Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Adv Mater ; : e2410696, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276006

RESUMEN

2D sliding ferroelectric semiconductors have greatly expanded the ferroelectrics family with the flexibility of bandgap and material properties, which hold great promise for ultrathin device applications that combine ferroelectrics with optoelectronics. Besides the induced different resistance states for non-volatile memories, the switchable ferroelectric polarizations can also modulate the photogenerated carriers for potentially ultrafast optoelectronic devices. Here, it is demonstrated that the room temperature sliding ferroelectricity can be used for ultrafast switchable photovoltaic response in ε-InSe layers. By first-principles calculations and experimental characterizations, it is revealed that the ferroelectricity with out-of-plane (OOP) polarization only exists in even layer ε-InSe. The ferroelectricity is also demonstrated in ε-InSe-based vertical devices, which exhibit high on-off ratios (≈104) and non-volatile storage capabilities. Moreover, the OOP ferroelectricity enables an ultrafast (≈3 ps) bulk photovoltaic response in the near-infrared band, rendering it a promising material for self-powered reconfigurable and ultrafast photodetector. This work reveals the essential role of ferroelectric polarization on the photogenerated carrier dynamics and paves the way for hybrid multifunctional ferroelectric and optoelectronic devices.

2.
Sci Data ; 11(1): 843, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097660

RESUMEN

Strengthening industrial pollution control in the Yangtze River is a fundamental national policy of China. There is a lack of detailed distribution of chemical industrial parks (CIPs). This Study utilized random forest (RF) and active learning to generate the distribution map of CIPs along the Yangtze River at 10-m resolution. Based on Sentinel-2 imagery, spectral and texture features are extracted. Combined with the Points of Interest (POI), a multidimensional feature space is constructed. By employing partitioned training, classification of CIPs map is achieved on Google Earth Engine (GEE). Technical validation along the entire Yangtze River demonstrates a model accuracy of 80%. Compared to traditional manual survey methods, this approach saves significant time and economic costs while also being timelier. As the first publicly available CIPs map within a 5-km range along the Yangtze River, this research will provide a scientific basis for the fine governance of chemical industries in the region. Additionally, it offers a model guide for the accurate identification of the chemical industry.

3.
Nat Commun ; 15(1): 5355, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918419

RESUMEN

The bulk photovoltaic effect (BPVE) originating from spontaneous charge polarizations can reach high conversion efficiency exceeding the Shockley-Queisser limit. Emerging van der Waals (vdW) heterostructures provide the ideal platform for BPVE due to interfacial interactions naturally breaking the crystal symmetries of the individual constituents and thus inducing charge polarizations. Here, we show an approach to obtain ultrafast BPVE by taking advantage of dual interfacial polarizations in vdW heterostructures. While the in-plane polarization gives rise to the BPVE in the overlayer, the charge carrier transfer assisted by the out-of-plane polarization further accelerates the interlayer electronic transport and enhances the BPVE. We illustrate the concept in MoS2/black phosphorus heterostructures, where the experimentally observed intrinsic BPVE response time achieves 26 ps, orders of magnitude faster than that of conventional non-centrosymmetric materials. Moreover, the heterostructure device possesses an extrinsic response time of approximately 2.2 ns and a bulk photovoltaic coefficient of 0.6 V-1, which is among the highest values for vdW BPV devices reported so far. Our study thus points to an effective way of designing ultrafast BPVE for high-speed photodetection.

4.
J Ovarian Res ; 17(1): 105, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760835

RESUMEN

BACKGROUND: In the realm of assisted reproduction, a subset of infertile patients demonstrates high ovarian response following controlled ovarian stimulation (COS), with approximately 29.7% facing the risk of Ovarian Hyperstimulation Syndrome (OHSS). Management of OHSS risk often necessitates embryo transfer cancellation, leading to delayed prospects of successful pregnancy and significant psychological distress. Regrettably, these patients have received limited research attention, particularly regarding their metabolic profile. In this study, we aim to utilize gas chromatography-mass spectrometry (GC-MS) to reveal these patients' unique serum metabolic profiles and provide insights into the disease's pathogenesis. METHODS: We categorized 145 infertile women into two main groups: the CON infertility group from tubal infertility patients and the Polycystic Ovary Syndrome (PCOS) infertility group. Within these groups, we further subdivided them into four categories: patients with normal ovarian response (CON-NOR group), patients with high ovarian response and at risk for OHSS (CON-HOR group) within the CON group, as well as patients with normal ovarian response (PCOS-NOR group) and patients with high ovarian response and at risk for OHSS (PCOS-HOR group) within the PCOS group. Serum metabolic profiles were analyzed using GC-MS. The risk criteria for OHSS were: the number of developing follicles > 20, peak Estradiol (E2) > 4000pg/mL, and Anti-Müllerian Hormone (AMH) levels > 4.5ng/mL. RESULTS: The serum metabolomics analysis revealed four different metabolites within the CON group and 14 within the PCOS group. Remarkably, 10-pentadecenoic acid emerged as a discernible risk metabolite for the CON-HOR, also found to be a differential metabolite between CON-NOR and PCOS groups. cysteine and 5-methoxytryptamine were also identified as risk metabolites for the PCOS-HOR. Furthermore, KEGG analysis unveiled significant enrichment of the aminoacyl-tRNA biosynthesis pathway among the metabolites differing between PCOS-NOR and PCOS-HOR. CONCLUSION: Our study highlights significant metabolite differences between patients with normal ovarian response and those with high ovarian response and at risk for OHSS within both the tubal infertility control group and PCOS infertility group. Importantly, we observe metabolic similarities between patients with PCOS and those with a high ovarian response but without PCOS, suggesting potential parallels in their underlying causes.


Asunto(s)
Fertilización In Vitro , Infertilidad Femenina , Inducción de la Ovulación , Humanos , Femenino , Infertilidad Femenina/metabolismo , Infertilidad Femenina/sangre , Adulto , Síndrome de Hiperestimulación Ovárica/sangre , Síndrome de Hiperestimulación Ovárica/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/complicaciones , Cromatografía de Gases y Espectrometría de Masas , Metaboloma , Metabolómica/métodos , Embarazo , Ovario/metabolismo
5.
Small ; : e2403310, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773872

RESUMEN

Understanding the structure-activity correlation is an important prerequisite for the rational design of high-efficiency electrocatalysts at the atomic level. However, the effect of coordination environment on electrocatalytic oxygen evolution reaction (OER) remains enigmatic. In this work, the regulation of proton transfer involved in water oxidation by coordination engineering based on Co3(PO4)2 and CoHPO4 is reported. The HPO4 2- anion has intermediate pKa value between Co(II)-H2O and Co(III)-H2O to be served as an appealing proton-coupled electron transfer (PCET) induction group. From theoretical calculations, the pH-dependent OER properties, deuterium kinetic isotope effects, operando electrochemical impedance spectroscopy (EIS) and Raman studies, the CoHPO4 catalyst beneficially reduces the energy barrier of proton hopping and modulates the formation energy of high-valent Co species, thereby enhancing OER activity. This work demonstrates a promising strategy that involves tuning the local coordination environment to optimize PCET steps and electrocatalytic activities for electrochemical applications. In addition, the designed system offers a motif to understand the structure-efficiency relationship from those amino-acid residue with proton buffer ability in natural photosynthesis.

6.
Nat Commun ; 15(1): 3961, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729932

RESUMEN

Mechanically interlocked molecules (MIMs) including famous catenanes show switchable physical properties and attract continuous research interest due to their potential application in molecular devices. The advantages of using spin crossover (SCO) materials here are enormous, allowing for control through diverse stimuli and highly specific functions, and enabling the transfer of the internal dynamics of MIMs from solution to solid state, leading to macroscopic applications. Herein, we report the efficient self-assembly of catenated metal-organic frameworks (termed catena-MOFs) induced by stacking interactions, through the combination of rationally selected flexible and conjugated naphthalene diimide-based bis-pyridyl ligand (BPND), [MI(CN)2]- (M = Ag or Au) and Fe2+ in a one-step strategy. The obtained bimetallic Hofmann-type SCO-MOFs [FeII(BPND){Ag(CN)2}2]·3CHCl3 (1Ag) and [FeII(BPND{Au(CN)2}2]·2CHCl3·2H2O (1Au) possess a unique three-dimensional (3D) catena-MOF constructed from the polycatenation of two-dimensional (2D) layers with hxl topology. Both complexes undergo thermal- and light-induced SCO. Significantly, abnormal increases in the maximum emission intensity and dielectric constant can be detected simultaneously with the switching of spin states. This research opens up SCO-actuated bistable MIMs that afford dual functionality of coupled fluorescence emission and dielectricity.

7.
Adv Mater ; 36(31): e2402666, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38632497

RESUMEN

Shaping room temperature phosphorescence (RTP) materials into 3D bodies is important for stereoscopic optoelectronic displays but remains challenging due to their poor processability and mechanical properties. Here, konjac glucomannan (KGM) is employed to anchor arylboronic acids with various π conjugations via a facile B─O covalent reaction to afford printable inks, using which full-color high-fidelity 3D RTP objects with high mechanical strength can be obtained via direct ink writing-based 3D printing and freeze-drying. The doubly rigid structure supplied by the synergy of hydrogen bonding and B─O covalent bonding can protect the triplet excitons; thus, the prepared 3D RTP object shows a striking lifetime of 2.14 s. The printed counterparts are successfully used for 3D anti-counterfeiting and can be recycled and reprinted nondestructively by dissolving in water. This success expands the scope of printable 3D luminescent materials, providing an eco-friendly platform for the additive manufacturing of sophisticated 3D RTP architectures.

8.
Nat Commun ; 15(1): 2653, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531845

RESUMEN

Realization of higher-order multistates with mutual interstate switching in ferroelectric materials is a perpetual drive for high-density storage devices and beyond-Moore technologies. Here we demonstrate experimentally that antiferroelectric van der Waals CuInP2S6 films can be controllably stabilized into double, quadruple, and sextuple polarization states, and a system harboring polarization order of six is also reversibly tunable into order of four or two. Furthermore, for a given polarization order, mutual interstate switching can be achieved via moderate electric field modulation. First-principles studies of CuInP2S6 multilayers help to reveal that the double, quadruple, and sextuple states are attributable to the existence of respective single, double, and triple ferroelectric domains with antiferroelectric interdomain coupling and Cu ion migration. These findings offer appealing platforms for developing multistate ferroelectric devices, while the underlining mechanism is transformative to other non-volatile material systems.

9.
ACS Appl Mater Interfaces ; 16(12): 15133-15142, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488729

RESUMEN

Dynamic control of ultralong organic room-temperature phosphorescence (UORTP) is a charming target. Herein, we report a stimuli-responsive phosphorescence unit 7H-indolo[2,3-c]quinoline (NBCz) and its derivatives (PCBNBCz, FSO2NBCz, and N2BCzSO2NBCz) that show photo- and oxygen- synergistically induced afterglow activation and afterglow color change in the PMMA film. PCBNBCz and FSO2NBCz feature a donor-acceptor (D-A) structure, and N2BCzSO2NBCz features acceptor-bridged two different phosphorescence units (NBCz and N2BCz). The photoactivated UORTP of PCBNBCz and FSO2NBCz arises from the photoinduced consumption of oxygen in the PMMA film. It is clear that the phosphorescence unit NBCz contributes to subsequent photoinduced UORTP color change because the NBCz-doped PMMA film shows the same UORTP color change process. ESR and HRMS measurements confirmed that oxidation of NBCz occurs at the nitrogen atom of the quinoline ring via photogenerated superoxide radicals, which results in the UORTP color change. TDDFT calculations proved that after oxidation of NBCz, the T1 energy level declines significantly. Furthermore, photocontrolled selective expression of phosphorescence units is achieved in the case of N2BCzSO2NBCz. After further UV irradiation, oxidation of NBCz happened, and the oxidized form N2BCzSO2NBCz-O emitted the intrinsic orange UORTP of NBCz-O selectively and screened the intrinsic yellowish-green UORTP of N2BCz. Finally, multilevel photolithography can be demonstrated based on the photoactivated UORTP and the photoinduced UORTP color change. This work may give a deep insight into organic phosphorescence and pave a simple way for the development of stimulus-responsive smart UORTP materials.

10.
Medicine (Baltimore) ; 103(13): e37542, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552082

RESUMEN

In this retrospective study conducted at Sichuan Jinxin Xinan Women and Children's Hospital spanning January 2015 to December 2021, our objective was to investigate the impact of embryo cryopreservation duration on outcomes in frozen embryo transfer. Participants, totaling 47,006 cycles, were classified into 3 groups based on cryopreservation duration: ≤1 year (Group 1), 1 to 6 years (Group 2), and ≥6 years (Group 3). Employing various statistical analyses, including 1-way ANOVA, Kruskal-Wallis test, chi-square test, and a generalized estimating equation model, we rigorously adjusted for confounding factors. Primary outcomes encompassed clinical pregnancy rate and Live Birth Rate (LBR), while secondary outcomes included biochemical pregnancy rate, multiple pregnancy rate, ectopic pregnancy rate, early and late miscarriage rates, preterm birth rate, neonatal birth weight, weeks at birth, and newborn sex. Patient distribution across cryopreservation duration groups was as follows: Group 1 (40,461 cycles), Group 2 (6337 cycles), and Group 3 (208 cycles). Postcontrolling for confounding factors, Group 1 exhibited a decreased likelihood of achieving biochemical pregnancy rate, clinical pregnancy rate, and LBR (OR < 1, aOR < 1, P < .05). Furthermore, an elevated incidence of ectopic pregnancy was observed (OR > 1, aOR > 1), notably significant after 6 years of freezing time [aOR = 4.141, 95% confidence intervals (1.013-16.921), P = .05]. Cryopreservation exceeding 1 year was associated with an increased risk of early miscarriage and preterm birth (OR > 1, aOR > 1). No statistically significant differences were observed in birth weight or sex between groups. However, male infant birth rates were consistently higher than those of female infants across all groups. In conclusion, favorable pregnancy outcomes align with embryo cryopreservation durations within 1 year, while freezing for more than 1 year may diminish clinical pregnancy and LBRs, concurrently elevating the risk of ectopic pregnancy and preterm birth.


Asunto(s)
Aborto Espontáneo , Embarazo Ectópico , Nacimiento Prematuro , Niño , Embarazo , Femenino , Masculino , Recién Nacido , Humanos , Resultado del Embarazo/epidemiología , Estudios Retrospectivos , Aborto Espontáneo/epidemiología , Aborto Espontáneo/etiología , Peso al Nacer , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/etiología , Nacimiento Vivo , Transferencia de Embrión/efectos adversos , Índice de Embarazo , Criopreservación , Embarazo Ectópico/epidemiología , Embarazo Ectópico/etiología
11.
Small ; 20(13): e2309131, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967324

RESUMEN

Sustainable long-lived room temperature phosphorescence (RTP) materials with color-tunable afterglows are attractive but rarely reported. Here, cellulose is reconstructed by directed redox to afford ample active hydroxyl groups and water-solubility; arylboronic acids with various π conjugations can be facilely anchored to reconstructed cellulose via click chemistry within 1 min in pure water, resulting in full-color tunable RTP cellulose. The rigid environment provided by the B─O covalent bonds and hydrogen bonds can stabilize the triplet excitons, thus the target cellulose displays outstanding RTP performances with the lifetime of 2.67 s, phosphorescence quantum yield of 9.37%, and absolute afterglow luminance of 348 mcd m-2. Furthermore, due to the formation of various emissive species, the smart RTP cellulose shows excitation- and time-dependent afterglows. Taking advantages of sustainability, ultralong lifetime, and full-color tunable afterglows, et al, the environmentally friendly RTP cellulose is successfully used for nontoxic afterglow inks, delay lighting, and afterglow display.

12.
J Am Chem Soc ; 146(2): 1294-1304, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38054299

RESUMEN

Achieving time-dependent phosphorescence color (TDPC) in organic materials is attractive but extremely challenging due to the nonradiative decay and modulation puzzle of triplet state. Herein, xylan, a hemicellulose waste from the paper mill, was used to construct carbonized polymer dots (CPDs) with clusterization-triggered room-temperature phosphorescence (RTP). CPDs were endowed with tuneable triplet energy levels by through-space conjugation of heteroatom groups, which could be confined in silica to simultaneously activate surface oxide-related low-energy and cross-linked core N-related high-energy emissive centers. Thus, the blue emissive center with a lifetime of 425.6 ms and green emissive center with a longer lifetime of 1506 ms coexisted in the confined CPDs; the former was the dominant contribution to RTP at first, and the latter became dominant over time, leading to a typical TDPC evolution with large color contrast from blue to blue-green and then to green. Meanwhile, the TDPC could remain unobstructed after the confined CPDs were soaked in water for more than a month. The CPDs were successfully applied in location and deformation imaging of hydrogel and advanced dynamic information encryption and anticounterfeiting. The work may shed new light on the design of TDPC materials and broaden the high-value use of paper-mill waste xylan.

13.
IEEE J Biomed Health Inform ; 28(2): 1012-1021, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38090820

RESUMEN

The process of brain aging is intricate, encompassing significant structural and functional changes, including myelination and iron deposition in the brain. Brain age could act as a quantitative marker to evaluate the degree of the individual's brain evolution. Quantitative susceptibility mapping (QSM) is sensitive to variations in magnetically responsive substances such as iron and myelin, making it a favorable tool for estimating brain age. In this study, we introduce an innovative 3D convolutional network named Segmentation-Transformer-Age-Network (STAN) to predict brain age based on QSM data. STAN employs a two-stage network architecture. The first-stage network learns to extract informative features from the QSM data through segmentation training, while the second-stage network predicts brain age by integrating the global and local features. We collected QSM images from 712 healthy participants, with 548 for training and 164 for testing. The results demonstrate that the proposed method achieved a high accuracy brain age prediction with a mean absolute error (MAE) of 4.124 years and a coefficient of determination (R2) of 0.933. Furthermore, the gaps between the predicted brain age and the chronological age of Parkinson's disease patients were significantly higher than those of healthy subjects (P<0.01). We thus believe that using QSM-based predicted brain age offers a more reliable and accurate phenotype, with the potentiality to serve as a biomarker to explore the process of advanced brain aging.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Preescolar , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Envejecimiento , Hierro
14.
Adv Mater ; 36(14): e2312425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38146671

RESUMEN

2D transition metal dichalcogenides (TMDCs) are considered as promising materials in post-Moore technology. However, the low photoluminescence quantum yields (PLQY) and single carrier polarity due to the inevitable defects during material preparation are great obstacles to their practical applications. Here, an extraordinary defect engineering strategy is reported based on first-principles calculations and realize it experimentally on WS2 monolayers by doping with IIIA atoms. The doped samples with large sizes possess both giant PLQY enhancement and effective carrier polarity modulation. Surprisingly, the high PL emission maintained even after one year under ambient environment. Moreover, the constructed p-n homojunctions shows high rectification ratio (≈2200), ultrafast response times and excellent stability. Meanwhile, the doping strategy is universally applicable to other TMDCs and dopants. This smart defect engineering strategy not only provides a general scheme to eliminate the negative influence of defects, but also utilize them to achieve desired optoelectronic properties for multifunctional applications.

15.
Am J Obstet Gynecol ; 230(4): 436.e1-436.e12, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38135094

RESUMEN

BACKGROUND: The influence of SARS-CoV-2 infection after embryo transfer on early pregnancy outcomes in in vitro fertilization or intracytoplasmic sperm injection-embryo transfer treatment remains inadequately understood. This knowledge gap endures despite an abundance of studies investigating the repercussions of preceding SARS-CoV-2 infection on early pregnancy outcomes in spontaneous pregnancies. OBJECTIVE: This study aimed to investigate the association between SARS-CoV-2 infection within 10 weeks after embryo transfer and early pregnancy outcomes in patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. STUDY DESIGN: This prospective cohort study was conducted at a single public in vitro fertilization center in China. Female patients aged 20 to 39 years, with a body mass index ranging from 18 to 30 kg/m2, undergoing in vitro fertilization/intracytoplasmic sperm injection treatment, were enrolled between September 2022 and December 2022, with follow-up extended until March 2023. The study tracked SARS-CoV-2 infection time (≤14 days, ≤28 days, and ≤10 weeks after embryo transfer), symptoms, vaccination status, the interval between vaccination and embryo transfer, and early pregnancy outcomes, encompassing biochemical pregnancy rate, implantation rate, clinical pregnancy rate, and early miscarriage rate. The study used single-factor analysis and multivariate logistic regression to examine the association between SARS-CoV-2 infection status, along with other relevant factors, and the early pregnancy outcomes. RESULTS: A total of 857 female patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment were analyzed. In the first stage, SARS-CoV-2 infection within 14 days after embryo transfer did not have a significant negative association with the biochemical pregnancy rate (adjusted odds ratio, 0.74; 95% confidence interval, 0.51-1.09). In the second stage, SARS-CoV-2 infection within 28 days after embryo transfer had no significant association with the implantation rate (36.6% in infected vs 44.0% in uninfected group; P=.181). No statistically significant association was found with the clinical pregnancy rate after adjusting for confounding factors (adjusted odds ratio, 0.69; 95% confidence interval, 0.56-1.09). In the third stage, SARS-CoV-2 infection within 10 weeks after embryo transfer had no significant association with the early miscarriage rate (adjusted odds ratio, 0.77; 95% confidence interval, 0.35-1.71). CONCLUSION: Our study suggests that SARS-CoV-2 infection within 10 weeks after embryo transfer may not be negatively associated with the biochemical pregnancy rate, implantation rate, clinical pregnancy rate, and early miscarriage rate in patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. It is important to note that these findings are specific to the target population of in vitro fertilization/intracytoplasmic sperm injection patients aged 20 to 39 years, without previous SARS-CoV-2 infection, and with a body mass index of 18 to 30 kg/m2. This information offers valuable insights, addressing current concerns and providing a clearer understanding of the actual risk associated with SARS-CoV-2 infection after embryo transfer.


Asunto(s)
Aborto Espontáneo , COVID-19 , Embarazo , Humanos , Masculino , Femenino , Resultado del Embarazo , Aborto Espontáneo/epidemiología , Aborto Espontáneo/etiología , Estudios Prospectivos , COVID-19/terapia , COVID-19/etiología , SARS-CoV-2 , Semen , Fertilización In Vitro/efectos adversos , Transferencia de Embrión , Índice de Embarazo , Estudios Retrospectivos
16.
Inorg Chem ; 62(48): 19690-19697, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044827

RESUMEN

Owing to the exterior self-trapped excitons (STEs) with adjustable fluorescence beams, low-dimensional ns2-metal halides have recently received considerable attention in solid-state light-emitting applications. However, the photoluminescence (PL) mechanism in metal halides remains a major challenge in achieving high efficiency and controllable PL properties because the excited-state energy of ns2 conformational ions varies inhomogeneously with their coordination environments. Here, a novel zero-dimensional (0D) lead-free bismuth-based Rb3BiCl6·0.5H2O crystal was reported as a pristine crystal to modulate the optical properties. By doping Sb3+ ions with 5s2 electrons into Rb3BiCl6·0.5H2O crystals, bright orange emission at room temperature was obtained with a photoluminescence quantum yield of 39.7%. Optical characterizations and theoretical studies show that the Sb3+ doping can suppress the strong exciton-phonon coupling, optimize the electronic energy band structure, improve the thermal activation energy, soften the structural lattice of the host crystals, deepen the STE states, and ultimately lead to strong photoluminescence. This work manifests a fruitful manipulation in ripening bismuth-based halides with high-efficiency PL properties, and the PL enhancement mechanisms will guide future research in the exploration of emerging luminescent materials.

17.
Iran J Public Health ; 52(11): 2272-2285, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38106842

RESUMEN

Background: Many epidemiological studies have explored the relationship between single-nucleotide polymorphism and hepatocellular carcinoma (HCC). However, the results remain controversial. We performed a large-scale meta-analysis to draw a more precise estimation of the aforementioned association. Methods: Studies on the association between microRNA (MIR) polymorphisms and HCC risk that had been published up to Sep 30, 2021 were identified by searching the PubMed, Cochrane Library, Google Scholar, Web of Science, and Chinese Biomedical Literature electronic databases and the Excerpta Medical Database. The association between MIR polymorphisms and HCC risk was assessed using odds ratios (ORs) and their 95% confidence intervals (CIs). Results: Overall, 29 studies, with a total of 9,263 cases and 10,875 controls, were included in our meta-analysis. MicroRNA149 (MIR149) significantly decreased the risk of developing HCC on the overall population (homozygous model CC vs. TT: OR = 0.703, 95% CI = 0.549-0.899, P = 0.005), and microRNA 196 (MIR196) significantly decreased the risk of developing HCC on the overall population (recessive model TT vs. CT+CC: OR = 0.864, 95% CI = 0.751-0.993, P = 0.04) and on Caucasians (OR = 0.613, 95% CI = 0.414-0.907, P = 0.014). Conclusion: The MIR149 and MIR196 polymorphisms are the protect factors of developing HCC. The conduct of multi-center and multi-region studies with gene-gene, gene-environment should be considered.

18.
ACS Appl Mater Interfaces ; 15(47): 54732-54742, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37964465

RESUMEN

We successfully tune ultralong organic room-temperature phosphorescence (UORTP) by a simple strategy of precisely modifying nitrogen atoms on Phosphorescence Units, and colorful ultralong phosphorescence can be achieved. We for the first time investigate the structure-function relationship between phosphorescence properties and molecular structures of Phosphorescence Units. With BCz and BCz-1 as comparison, eight new Phosphorescence Units were synthesized by introducing one or two nitrogen atoms to the naphthalene moiety. For all the 10 Phosphorescence Units, their room-temperature ultralong phosphorescence in the PMMA film should be assigned to monomer phosphorescence from intrinsic T1 decay. For Phosphorescence Units series I (BCz, NBCz-1, NBCz-2, NBCz-3, NBCz-4, NBCz-5, and NBCz-6), introducing one nitrogen atom to the naphthalene moiety can significantly affect the phosphorescence properties of Phosphorescence Units, and the effect is quite complicated. For modification on the inner ring, the T1 energy level of NBCz-1 decreases, and the red shift of UORTP occurs while the T1 energy level of NBCz-2 increases and the blue shift of UORTP happens. For modification on the outer ring, no phosphorescence color change is observed for NBCz-3 and NBCz-4, but their phosphorescence lifetimes vary notably due to different intersystem crossing efficiencies; as the modification site approaches the central five-member ring, the T1 energy levels of NBCz-5 and NBCz-6 decrease, and their UORTP red shifts dramatically. For Phosphorescence Units series II (BCz, 2NBCz, BCz-1, and 2NBCz-1), introducing two nitrogen atoms to the outer six-member ring reduces energy level of T1 excitons and leads to incredible red shift of UORTP for BCz and 2NBCz while surprisingly energy levels of T1 excitons rise and UORTP blue shifts for BCz-1 and 2NBCz-1. Under the condition of proper modification sites, it is true that the more the additional nitrogen atoms, the more red-shifted the ultralong phosphorescence. This study may expand our knowledge of organic phosphorescence and lay the foundation for its future applications.

19.
Commun Biol ; 6(1): 1195, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001377

RESUMEN

Type VI secretion systems (T6SSs) deliver effectors into target cells. Besides structural and effector proteins, many other proteins, such as adaptors, co-effectors and accessory proteins, are involved in this process. MIX domains can assist in the delivery of T6SS effectors when encoded as a stand-alone gene or fused at the N-terminal of the effector. However, whether there are other conserved domains exhibiting similar encoding forms to MIX in T6SS remains obscure. Here, we scanned publicly available bacterial genomes and established a database which include 130,825 T6SS vgrG loci from 45,041 bacterial genomes. Based on this database, we revealed six domain families encoded within vgrG loci, which are either fused at the C-terminus of VgrG/N-terminus of T6SS toxin or encoded by an independent gene. Among them, DUF2345 was further validated and shown to be indispensable for the T6SS effector delivery and LysM was confirmed to assist the interaction between VgrG and the corresponding effector. Together, our results implied that these widely distributed domain families with similar genetic configurations may be required for the T6SS effector recruitment process.


Asunto(s)
Sistemas de Secreción Tipo VI , Humanos , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
20.
Science ; 381(6664): 1295, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37733867
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA