alcohol, lilac alcohol, and butanoic acid, 1-methylhexyl ester, hotrienol, alpha-terpineol and 7-Octen-4-ol, 2-methyl-6-methylene-, (S)-, butanoic acid, 2-methyl-, 2-methylbutyl ester, 2,4-Octadienal, (E,E)- could act as the floral scent compounds. A total of 372 flavonoid compounds were identified, and luteolin, kaempferol, cyanidin and peonidin derivatives were considered as the main coloring substances for candy-pink and dark-red petal coloration. In conclusion, this study intuitively and quantitatively exhibited the variations in flower color and floral scent of C. oleifera petal with different colors caused by changes in variations of flavonoids and volatile organic compound composition, and provided useful data for improving the sensory quality and breeding of C. oleifera petals.


Camellia , Volatile Organic Compounds , Flavonoids/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Butyric Acid , Plant Breeding , Alcohols , Esters , Volatile Organic Compounds/analysis , Solid Phase Microextraction/methods , Odorants/analysis
11.
Plants (Basel) ; 12(19)2023 Oct 09.
Article En | MEDLINE | ID: mdl-37836251

Anthocyanins are among the flavonoids that serve as the principal pigments affecting the color of plants. During leaf growth, the leaf color of 'Zhonghuahongye' gradually changes from copper-brown to yellow-green. At present, the mechanism of color change at different stages has not yet been discovered. To find this, we compared the color phenotype, metabolome, and transcriptome of the three leaf stages. The results showed that the anthocyanin content of leaves decreased by 62.5% and the chlorophyll content increased by 204.35%, 69.23%, 155.56% and 60%, respectively. Differential metabolites and genes were enriched in the pathway related to the synthesis of 'Zhonghuahongye' flavonoids and anthocyanins and to the biosynthesis of secondary metabolites. Furthermore, 273 flavonoid metabolites were detected, with a total of eight classes. DFR, FLS and ANS downstream of anthocyanin synthesis may be the key structural genes in reducing anthocyanin synthesis and accumulation in the green leaf of 'Zhonghuahongye'. The results of multi-omics analysis showed that the formation of color was primarily affected by anthocyanin regulation and its related synthesis-affected genes. This study preliminarily analyzed the green regression gene and metabolic changes in 'Zhonghuahongye' red leaves and constitutes a reference for the molecular breeding of 'Zhonghuahongye' red leaves.

12.
Metabolites ; 13(9)2023 Sep 11.
Article En | MEDLINE | ID: mdl-37755284

Light quality and sucrose-induced osmotic stress are known to cause anthocyanin synthesis in detached Lycium ruthenicum leaves. To identify the mechanisms by which the kind of light quality and sucrose concentration are induced, here, we conducted transcriptome sequencing in detached L. ruthenicum leaves treated with different qualities of light and sucrose concentrations. Leaves treated with blue light or sucrose showed a significantly increased total anthocyanins content compared to those treated with white light. Delphinidin-3-O-rutinoside and delphinidin-3-O-glucoside production were differentially regulated by the BL(-S), BL(+S), and WL(+S) treatments. The structural genes CHS, CHI, F3'H, F3'5'H, ANS, and UFGT were significantly up-regulated in leaves treated with blue light or sucrose. Leaves treated with blue light additionally showed up-regulation of the light photoreceptors CRY1, PIF3, COP1, and HY5. The anthocyanin-related genes NCED1, PYR/PYL, PP2C, SnRK2, and ABI5 were significantly up-regulated in leaves treated with sucrose, promoting adaptability to sucrose osmotic stress. Co-expression and cis-regulatory analyses suggested that HY5 and ABI5 could regulate LrMYB44 and LrMYB48 through binding to the G-box element and ABRE element, respectively, inducing anthocyanin synthesis in response to blue light or sucrose treatment. Candidate genes responsive to blue light or sucrose osmotic stress in the anthocyanin biosynthesis pathway were validated through quantitative reverse transcription PCR. These findings deepen our understanding of the mechanisms by which blue light and sucrose-induced osmotic stress regulate anthocyanin synthesis, providing valuable target genes for the future improvement in anthocyanin production in L. ruthenicum.

13.
Int J Immunopathol Pharmacol ; 37: 3946320231184997, 2023.
Article En | MEDLINE | ID: mdl-37584255

Ten-eleven translocation 1 (TET1) is a member of the DNA demethylase family that regulates the methylation level of the genome. Dysregulation of TET1 in renal cell carcinoma (RCC) may be associated with RCC progression, but the mechanism of TET1 down-regulation in RCC is not yet known. MiR-183-5p is up-regulated in various tumor tissues and acts as an oncogene. We used Transwell and wound healing assays to test cell invasion and migration. To investigate DNA methylation, we used dot blot, which indicates TET1 enzyme activity. We verified the binding of miR-183-5p and TET1 3'-UTR (untranslated region) using dual-luciferase reporter assay. Our study demonstrated, for the first time, that miR-183-5p can directly repress TET1 expression in RCC. We observed a significant decrease in TET1 expression in RCC specimens, as reported in the literature, and a significant decrease in the concentration of 5hmC in RCC. By aligning the microRNA with a database and using the luciferase reporter gene method, we found that miR-183-5p can inhibit luciferase activity by binding to 453-459 bp of TET1 3'-UTR, leading to inhibition of TET1 expression. Furthermore, down-regulation of TET1 inhibited miR-200c expression and promoted RCC cell invasion and migration. Our findings suggest that in RCC, increased expression of miR-183-5p inhibits the expression of TET1, which in turn inhibits the expression of miR-200c and E-cadherin, both of which are associated with cell adhesion. This leads to the promotion of cell invasion and migration.


Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Down-Regulation , Cell Movement/genetics , Gene Expression Regulation, Neoplastic/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Luciferases/genetics , Luciferases/metabolism , Cell Proliferation/physiology , Cell Line, Tumor , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
14.
Molecules ; 28(15)2023 Jul 26.
Article En | MEDLINE | ID: mdl-37570640

Rapeseed's (Brassica napus L.) colorful petals have important ornamental values. However, the mechanisms of regulating petals coloration in rapeseed are still unknown. In our study, we investigated the key differential coloring substances in nine rapeseed cultivars with different petal colors, and 543 metabolites were detected and characterized through UPLC-HESI-MS/MS. Among them, the kinds and contents of flavonols, flavones, and anthocyanidins were the main contributors to petals' coloration. Tamarixetin-, quercetin-, butin-, naringenin- and luteolin-derivates were the main pigment bases in white and yellow petals. Peonidin-3,5-O-diglucoside, peonidin-3-O-(6″-O-caffeoyl)glucoside, and quercetin-derivatives were the main coloring substances in pink petals. Acylated cyanidin derivatives might lead to a series of different purple petal colors. Glycosylated anthocyanins were responsible for the coloration of rapeseed red petals, and peonidin-3-O-glucoside and kaempferol-derivatives were mainly detected from the red petals. These results provide comprehensive insights into the difference in flavonoid metabolites in rapeseed petals with different colors and supply theoretical supports for the breeding of novel colorful rapeseed cultivars.


Brassica napus , Brassica rapa , Anthocyanins/metabolism , Brassica napus/metabolism , Quercetin/metabolism , Tandem Mass Spectrometry/methods , Color , Plant Breeding , Flavonoids/metabolism , Brassica rapa/metabolism , Flowers/metabolism
15.
Front Plant Sci ; 14: 1162893, 2023.
Article En | MEDLINE | ID: mdl-37223816

Introduction: To investigate the mechanism of leaf color change at different stages in Populus × euramericana 'Zhonghuahongye' ('Zhonghong' poplar). Methods: Leaf color phenotypes were determined and a metabolomic analysis was performed on leaves at three stages (R1, R2 and R3). Results: The a*, C* and chromatic light values of the leaves decreased by 108.91%, 52.08% and 113.34%, while the brightness L values and chromatic b* values gradually increased by 36.01% and 13.94%, respectively. In the differential metabolite assay, 81 differentially expressed metabolites were detected in the R1 vs. R3 comparison, 45 were detected in the R1 vs. R2 comparison, and 75 were detected in the R2 vs. R3 comparison. Ten metabolites showed significant differences in all comparisons, which were mostly flavonoid metabolites. The metabolites that were upregulated in the three periods were cyanidin 3,5-O-diglucoside, delphinidin, and gallocatechin, with flavonoid metabolites accounting for the largest proportion and malvidin 3- O-galactoside as the primary downregulated metabolite. The color shift of red leaves from a bright purplish red to a brownish green was associated with the downregulation of malvidin 3-O-glucoside, cyanidin, naringenin, and dihydromyricetin. Discussion: Here, we analyzed the expression of flavonoid metabolites in the leaves of 'Zhonghong' poplar at three stages and identified key metabolites closely related to leaf color change, providing an important genetic basis for the genetic improvement of this cultivar.

17.
Front Neurol ; 14: 1111255, 2023.
Article En | MEDLINE | ID: mdl-36908593

Background: Observational studies suggest that inflammatory markers may increase the risk of idiopathic sudden sensorineural hearing loss (ISSHL). However, the causal relationship between the two has not been established. We sought to assess the possible causal effect between several genetically predicted inflammatory markers and ISSHL by Mendelian random (MR) analysis. Methods: We extracted single nucleotide polymorphisms (SNPs) associated with C-reactive protein (CRP), Tumor necrosis factor-α (TNF-α), and fibrinogen from abstract data from the European Individual Large genome-wide association studies (GWAS). Genetic data for ISSHL were obtained from the FinnGen study (n = 196,592). Effect estimates were assessed using inverse variance weighting (IVW) as the primary method. Sensitivity analyses were performed using weighted median, MR-Egger, and MR-PRESSO to evaluate heterogeneity and pleiotropy. Results: In the random-effects IVW approach, there was a significant causal relationship between genetic susceptibility to CRP levels and ISSHL (OR = 1.23, 95% CI = 1.02-1.49, P = 0.03). In contrast, genetic TNF-α and fibrinogen were not risked factors for ISSHL (OR = 1.14, 95% CI = 0.88-1.49, P = 0.30; OR = 0.74, 95% CI = 0.07-7.96, P = 0.30; OR = 1.05, 95% CI = 0.88-1.25, P = 0.59). All the above results were consistent after validation by different Mendelian randomization methods and sensitivity analyses. Conclusion: This Mendelian randomization study provides causal evidence that CRP is a risk factor for ISSHL, while TNF-α and fibrinogen do not increase the risk for ISSHL Introduction.

18.
Geriatr Nurs ; 50: 158-164, 2023.
Article En | MEDLINE | ID: mdl-36780713

Insufficient information is available on the prevalence and predictors of self-neglect among Chinese domestic migrant older adults resulting from rapid aging and mass population migration. This cross-sectional study was conducted on 597 older adults in four districts of Wenzhou from May to November 2020. A self-neglect scale was used to assess the prevalence of self-neglect among such adults. Sixteen potential predictors were considered in the domains of sociodemographic, health condition, socioeconomic, social isolation, intergenerational relationship, and filial piety. The prevalence of self-neglect within this population was 72.7%. Social isolation (OR = 0.823; 95%CI 0.684-0.990), physical health (OR = 0.966; 95%CI 0.941-0.992), intergenerational ambivalence (OR = 1.240; 95%CI 1.013-1.519), and affective-cognitive solidarity (OR = 0.796; 95%CI 0.719-0.880) were found to be independent predictors of self-neglect in this population. We suggest that community health service organizations should prioritize migrant older adults with a poor health status and those with intergenerational ambivalence to reduce self-neglect in migrant older adults. Such older adults should also be encouraged to participate in community activities for more social integration.


Self-Neglect , Transients and Migrants , Humans , Aged , Cross-Sectional Studies , Prevalence , China
19.
Commun Integr Biol ; 16(1): 2167558, 2023.
Article En | MEDLINE | ID: mdl-36704233

Glutamate receptor-like (GLR) 3.3 and 3.6 proteins are required for mediating wound-induced leaf-to-leaf electrical signaling. In the previous study, we found that the carboxy-terminal tail of GLR3.3 contains key residues that are indispensable for its action in electrical signaling. In the present work, we generated plants that expressed the truncated C-tail fraction of GLR3.3. To our expectation, the truncated C-tail itself was not functional in propagating leaf-to-leaf signals. However, we identified that the C-tail-mVENUS fusion proteins had dual localization patterns in sieve elements and companion cells. In companion cells, the fusion proteins overlapped largely with the nucleus. We speculated that a possible nuclear localization signal is present in the C-tail of GLR3.3, paralleling the C-tails of the ionotropic glutamate receptors in animal cells. Our further findings on the C-tail of GLR3.3 open up new possibilities for the regulatory roles of the C-tails to GLR proteins.

20.
New Phytol ; 237(2): 471-482, 2023 01.
Article En | MEDLINE | ID: mdl-36266960

The development of a series of elite maize hybrids has greatly increased crop yield in the past decades. Parental lines of these hybrids usually come from different heterotic groups and contain many genetic differences. Identifications of important quantitative trait genes in the elite hybrids can extend our understanding of heterosis and also help to guide genetic improvement. Here, we mapped a major quantitative trait locus using a linkage population from an elite maize hybrid Zhengdan958 and identified ZmLNG1 as the causative gene controlling multiple morphologic traits in maize. A 6-kb deletion in one parental line of the hybrid leads to the fusion of ZmLNG1 with its nearby gene. The fusion event prevents the C-terminal of ZmLNG1 from interacting with ZmTON1, which resulted in the change of plant architecture. Further experiments demonstrated that ZmLNG1 could act as a mediator to connect ZmTON1 and ZmOFPs, which belong to another type of plant morphological regulatory proteins, thereby affecting the phosphorylation level of ZmOFPs. These results demonstrate the importance of ZmLNG1 in forming the TON1-TRM-PP2A complex and provide a model for the regulation of plant organ morphology by TON1-recruiting motifs (TRMs) and Ovate family proteins (OFPs).


Hybrid Vigor , Zea mays , Zea mays/genetics , Quantitative Trait Loci , Phenotype
...