Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mitochondrion ; 78: 101939, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067839

RESUMEN

Mitochondria are essential for energy supplementation and metabolic homeostasis of cancer cells. Using mitochondria transplantation to reduce the malignancy of gastric cancer (GC) cells is herein proposed. In our study normal human gastric mucous epithelium cell line (GES-1) showed a lower mitochondrial membrane potential (MMP) compared to immortalized human vascular endothelial cell line (EAhy 926) and human gastric adenocarcinoma cell line (AGS). The transplantation of GES-1 mitochondria to AGS were confirmed both by confocal microscopy and flow cytometry. After transplanting GES-1 mitochondria, the AGS showed a reduced cell migration, and invasion without affecting cell viability and apoptosis. Investigating the expression of proteins involved in epithelial-mesenchymal-transition (EMT), transplanted GES-1 mitochondria reduced the expression of mesenchymal markers α-SMA, MMP-9, snail, vimentin and N-cadherin, whereas the epithelial markers E-cadherin and clauding-1 were not changed. The proteins implicated in the cell cycle such as cyclin B1 and D1 were decreased. In mice, inoculation with AGS carrying the transplanted GES-1 mitochondria resulted in smaller sized tumors. Further investigating the mitochondrial balance, the transplanted GES-1 mitochondria were more stably preserved compared to endogenous AGS mitochondria. The MMP, ATP production and mitochondrial mass decreased in GES-1 mitochondria and the mitophagic proteins LC3 II and PINK1 were up-regulated. In conclusion the decreased malignancy of AGS was a result of exogenous GES-1 mitochondria transplantation. This suggests for a therapy with low efficiency mitochondria transplantation in the treatment of cancer cells.

2.
Kaohsiung J Med Sci ; 40(7): 650-659, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757734

RESUMEN

Colorectal cancer (CRC) is notable for its high mortality and high metastatic characteristics. The shear force generated by bloodstream provides mechanical signals regulating multiple responses of cells, including metastatic cancer cells, dispersing in blood vessels. We, therefore, studied the effect of shear flow on circulating CRC cells in the present study. The CRC cell line SW620 was subjected to shear flow of 12.5 dynes/cm2 for 1 and 2 h separately. Resulting elevated caspase-9 and -3 indicated that shear flow initiated the apoptosis of SW620. Enlarged cell size associated with a higher level of cyclin D1 was coincident with the flow cytometric results indicating that the cell cycle was arrested at the G1 phase. An elevated phosphor-eNOSS1177 increased the production of nitric oxide and led to reactive oxygen species-mediated oxidative stress. Shear flow also regulated epithelial-mesenchymal transition (EMT) by increasing E-cadherin and ZO-1 while decreasing Snail and Twist1. The migration and invasion of sheared SW620 were also substantially decreased. Further investigations showed that mitochondrial membrane potential was significantly decreased, whereas mitochondrial mass and ATP production were not changed. In addition to the shear flow of 12.5 dynes/cm2, the expressions of EMT were compared at lower (6.25 dynes/cm2) and at higher (25 dynes/cm2) shear flow. The results showed that lower shear flow increased mesenchymal characteristics and higher shear flow increased epithelial characteristics. Shear flow reduces the malignancy of CRC in their metastatic dispersal that opens up new ways to improve cancer therapies by applying a mechanical shear flow device.


Asunto(s)
Apoptosis , Movimiento Celular , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Especies Reactivas de Oxígeno , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Estrés Mecánico , Potencial de la Membrana Mitocondrial , Ciclina D1/metabolismo , Estrés Oxidativo , Cadherinas/metabolismo , Óxido Nítrico/metabolismo , Caspasa 9/metabolismo , Caspasa 3/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína 1 Relacionada con Twist/metabolismo
3.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339136

RESUMEN

Gynecologic tract melanoma is a malignant tumor with poor prognosis. Because of the low survival rate and the lack of a standard treatment protocol related to this condition, the investigation of the mechanisms underlying melanoma progression is crucial to achieve advancements in the relevant gynecological surgery and treatment. Mitochondrial transfer between adjacent cells in the tumor microenvironment regulates tumor progression. This study investigated the effects of endothelial mitochondria on the growth of melanoma cells and the activation of specific signal transduction pathways following mitochondrial transplantation. Mitochondria were isolated from endothelial cells (ECs) and transplanted into B16F10 melanoma cells, resulting in the upregulation of proteins associated with tumor growth. Furthermore, enhanced antioxidation and mitochondrial homeostasis mediated by the Sirt1-PGC-1α-Nrf2-HO-1 pathway were observed, along with the inhibition of apoptotic protein caspase-3. Finally, the transplantation of endothelial mitochondria into B16F10 cells promoted tumor growth and increased M2-type macrophages through Nrf2/HO-1-mediated pathways in a xenograft animal model. In summary, the introduction of exogenous mitochondria from ECs into melanoma cells promoted tumor growth, indicating the role of mitochondrial transfer by stromal cells in modulating a tumor's phenotype. These results provide valuable insights into the role of mitochondrial transfer and provide potential targets for gynecological melanoma treatment.


Asunto(s)
Melanoma , Animales , Femenino , Humanos , Células Endoteliales/metabolismo , Macrófagos/metabolismo , Melanoma/metabolismo , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Microambiente Tumoral , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA