Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Abdom Radiol (NY) ; 49(3): 997-1005, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38244037

RESUMEN

PURPOSE: To explore the feasibility of measuring glomerular filtration rate (GFR) using iodine maps in dual-energy spectral computed tomography urography (DEsCTU) and correlate them with the estimated GFR (eGFR) based on the equation of creatinine-cystatin C. MATERIALS AND METHODS: One hundred and twenty-eight patients referred for DEsCTU were retrospectively enrolled. The DEsCTU protocol included non-contrast, nephrographic, and excretory phase imaging. The CT-derived GFR was calculated using the above 3-phase iodine maps (CT-GFRiodine) and 120 kVp-like images (CT-GFR120kvp) separately. CT-GFRiodine and CT-GFR120kvp were compared with eGFR using paired t-test, correlation analysis, and Bland-Altman plots. The receiver operating characteristic curves were used to test the renal function diagnostic performance with CT-GFR120kvp and CT-GFRiodine. RESULTS: The difference between eGFR (89.91 ± 18.45 ml·min-1·1.73 m-2) as reference standard and CT-GFRiodine (90.06 ± 20.89 ml·min-1·1.73 m-2) was not statistically significant, showing excellent correlation (r = 0.88, P < 0.001) and agreement (± 19.75 ml·min-1·1.73 m-2, P = 0.866). The correlation between eGFR and CT-GFR120kvp (66.13 ± 19.18 ml·min-1·1.73 m-2) was poor (r = 0.36, P < 0.001), and the agreement was poor (± 40.65 ml·min-1·1.73 m-2, P < 0.001). There were 62 patients with normal renal function and 66 patients with decreased renal function based on eGFR. The CT-GFRiodine had the largest area under the curve (AUC) for distinguishing between normal and decreased renal function (AUC = 0.951). CONCLUSION: The GFR can be calculated accurately using iodine maps in DEsCTU. DEsCTU could be a non-invasive and reliable one-stop-shop imaging technique for evaluating both the urinary tract morphology and renal function.


Asunto(s)
Yodo , Humanos , Estudios Retrospectivos , Estudios de Factibilidad , Tasa de Filtración Glomerular , Riñón/diagnóstico por imagen , Urografía/métodos , Tomografía , Creatinina
2.
Talanta ; 258: 124408, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871516

RESUMEN

Trace analysis has great promise in the fields of disease diagnosis and environment protection. Surface-enhanced Raman scattering (SERS) has wide range of utilization due to its reliable fingerprint detection. However, the sensitivity of SERS still needs to be enhanced. Raman scattering of target molecules around hotspots, the area with extremely strong electromagnetic field, can be highly amplified. Therefore, to increase the density of hotspots is one of the major approaches for enhancing the detection sensitivity of target molecules. In this paper, an ordered array of Ag nanocubes was assembled on a thiol modified silicon substrate as a SERS substrate, which provided high-density hotspots. The detection sensitivity is demonstrated by the limit of detection, which is down to 10-6 nM with Rhodamine 6G as probe molecule. The wide linear range (10-7-10-13 M) and low relative standard deviation (<6.48%) indicate the good reproducibility of the substrate. Furthermore, the substrate can be used for the detection of dye molecules in lake water. This method provides an approach for increasing hotspots of SERS substrate, which could be a promising method to achieve good reproducibility and high sensitivity.

3.
Langmuir ; 38(43): 13158-13165, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260433

RESUMEN

Surface-enhanced Raman scattering (SERS), as a sensitive analytical technique, is expected to be used for quantification of trace analytes. At the current stage, high detection reproducibility should be guaranteed for realizing quantification analysis of trace analytes. The main obstacle to achieving high detection reproducibility is the nonuniform distribution of analyte molecules on substrates, particularly, the "coffee-ring" effect introduced by the flow of solute to the pinning of the contact line. Herein, we report a method to tackle this problem by controlling the location of analytes through tuning the wettability of the SERS substrate. With the combination of silver-assisted chemical etching and photolithography, the ordered Si patterns grafted silver nanoparticles with tunable wettability were integrated into a SERS substrate. With this substrate, high detection reproducibility was achieved by confining all the analyte molecules on the area of active plasmonic hot-spots within one laser, and the quantitative analysis was realized with ultrahigh sensitivity. Furthermore, the substrate is applicable for high-throughput detection.


Asunto(s)
Nanopartículas del Metal , Espectrometría Raman , Espectrometría Raman/métodos , Plata/química , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Rayos Láser
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119447, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33461135

RESUMEN

Super-hydrophobic delivery (SHD) is an efficient approach to enrich trace analytes into hot spot regions for ultrasensitive surface-enhanced Raman scattering (SERS) detection. In this article, we propose an efficient and simple method to prepare a highly-uniform SHD-SERS platform of high performance in trace detection, named as "silver-nanoparticle-grafted silicon nanocones" (termed AgNPs/SiNC) platform. It is fabricated via droplet-confined electroless deposition on the super-hydrophobic SiNC array. The AgNPs/SiNC platform allows trace analytes enriched into hot spots formed by AgNPs, leading to an excellent reproducibility and sensitivity. The relative standard deviation (RSD) for detecting R6G (10-7 M) is down to 4.70% and the lowest detection concentration for R6G is 10-14 M. Moreover, various contaminants in complex liquid environments, such as, crystal violet (10-9 M) in lake water, melamine (10-7 M) in liquid milk and methyl parathion (10-7 M) in tap water, can be detected using the SERS platform. This result demonstrates the great potential of the AgNPs/SiNC platform in the fields of food safety and environmental monitoring.


Asunto(s)
Nanopartículas del Metal , Plata , Reproducibilidad de los Resultados , Silicio , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...