Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Food Chem ; 449: 139183, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38604028

Tartary buckwheat, celebrated as the "king of grains" for its flavonoid and phenolic acid richness, has health-promoting properties. Despite significant morphological and metabolic variations in mature achenes, research on their developmental process is limited. Utilizing Liquid chromatography-mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging, we conducted spatial-temporal metabolomics on two cultivars during achene development. Metabolic profiles including 17 phenolic acids and 83 flavonoids are influenced by both varietal distinctions and developmental intricacies. Notably, flavonols, as major flavonoids, accumulated with achene ripening and showed a tissue-specific distribution. Specifically, flavonol glycosides and aglycones concentrated in the embryo, while methylated flavonols and procyanidins in the hull. Black achenes at the green achene stage have higher bioactive compounds and enhanced antioxidant capacity. These findings provide insights into spatial and temporal characteristics of metabolites in Tartary buckwheat achenes and serve as a theoretical guide for selecting optimal resources for food production.


Fagopyrum , Metabolomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Fagopyrum/chemistry , Fagopyrum/growth & development , Fagopyrum/metabolism , Flavonoids/metabolism , Flavonoids/chemistry , Flavonoids/analysis , Chromatography, High Pressure Liquid , Plant Extracts/metabolism , Plant Extracts/chemistry , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Liquid Chromatography-Mass Spectrometry
2.
Genome Biol ; 25(1): 61, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38414075

BACKGROUND: Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS: Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS: This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.


Fagopyrum , Domestication , Fagopyrum/genetics , Gene Expression Profiling , Genome-Wide Association Study , Genomics , Phylogeny
3.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article En | MEDLINE | ID: mdl-38139196

Tartary buckwheat (Fagopyrum tataricum) is an important plant, utilized for both medicine and food. It has become a current research hotspot due to its rich content of flavonoids, which are beneficial for human health. Anthocyanins (ATs) and proanthocyanidins (PAs) are the two main kinds of flavonoid compounds in Tartary buckwheat, which participate in the pigmentation of some tissue as well as rendering resistance to many biotic and abiotic stresses. Additionally, Tartary buckwheat anthocyanins and PAs have many health benefits for humans and the plant itself. However, little is known about the regulation mechanism of the biosynthesis of anthocyanin and PA in Tartary buckwheat. In the present study, a bHLH transcription factor (TF) FtTT8 was characterized to be homologous with AtTT8 and phylogenetically close to bHLH proteins from other plant species. Subcellular location and yeast two-hybrid assays suggested that FtTT8 locates in the nucleus and plays a role as a transcription factor. Complementation analysis in Arabidopsis tt8 mutant showed that FtTT8 could not recover anthocyanin deficiency but could promote PAs accumulation. Overexpression of FtTT8 in red-flowering tobacco showed that FtTT8 inhibits anthocyanin biosynthesis and accelerates proanthocyanidin biosynthesis. QRT-PCR and yeast one-hybrid assay revealed that FtTT8 might bind to the promoter of NtUFGT and suppress its expression, while binding to the promoter of NtLAR and upregulating its expression in K326 tobacco. This displayed the bidirectional regulating function of FtTT8 that negatively regulates anthocyanin biosynthesis and positively regulates proanthocyanidin biosynthesis. The results provide new insights on TT8 in Tartary buckwheat, which is inconsistent with TT8 from other plant species, and FtTT8 might be a high-quality gene resource for Tartary buckwheat breeding.


Arabidopsis , Fagopyrum , Proanthocyanidins , Humans , Anthocyanins/metabolism , Proanthocyanidins/metabolism , Fagopyrum/genetics , Fagopyrum/metabolism , Plant Proteins/metabolism , Phylogeny , Plant Breeding , Flavonoids/metabolism , Plants/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Arabidopsis/genetics
4.
BMC Plant Biol ; 23(1): 58, 2023 Jan 26.
Article En | MEDLINE | ID: mdl-36703107

BACKGROUND: Grain weight/size influences not only grain yield (GY) but also nutritional and appearance quality and consumer preference in Tartary buckwheat. The identification of quantitative trait loci (QTLs)/genes for grain weight/size is an important objective of Tartary buckwheat genetic research and breeding programs. RESULTS: Herein, we mapped the QTLs for GY, 1000-grain weight (TGW), grain length (GL), grain width (GW) and grain length-width ratio (L/W) in four environments using 221 recombinant inbred lines (XJ-RILs) derived from a cross of 'Xiaomiqiao × Jinqiaomai 2'. In total, 32 QTLs, including 7 for GY, 5 for TGW, 6 for GL, 11 for GW and 3 for L/W, were detected and distributed in 24 genomic regions. Two QTL clusters, qClu-1-3 and qClu-1-5, located on chromosome Ft1, were revealed to harbour 7 stable major QTLs for GY (qGY1.2), TGW (qTGW1.2), GL (qGL1.1 and qGL1.4), GW (qGW1.7 and qGW1.10) and L/W (qL/W1.2) repeatedly detected in three and above environments. A total of 59 homologues of 27 known plant grain weight/size genes were found within the physical intervals of qClu-1-3 and qClu-1-5. Six homologues, FtBRI1, FtAGB1, FtTGW6, FtMADS1, FtMKK4 and FtANT, were identified with both non-synonymous SNP/InDel variations and significantly differential expression levels between the two parents, which may play important roles in Tatary buckwheat grain weight/size control and were chosen as core candidate genes for further investigation. CONCLUSIONS: Two stable major QTL clusters related to grain weight/size and six potential key candidate genes were identified by homology comparison, SNP/InDel variations and qRT‒qPCR analysis between the two parents. Our research provides valuable information for improving grain weight/size and yield in Tartary buckwheat breeding.


Fagopyrum , Fagopyrum/genetics , Plant Breeding , Chromosome Mapping , Quantitative Trait Loci/genetics , Edible Grain/genetics , Genetic Association Studies , Phenotype
5.
Int J Mol Sci ; 23(24)2022 Dec 12.
Article En | MEDLINE | ID: mdl-36555415

Starch is a major component of crop grains, and its content affects food quality and taste. Tartary buckwheat is a traditional pseudo-cereal used in food as well as medicine. Starch content, granule morphology, and physicochemical properties have been extensively studied in Tartary buckwheat. However, the complex regulatory network related to its starch biosynthesis needs to be elucidated. Here, we performed RNA-seq analyses using seven Tartary buckwheat varieties differing in starch content and combined the RNA-seq data with starch content by weighted correlation network analysis (WGCNA). As a result, 10,873 differentially expressed genes (DEGs) were identified and were functionally clustered to six hierarchical clusters. Fifteen starch biosynthesis genes had higher expression level in seeds. Four trait-specific modules and 3131 hub genes were identified by WGCNA, with the lightcyan and brown modules positively correlated with starch-related traits. Furthermore, two potential gene regulatory networks were proposed, including the co-expression of FtNAC70, FtPUL, and FtGBSS1-3 in the lightcyan module and FtbHLH5, C3H, FtBE2, FtISA3, FtSS3-5, and FtSS1 in the brown. All the above genes were preferentially expressed in seeds, further suggesting their role in seed starch biosynthesis. These results provide crucial guidance for further research on starch biosynthesis and its regulatory network in Tartary buckwheat.


Fagopyrum , Tracheophyta , RNA-Seq , Fagopyrum/metabolism , Gene Regulatory Networks , Starch/metabolism , Tracheophyta/genetics
6.
Funct Integr Genomics ; 22(6): 1449-1458, 2022 Dec.
Article En | MEDLINE | ID: mdl-36369301

Tartary buckwheat is among the valuable crops, utilized as both food and Chinese herbal medicine. To uncover the accumulation dynamics of the main nutrients and their regulatory mechanism of Tartary buckwheat seeds, microscopic observations and nutrient analysis were conducted which suggested that starch, proteins as well as flavonoid gradually accumulated among seed development. Comparative proteomic analysis of rice Tartary buckwheat at three different developmental stages was performed. A total of 78 protein spots showed differential expression with 74 of them being successfully identified by MALDI-TOF/TOF MS. Among them, granule bound starch synthase (GBSS1) might be the critical enzyme that determines starch biosynthesis, while 11 S seed storage protein and vicilin seemed to be the main globulin and affect seed storage protein accumulation in Tartary buckwheat seeds. Two enzymes, flavanone 3-hydroxylase (F3H) and anthocyanidin reductase (ANR), involved in the flavonoid biosynthesis pathway were identified. Further analysis on the expression profiles of flavonoid biosynthetic genes revealed that F3H might be the key enzyme that promote flavonoid accumulation. This study provides insights into the mechanism of nutrition accumulation at the protein level in Tartary buckwheat seeds and may facilitate in the breeding and enhancement of Tartary buckwheat germplasm.


Fagopyrum , Fagopyrum/genetics , Fagopyrum/metabolism , Proteomics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Seeds , Seed Storage Proteins/genetics , Starch/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant
7.
Front Plant Sci ; 13: 985088, 2022.
Article En | MEDLINE | ID: mdl-36262653

Drought stress is one of the major abiotic stress factors that affect plant growth and crop productivity. Tartary buckwheat is a nutritionally balanced and flavonoid-rich pseudocereal crop and also has strong adaptability to different adverse environments including drought. However, little is known about its drought tolerance mechanism. In this study, we performed comparative physiological and transcriptomic analyses of two contrasting drought-resistant Tartary buckwheat genotypes under nature drought treatment in the reproductive stage. Under drought stress, the drought-tolerant genotype XZSN had significantly higher contents of relative water, proline, and soluble sugar, as well as lower relative electrolyte leakage in the leaves than the drought-susceptible LK3. A total of 5,058 (2,165 upregulated and 2,893 downregulated) and 5,182 (2,358 upregulated and 2,824 downregulated) potential drought-responsive genes were identified in XZSN and LK3 by transcriptome sequencing analysis, respectively. Among the potential drought-responsive genes of XZSN, 1,206 and 1,274 genes were identified to be potential positive and negative contributors for XZSN having higher drought resistance ability than LK3. Furthermore, 851 out of 1,206 positive drought-resistant genes were further identified to be the core drought-resistant genes of XZSN based on WGCNA analysis, and most of them were induced earlier and quicker by drought stress than those in LK3. Functional annotation of the 851 core drought-resistant genes found that a large number of stress-responsive genes were involved in TFs, abscisic acid (ABA) biosynthesis, signal transduction and response, non-ABA signal molecule biosynthesis, water holding, oxygen species scavenging, osmotic adjustment, cell damage prevention, and so on. Transcriptional regulatory network analyses identified the potential regulators of these drought-resistant functional genes and found that the HD-ZIP and MYB TFs might be the key downstream TFs of drought resistance in Tartary buckwheat. Taken together, these results indicated that the XZSN genotype was more drought-tolerant than the LK3 genotype as evidenced by triggering the rapid and dramatic transcriptional reprogramming of drought-resistant genes to reduce water loss, prevent cell damage, and so on. This research expands our current understanding of the drought tolerance mechanisms of Tartary buckwheat and provides important information for its further drought resistance research and variety breeding.

8.
Environ Int ; 168: 107457, 2022 10.
Article En | MEDLINE | ID: mdl-35963060

Antibiotic-resistance genes (ARGs) and resistant bacteria (ARB) are abundant in stormwater that could cause serious infections, posing a potential threat to public health. However, there is no inference about how stormwater contributes to ARG profiles as well as the dynamic interplay between ARGs and bacteria via vertical gene transfer (VGT) or horizontal gene transfer (HGT) in urban water ecosystems. In this study, the distribution of ARGs, their host communities, and the source and community assembly process of ARGs were investigated in Yundang Lagoon (China) via high-throughput quantitative PCR, 16S rRNA gene amplicon sequencing, and application of SourceTracker before, after and recovering from an extreme precipitation event (132.1 mm). The abundance of ARGs and mobile genetic elements (MGEs) was the highest one day after precipitation and then decreased 2 days after precipitation and so on. Based on SourceTracker and NMDS analysis, the ARG and bacterial communities in lagoon surface water from one day after precipitation were mainly contributed by the wastewater treatment plant (WWTP) influent and effluent. However, the contribution of WWTP to ARG communities was minor 11 days after the precipitation, suggesting that the storm promoted the ARG levels by introducing the input of ARGs, MGEs, and ARB from point and non-point sources, such as sewer overflow and land-applied manure. Based on a novel microbial network analysis framework, the contribution of positive biological interactions between ARGs and MGEs or bacteria was the highest one day after precipitation, indicating a promoted VGT and HGT for ARG dissemination. The microbial networks deconstructed 11 days after precipitation, suggesting the stormwater practices (e.g., tide gate opening, diversion channels, and pumping) alleviated the spread of ARGs. These results advanced our understanding of the distribution and transport of ARGs associated with their source in urban stormwater runoff.


Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Ecosystem , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Bacteria/genetics , Water
9.
BMC Plant Biol ; 22(1): 339, 2022 Jul 14.
Article En | MEDLINE | ID: mdl-35831794

BACKGROUND: Fagopyrum (Polygonaceae) is a small plant lineage comprised of more than fifteen economically and medicinally important species. However, the phylogenetic relationships of the genus are not well explored, and the characteristics of Fagopyrum chloroplast genomes (plastomes) remain poorly understood so far. It restricts the comprehension of species diversity in Fagopyrum. Therefore, a comparative plastome analysis and comprehensive phylogenomic analyses are required to reveal the taxonomic relationship among species of Fagopyrum. RESULTS: In the current study, 12 plastomes were sequenced and assembled from eight species and two varieties of Fagopyrum. In the comparative analysis and phylogenetic analysis, eight previously published plastomes of Fagopyrum were also included. A total of 49 plastomes of other genera in Polygonaceae were retrieved from GenBank and used for comparative analysis with Fagopyrum. The variation of the Fagopyrum plastomes is mainly reflected in the size and boundaries of inverted repeat/single copy (IR/SC) regions. Fagopyrum is a relatively basal taxon in the phylogenomic framework of Polygonaceae comprising a relatively smaller plastome size (158,768-159,985 bp) than another genus of Polygonaceae (158,851-170,232 bp). A few genera of Polygonaceae have nested distribution of the IR/SC boundary variations. Although most species of Fagopyrum show the same IRb/SC boundary with species of Polygonaceae, only a few species show different IRa/SC boundaries. The phylogenomic analyses of Fagopyrum supported the cymosum and urophyllum groups and resolved the systematic position of subclades within the urophyllum group. Moreover, the repeat sequence types and numbers were found different between groups of Fagopyrum. The plastome sequence identity showed significant differences between intra-group and inter-group. CONCLUSIONS: The deletions of intergenic regions cause a short length of Fagopyrum plastomes, which may be the main reason for plastome size diversity in Polygonaceae species. The phylogenomic reconstruction combined with the characteristics comparison of plastomes supports grouping within Fagopyrum. The outcome of these genome resources may facilitate the taxonomy, germplasm resources identification as well as plant breeding of Fagopyrum.


Fagopyrum , Genome, Chloroplast , Polygonaceae , Evolution, Molecular , Fagopyrum/genetics , Genome, Chloroplast/genetics , Phylogeny , Plant Breeding , Polygonaceae/genetics
10.
Front Plant Sci ; 13: 803472, 2022.
Article En | MEDLINE | ID: mdl-35783922

Golden buckwheat (Fagopyrum cymosum) is used in Traditional Chinese Medicine. It has received attention because of the high value of its various medicinal and nutritional metabolites, especially flavonoids (catechin and epicatechin). However, the metabolites and their encoding genes in golden buckwheat have not yet been identified in the global landscape. This study performed transcriptomics and widely targeted metabolomics analyses for the first time on rhizomes of golden buckwheat. As a result, 10,191 differentially expressed genes (DEGs) and 297 differentially regulated metabolites (DRMs) were identified, among which the flavonoid biosynthesis pathway was enriched in both transcriptome and metabolome. The integration analyses of the transcriptome and the metabolome revealed a network related to catechin, in which four metabolites and 14 genes interacted with each other. Subsequently, an SG5 R2R3-MYB transcription factor, named FcMYB1, was identified as a transcriptional activator in catechin biosynthesis, as it was positively correlated to eight flavonoid biosynthesis genes in their expression patterns and was directly bound to the promoters of FcLAR2 and FcF3'H1 by yeast one hybrid analysis. Finally, a flavonoid biosynthesis pathway was proposed in the rhizomes of golden buckwheat, including 13 metabolites, 11 genes encoding 9 enzymes, and 1 MYB transcription factor. The expression of 12 DEGs were validated by qRT-PCR, resulting in a good agreement with the Pearson R ranging from 0.83 to 1. The study provided a comprehensive flavonoid biosynthesis and regulatory network of golden buckwheat.

11.
Sci Rep ; 12(1): 11986, 2022 07 14.
Article En | MEDLINE | ID: mdl-35835786

Tartary buckwheat (TB) is an edible pseudocereal with good health benefits, but its adhering thick shell and bitter taste inhibit its consumption. In this study, the first hybrid rice-Tartary buckwheat (RTB) variety Mikuqiao18 (M18), bred by the pedigree selection of crossbreeding 'Miqiao' (MQ) with 'Jingqiaomai2' (JQ2), was selected for an agronomic and metabolomics analysis. Compared with JQ2, M18 demonstrated a significantly lower yield per plant owing to the decreased grain weight and similar full-filling grain number per plant. However, M18 had a similar kernel weight per plant because of the thinner shell. The sense organ test suggested that M18 had higher taste quality regardless of partial replacement of rice through the improvement of preponderant indicators related to cereal taste quality, including lower values of total protein, albumin, glutelin, globulin, pasting temperature, cool paste viscosity, and setback. Meanwhile, M18 contained high levels of flavonoids, including rutin and quercetin, but presented a positive summary appraisal of cooking with 25% rice. Additionally, 92 metabolites were positively identified by GC-MS, including 59 differentially expressed metabolites (DEMs) between M18 and JQ2. Typically, M18 exhibited lower levels of 20 amino acids and higher levels of 6 sugars and 4 polyols. These DEMs might partly explain the superior eating quality of M18. In addition, M18 was abundant in 4-aminobutyric acid, which is beneficial to human health. The current findings offer a theoretical foundation for breeding rice-Tartary buckwheat with high yield and quality and promoting the cultivation and consumption of rice-Tartary buckwheat as a daily functional cereal.


Fagopyrum , Oryza , Fagopyrum/chemistry , Humans , Hybridization, Genetic , Oryza/genetics , Plant Breeding , Rutin
12.
Food Chem X ; 14: 100295, 2022 Jun 30.
Article En | MEDLINE | ID: mdl-35372824

Tartary buckwheat sprouts have a high nutritional value and are gluten-free, and polyphenols are their main active constituents. However, information regarding the active constituents' difference of Tartary buckwheat sprouts grown from seeds with different morphology, at different developmental stages and environments is limited. Here, we developed a LC-MS-based targeted metabolomics approach to analyze polyphenols (46 flavonoids and 6 anthraquinones) in 40 Tartary buckwheat sprouts varieties. Both flavonoids and anthraquinones contributed to significant differences in sprouts grown from seed with different color or shape. Twenty-seven differential compounds were all at a higher level in 3-day-old sprouts, and the fold change from 3-day-old to 8-day-old sprouts was 1.42-6.64. A total of 25 differential compounds were all significantly upregulated upon UV-B radiation, especially for epicatechin. This study is valuable not only for better breeding cultivars of Tartary buckwheat sprouts, but also assessing their metabolic quality.

13.
Food Chem ; 371: 131125, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-34563971

Tartary buckwheat has higher health-promoting value than common buckwheat. However, the related metabolites information except flavonoids is largely deficient. Here, we compared the seed metabolomes of the two species using a UHPLC-QqQ-MS-based metabolomics approach. In total, 722 metabolites were obtained, of which 84 and 78 were identified as the key active ingredients of Traditional Chinese Medicines and the active pharmaceutical ingredients for six major diseases-resistance, respectively. Comparative analysis showed there were obviously difference in metabolic profiles between the two buckwheat species, and further found 61 flavonoids and 94 non-flavonoids metabolites displayed significantly higher contents (≥2 fold) in Tartary buckwheat than in common buckwheat. Our results suggest that Tartary and common buckwheat seeds are rich in metabolites beneficial to human health, and non-flavonoids metabolites also contributed to Tartary buckwheat's higher health-promoting value than common buckwheat. This study provides valuable information for the development of new functional foods of Tartary buckwheat.


Fagopyrum , Flavonoids , Humans , Metabolomics , Seeds
14.
Plants (Basel) ; 12(1)2022 Dec 28.
Article En | MEDLINE | ID: mdl-36616274

The use of entomogenous fungi as endophytes is currently an area of active research. Isaria cateniannulata is an important entomogenous fungus that has been employed for the active control of a range of pests in agricultural and forestry settings, but its direct impact on plants remains to be evaluated. Herein, we assessed the ability of I. cateniannulata to colonize buckwheat, Fagopyrum esculentum and F. tataricum, and its impact on buckwheat defense enzyme activity and physiological indexes. The majority of fungal submerge condia was able to enter into leaves through stomata and veins, and this was followed by conidial attachment, lytic enzyme secretion, conidial deformation, and enhanced defensive enzyme activity within buckwheat, followed by the repair of damaged tissue structures. I. cateniannulata populations on buckwheat leaf surfaces (in CFU/g) reached the minimum values at 24 h after inoculation. At this time, the blast analysis revealed that the sequence identity values were 100%, which was consistent with the sequence of I. cateniannula. The number of I. cateniannulata submerge conidia colonized in the buckwheat leaves gradually rose to peak levels on 7 d post-inoculation, and then gradually declined until 10 d, at which time the buckwheat plant growth index values increased. This study provided novel evidence that I. cateniannulata could be leveraged as an endophytic fungus capable of colonizing buckwheat plants and promoting their growth.

15.
Int J Genomics ; 2021: 3102399, 2021.
Article En | MEDLINE | ID: mdl-34746298

Auxin/indoleacetic acid (Aux/IAA) family genes respond to the hormone auxin, which have been implicated in the regulation of multiple biological processes. In this study, all 25 Aux/IAA family genes were identified in Tartary buckwheat (Fagopyrum tataricum) by a reiterative database search and manual annotation. Our study provided comprehensive information of Aux/IAA family genes in buckwheat, including gene structures, chromosome locations, phylogenetic relationships, and expression patterns. Aux/IAA family genes were nonuniformly distributed in the buckwheat chromosomes and divided into seven groups by phylogenetic analysis. Aux/IAA family genes maintained a certain correlation and a certain species-specificity through evolutionary analysis with Arabidopsis and other grain crops. In addition, all Aux/IAA genes showed a complex response pattern under treatment of indole-3-acetic acid (IAA). These results provide valuable reference information for dissecting function and molecular mechanism of Aux/IAA family genes in buckwheat.

16.
PeerJ ; 9: e11939, 2021.
Article En | MEDLINE | ID: mdl-34447629

BBX (B-box), a zinc finger transcription factor with one or two B-box domains, plays an important role in plant photomorphogenesis, growth, and development as well as response to environmental changes. In this study, 28 Tartary buckwheat BBX (FtBBX) genes were identified and screened using a comparison program. Their physicochemical properties, gene structures, conserved motifs, distribution in chromosomal, and phylogeny of the coding proteins, as well as their expression patterns, were analyzed. In addition, multiple collinearity analysis in three monocots and three dicot species illustrated that the BBX proteins identified from monocots clustered separately from those of dicots. Moreover, the expression of 11 candidate BBX genes with probable involvement in the regulation of anthocyanin biosynthesis was analyzed in the sprouts of Tartary buckwheat during light treatment. The results of gene structure analysis showed that all the 28 BBX genes contained B-box domain, three genes lacked introns, and these genes were unevenly distributed on the other seven chromosomes except for chromosome 6. The 28 proteins contained 10 conserved motifs and could be divided into five subfamilies. BBX genes of Tartary buckwheat showed varying expression under different conditions demonstrating that FtBBXs might play important roles in Tartary buckwheat growth and development. This study lays a foundation for further understanding of Tartary buckwheat BBX genes and their functions in growth and development as well as regulation of pigmentation in Tartary buckwheat.

17.
J Hazard Mater ; 417: 126083, 2021 09 05.
Article En | MEDLINE | ID: mdl-34000699

Sewage and fecal pollution cause antibiotic resistance genes (ARGs) pollution in urban lagoons. Seasonality also affects ARG dynamics. However, knowledge of factors controlling ARG community assembly across seasons is still limited. Here, we revealed the seasonal variation of ARGs and depict the underlying assembly processes and drivers via high-throughput quantitative PCR in an urban lagoon, China. A higher richness and abundance of ARGs were observed in summer and winter compared to spring and fall (Kruskal-Wallis test, P < 0.05). Both ARG and prokaryotic communities were mainly governed by stochastic processes, however, these processes drove ARGs and prokaryotes differently across seasons. Stochastic processes played a more dominant role in shaping ARG communities in summer (average stochasticity: 83%) and winter (75%), resulting in a stable antibiotic resistome. However, no such seasonal pattern of stochastic processes was determined for prokaryotes, indicating a decoupling of the assembly process of ARGs and prokaryotes. Moreover, fecal microorganisms (e.g., Bacteroidetes and Faecalibacterium) mediated the stochastic processes of ARG profiles, via enhancement of prokaryotic biomass and mobile genetic element abundances. The tnpA-07 transposase was the key for the horizontal gene transfer. These findings will enhance our understanding of how fecal pollution shapes ARG community assembly in urban lagoons.


Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Microbial/genetics , Environmental Pollution
18.
PeerJ ; 9: e11136, 2021.
Article En | MEDLINE | ID: mdl-33850661

Tartary buckwheat is a nutritious pseudo-cereal crop that is resistant to abiotic stresses, such as drought. However, the buckwheat's mechanisms for responding to drought stress remains unknown. We investigated the changes in physiology and gene expression under drought stress, which was simulated by treatment with polyethylene glycol (PEG). Five physiological indexes, namely MDA content, H2O2 content, CAT activity, SOD activity, and POD activity, were measured over time after 20% PEG treatment. All indexes showed dramatic changes in response to drought stress. A total of 1,190 differentially expressed genes (DEGs) were identified using RNA-seq and the most predominant were related to a number of stress-response genes and late embryogenesis abundant (LEA) proteins. DEGs were gathered into six clusters and were found to be involved in the ABA biosynthesis and signal pathway based on hierarchical clustering and GO and KEGG pathway enrichment. Transcription factors, such as NAC and bZIP, also took part in the response to drought stress. We determined an ABA-dependent and ABA-independent pathway in the regulation of drought stress in Tartary buckwheat. To the best of our knowledge, this is the first transcriptome analysis of drought stress in Tartary buckwheat, and our results provide a comprehensive gene regulatory network of this crop in response to drought stress.

19.
BMC Plant Biol ; 21(1): 132, 2021 Mar 09.
Article En | MEDLINE | ID: mdl-33750309

BACKGROUND: Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS: In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS: Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.


Fagopyrum/growth & development , Fagopyrum/genetics , MicroRNAs/physiology , RNA, Messenger/physiology , RNA, Plant/physiology , Seeds/growth & development , Evolution, Molecular , Gene Expression Profiling , Ligase Chain Reaction , MicroRNAs/genetics , Phylogeny , Plant Development/genetics , RNA, Plant/genetics , Real-Time Polymerase Chain Reaction , Seeds/genetics
20.
BMC Genomics ; 22(1): 142, 2021 Feb 27.
Article En | MEDLINE | ID: mdl-33639857

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum), an important pseudocereal crop, has high economic value due to its nutritional and medicinal properties. However, dehulling of Tartary buckwheat is difficult owing to its thick and tough hull, which has greatly limited the development of the Tartary buckwheat processing industry. The construction of high-resolution genetic maps serves as a basis for identifying quantitative trait loci (QTLs) and qualitative trait genes for agronomic traits. In this study, a recombinant inbred lines (XJ-RILs) population derived from a cross between the easily dehulled Rice-Tartary type and Tartary buckwheat type was genotyped using restriction site-associated DNA (RAD) sequencing to construct a high-density SNP genetic map. Furthermore, QTLs for 1000-grain weight (TGW) and genes controlling hull type were mapped in multiple environments. RESULTS: In total, 4151 bin markers comprising 122,185 SNPs were used to construct the genetic linkage map. The map consisted of 8 linkage groups and covered 1444.15 cM, with an average distance of 0.35 cM between adjacent bin markers. Nine QTLs for TGW were detected and distributed on four loci on chromosome 1 and 4. A major locus detected in all three trials was mapped in 38.2-39.8 cM region on chromosome 1, with an LOD score of 18.1-37.0, and explained for 23.6-47.5% of the phenotypic variation. The genes controlling hull type were mapped to chromosome 1 between marker Block330 and Block331, which was closely followed by the major locus for TGW. The expression levels of the seven candidate genes controlling hull type present in the region between Block330 and Block336 was low during grain development, and no significant difference was observed between the parental lines. Six non-synonymous coding SNPs were found between the two parents in the region. CONCLUSIONS: We constructed a high-density SNP genetic map for the first time in Tartary buckwheat. The mapped major loci controlling TGW and hull type will be valuable for gene cloning and revealing the mechanism underlying grain development and easy dehulling, and marker-assisted selection in Tartary buckwheat.


Fagopyrum , Edible Grain , Fagopyrum/genetics , Genetic Linkage , Polymorphism, Single Nucleotide , Quantitative Trait Loci
...