Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674085

DUSPs, a diverse group of protein phosphatases, play a pivotal role in orchestrating cellular growth and development through intricate signaling pathways. Notably, they actively participate in the MAPK pathway, which governs crucial aspects of plant physiology, including growth regulation, disease resistance, pest resistance, and stress response. DUSP is a key enzyme, and it is the enzyme that limits the rate of cell metabolism. At present, complete understanding of the DUSP gene family in cotton and its specific roles in resistance to Verticillium wilt (VW) remains elusive. To address this knowledge gap, we conducted a comprehensive identification and analysis of four key cotton species: Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii. The results revealed the identification of a total of 120 DUSP genes in the four cotton varieties, which were categorized into six subgroups and randomly distributed at both ends of 26 chromosomes, predominantly localized within the nucleus. Our analysis demonstrated that closely related DUSP genes exhibited similarities in terms of the conserved motif composition and gene structure. A promoter analysis performed on the GhDUSP gene promoter revealed the presence of several cis-acting elements, which are associated with abiotic and biotic stress responses, as well as hormone signaling. A tissue expression pattern analysis demonstrated significant variations in GhDUSP gene expression under different stress conditions, with roots exhibiting the highest levels, followed by stems and leaves. In terms of tissue-specific detection, petals, leaves, stems, stamens, and receptacles exhibited higher expression levels of the GhDUSP gene. The gene expression analysis results for GhDUSPs under stress suggest that DUSP genes may have a crucial role in the cotton response to stress in cotton. Through Virus-Induced Gene Silencing (VIGS) experiments, the silencing of the target gene significantly reduced the resistance efficiency of disease-resistant varieties against Verticillium wilt (VW). Consequently, we conclude that GH_A11G3500-mediated bispecific phosphorylated genes may serve as key regulators in the resistance of G. hirsutum to Verticillium wilt (VW). This study presents a comprehensive structure designed to provide an in-depth understanding of the potential biological functions of cotton, providing a strong foundation for further research into molecular breeding and resistance to plant pathogens.


Gene Expression Regulation, Plant , Gossypium , Plant Diseases , Verticillium , Disease Resistance , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Genome, Plant , Gossypium/genetics , Gossypium/microbiology , Phylogeny , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Verticillium/drug effects , Verticillium/physiology
2.
Plants (Basel) ; 13(7)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38611533

Cotton is a critical crop with massive economic implications worldwide. Verticillium wilt is a soil-borne ailment caused by Verticillium dahliae, which harms the growth and development of cotton. Therefore, investigating the genes associated with resistance to verticillium wilt is of particular significance. In this study, we identified the GhIQD1 gene through transcriptome analysis and experimentally characterized the role of the GhIQD1 gene in cotton against V. dahliae. The findings indicated that GhIQD1 acts as a calmodulin-binding protein. The expression of GhIQD1 was the highest in stems, and the expression level increased significantly following infection with V. dahliae. The expression in resistant cotton varieties was higher than in susceptible cotton varieties. Through overexpression of the GhIQD1 gene in tobacco, these transgenic plants exhibited improved resistance to V. dahliae. In contrast, by silencing the GhIQD1 gene in cotton through VIGS, the resistance to V. dahliae was reduced. Following inoculation, the leaves yellowed, and the disease index was higher. Transcriptome analysis of transgenic tobacco 72 h after inoculation indicated that overexpression of GhIQD1 increased the enrichment of the calmodulin pathway and stimulated the production of plant hormones alongside secondary metabolites. Consequently, we investigated the relationship between the GhIQD1 gene and plant disease-resistant hormones SA, JA, and ABA. In summary, this study uncovered the mechanism by which GhIQD1 conferred resistance to V. dahliae in cotton through positive regulation of JA and ABA, providing crucial information for further research on the adaptation of plants to pathogen invasion.

3.
Plant Physiol ; 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38513701

Gossypium barbadense, which is one of several species of cotton, is well-known for its superior fiber quality. However, the genetic basis of its high-quality fiber remains largely unexplored. Here, we re-sequenced 269 G. barbadense accessions. Phylogenetic structure analysis showed that the set of accessions were clustered into three groups, G1 and G2 mainly included modern cultivars from Xinjiang, China, and G3 was related to widely introduced accessions in different regions worldwide. A genome-wide association study of five fiber quality traits across multiple field environments identified a total of 512 qtls (main effect QTLs) and 94 qtlEs (QTL-by-environment interactions) related to fiber quality, of which 292 qtls and 57 qtlEs co-located with previous studies. We extracted the genes located in these loci and performed expression comparison, local association analysis, and introgression segment identification. The results showed that high expression of hormone-related genes during fiber development, introgressions from G. hirsutum, and the recombination of domesticated elite allelic variation, were three major contributors to improve fiber quality of G. barbadense. In total, 839 candidate genes with encoding region variation associated with elite fiber quality were mined. We confirmed that haplotype GB_D03G0092H traced from G. hirsutum introgression, with a 1-bp deletion leading to a frameshift mutation compared with GB_D03G0092B, significantly improved fiber quality. GB_D03G0092H localized in the plasma membrane, while GB_D03G0092B in both the nucleus and plasma membrane. Overexpression of GB_D03G0092H in Arabidopsis (Arabidopsis thaliana) significantly improved the elongation of longitudinal cells. Our study systematically reveals the genetic basis of the superior fiber quality of G. barbadense and provides elite segments and gene resources for breeding high-quality cotton cultivars.

4.
Genes (Basel) ; 15(3)2024 Mar 09.
Article En | MEDLINE | ID: mdl-38540407

Chromatin remodelers are essential for regulating plant growth, development, and responses to environmental stresses. HIT4 (HEAT-INTOLERANT 4) is a novel stress-induced chromatin remodeling factor that has been less studied in abiotic stress and stress resistance, particularly in cotton. In this study, we conducted a comprehensive analysis of the members of the HIT4 gene family in Gossypium hirsutum using bioinformatics methods, including phylogenetic relationships, gene organization, transcription profiles, phylogenetic connections, selection pressure, and stress response. A total of 18 HIT4 genes were identified in four cotton species, with six HIT4 gene members in upland cotton. Based on the evolutionary relationships shown in the phylogenetic tree, the 18 HIT4 protein sequences were classified into four distinct subgroups. Furthermore, we conducted chromosome mapping to determine the genomic locations of these genes and visually represented the structural characteristics of HIT4 in G. hirsutum. In addition, we predicted the regulatory elements in HIT4 in G. hirsutum and conducted an analysis of repetitive sequences and gene collinearity among HIT4 in four cotton species. Moreover, we calculated the Ka/Ks ratio for homologous genes to assess the selection pressure acting on HIT4. Using RNA-seq, we explored the expression patterns of HIT4 genes in G. hirsutum and Gossypium barbadense. Through weighted gene co-expression network analysis (WGCNA), we found that GHHIT4_4 belonged to the MEblue module, which was mainly enriched in pathways such as DNA replication, phagosome, pentose and glucuronate interconversions, steroid biosynthesis, and starch and sucrose metabolism. This module may regulate the mechanism of upland cotton resistance to Verticillium wilt through DNA replication, phagosome, and various metabolic pathways. In addition, we performed heterologous overexpression of GH_D11G0591 (GHHIT4_4) in tobacco, and the results showed a significant reduction in disease index compared to the wild type, with higher expression levels of disease resistance genes in the transgenic tobacco. After conducting a VIGS (virus-induced gene silencing) experiment in cotton, the results indicated that silencing GHHIT4_4 had a significant impact, the resistance to Verticillium wilt weakened, and the internode length of the plants significantly decreased by 30.7% while the number of true leaves increased by 41.5%. qRT-PCR analysis indicated that GHHIT4_4 mainly enhanced cotton resistance to Verticillium wilt by indirectly regulating the PAL, 4CL, and CHI genes. The subcellular localization results revealed that GHHIT4_4 was predominantly distributed in the mitochondria and nucleus. This study offers preliminary evidence for the involvement of the GHHIT4_4 in cotton resistance to Verticillium wilt and lays the foundation for further research on the disease resistance mechanism of this gene in cotton.


Gossypium , Verticillium , Gossypium/metabolism , Verticillium/genetics , Phylogeny , Disease Resistance/genetics , Chromosome Mapping
5.
BMC Plant Biol ; 24(1): 129, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38383284

BACKGROUND: Focusing on key indicators of drought resistance is highly important for quickly mining candidate genes related to drought resistance in cotton. RESULTS: In the present study, drought resistance was identified in drought resistance-related RIL populations during the flowering and boll stages, and multiple traits were evaluated; these traits included three key indicators: plant height (PH), single boll weight (SBW) and transpiration rate (Tr). Based on these three key indicators, three groups of extreme mixing pools were constructed for BSA-seq. Based on the mapping interval of each trait, a total of 6.27 Mb QTL intervals were selected on chromosomes A13 (3.2 Mb), A10 (2.45 Mb) and A07 (0.62 Mb) as the focus of this study. Based on the annotation information and qRT‒PCR analysis, three key genes that may be involved in the drought stress response of cotton were screened: GhF6'H1, Gh3AT1 and GhPER55. qRT‒PCR analysis of parental and extreme germplasm materials revealed that the expression of these genes changed significantly under drought stress. Cotton VIGS experiments verified the important impact of key genes on cotton drought resistance. CONCLUSIONS: This study focused on the key indicators of drought resistance, laying the foundation for the rapid mining of drought-resistant candidate genes in cotton and providing genetic resources for directed molecular breeding of drought resistance in cotton.


Drought Resistance , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Phenotype , Droughts , Gossypium/genetics
6.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article En | MEDLINE | ID: mdl-38279348

DVL is one of the small polypeptides which plays an important role in regulating plant growth and development, tissue differentiation, and organ formation in the process of coping with stress conditions. So far, there has been no comprehensive analysis of the expression profile and function of the cotton DVL gene. According to previous studies, a candidate gene related to the development of fuzz was screened, belonging to the DVL family, and was related to the development of trichomes in Arabidopsis thaliana. However, the comprehensive identification and systematic analysis of DVL in cotton have not been conducted. In this study, we employed bioinformatics approaches to conduct a novel analysis of the structural characteristics, phylogenetic tree, gene structure, expression pattern, evolutionary relationship, and selective pressure of the DVL gene family members in four cotton species. A total of 117 DVL genes were identified, including 39 members in G. hirsutum. Based on the phylogenetic analysis, the DVL protein sequences were categorized into five distinct subfamilies. Additionally, we successfully mapped these genes onto chromosomes and visually represented their gene structure information. Furthermore, we predicted the presence of cis-acting elements in DVL genes in G. hirsutum and characterized the repeat types of DVL genes in the four cotton species. Moreover, we computed the Ka/Ks ratio of homologous genes across the four cotton species and elucidated the selective pressure acting on these homologous genes. In addition, we described the expression patterns of the DVL gene family using RNA-seq data, verified the correlation between GhMDVL3 and fuzz development through VIGS technology, and found that some DVL genes may be involved in resistance to biotic and abiotic stress conditions through qRT-PCR technology. Furthermore, a potential interaction network was constructed by WGCNA, and our findings demonstrated the potential of GhM_A05G1032 to interact with numerous genes, thereby playing a crucial role in regulating fuzz development. This research significantly contributed to the comprehension of DVL genes in upland cotton, thereby establishing a solid basis for future investigations into the functional aspects of DVL genes in cotton.


Gene Expression Profiling , Genome, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Gossypium/genetics , Gossypium/metabolism , Gene Expression Regulation, Plant
7.
J Adv Res ; 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38065406

INTRODUCTION: Upland cotton is an important allotetrapolyploid crop providing natural fibers for textile industry. Under the present high-level breeding and production conditions, further simultaneous improvement of fiber quality and yield is facing unprecedented challenges due to their complex negative correlations. OBJECTIVES: The study was to adequately identify quantitative trait loci (QTLs) and dissect how they orchestrate the formation of fiber quality and yield. METHODS: A high-density genetic map (HDGM) based on an intraspecific recombinant inbred line (RIL) population consisting of 231 individuals was used to identify QTLs and QTL clusters of fiber quality and yield traits. The weighted gene correlation network analysis (WGCNA) package in R software was utilized to identify WGCNA network and hub genes related to fiber development. Gene functions were verified via virus-induced gene silencing (VIGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 strategies. RESULTS: An HDGM consisting of 8045 markers was constructed spanning 4943.01 cM of cotton genome. A total of 295 QTLs were identified based on multi-environmental phenotypes. Among 139 stable QTLs, including 35 newly identified ones, seventy five were of fiber quality and 64 yield traits. A total of 33 QTL clusters harboring 74 QTLs were identified. Eleven candidate hub genes were identified via WGCNA using genes in all stable QTLs and QTL clusters. The relative expression profiles of these hub genes revealed their correlations with fiber development. VIGS and CRISPR/Cas9 edition revealed that the hub gene cellulose synthase 4 (GhCesA4, GH_D07G2262) positively regulate fiber length and fiber strength formation and negatively lint percentage. CONCLUSION: Multiple analyses demonstrate that the hub genes harbored in the QTLs orchestrate the fiber development. The hub gene GhCesA4 has opposite pleiotropic effects in regulating trait formation of fiber quality and yield. The results facilitate understanding the genetic basis of negative correlation between cotton fiber quality and yield.

8.
PeerJ ; 11: e16445, 2023.
Article En | MEDLINE | ID: mdl-38025668

Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the central enzyme of glycolysis and plays important regulatory roles in plant growth and development and responses to adverse stress conditions. However, studies on the characteristics and functions of cotton GAPDH family genes are still lacking. Methods: In this study, genome-wide identification of the cotton GAPDH gene family was performed, and the phylogeny, gene structures, promoter progenitors and expression profiles of upland cotton GAPDH gene family members were explored by bioinformatics analysis to highlight potential functions. The functions of GhGAPDH9 in response to drought stress were initially validated based on RNA-seq, qRT‒PCR, VIGS techniques and overexpression laying a foundation for further studies on the functions of GAPDH genes. Results: This study is the first systematic analysis of the cotton GAPDH gene family, which contains a total of 84 GAPDH genes, among which upland cotton contains 27 members. Quantitative, phylogenetic and covariance analyses of the genes revealed that the GAPDH gene family has been conserved during the evolution of cotton. Promoter analysis revealed that most cis-acting elements were related to MeJA and ABA. Based on the identified promoter cis-acting elements and RNA-seq data, it was hypothesized that Gh_GAPDH9, Gh_GAPDH11, Gh_GAPDH19 and Gh_GAPDH21 are involved in the response of cotton to abiotic stress. The expression levels of the Gh_GAPDH9 gene in two drought-resistant and two drought-sensitive materials were analyzed by qRT‒PCR and found to be high early in the treatment period in the drought-resistant material. The silencing of Gh_GAPDH9 based on virus-induced gene silencing (VIGS) technology resulted in significant leaf wilting or whole-plant dieback in silenced plants after drought stress compared to the control. The content of-malondialdehyde (MDA) in cotton leaves was significantly increased, and the content of proline (Pro) and chlorophyll (Chl) was reduced. In addition, the leaf wilting and dryness of transgenic lines under drought stress were lower than those of wild-type Arabidopsis, indicating that Gh_GAPDH9 is a positive regulator of drought resistance. In conclusion, our results demonstrate that GAPDH genes play an important role in the response of cotton to abiotic stresses and provide preliminary validation of the function of the Gh_GAPDH9 gene under drought stress. These findings provide an important theoretical basis for further studies on the function of the Gh_GAPDH9 gene and the molecular mechanism of the drought response in cotton.


Drought Resistance , Gossypium , Gossypium/genetics , Phylogeny , Regulatory Sequences, Nucleic Acid , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics
9.
Plants (Basel) ; 12(21)2023 Oct 31.
Article En | MEDLINE | ID: mdl-37960093

Fiber quality traits, especially fiber strength, length, and micronaire (FS, FL, and FM), have been recognized as critical fiber attributes in the textile industry, while the lint percentage (LP) was an important indicator to evaluate the cotton lint yield. So far, the genetic mechanism behind the formation of these traits is still unclear. Quantitative trait loci (QTL) identification and candidate gene validation provide an effective methodology to uncover the genetic and molecular basis of FL, FS, FM, and LP. A previous study identified three important QTL/QTL cluster loci, harboring at least one of the above traits on chromosomes A01, A07, and D12 via a recombinant inbred line (RIL) population derived from a cross of Lumianyan28 (L28) × Xinluzao24 (X24). A secondary segregating population (F2) was developed from a cross between L28 and an RIL, RIL40 (L28 × RIL40). Based on the population, genetic linkage maps of the previous QTL cluster intervals on A01 (6.70-10.15 Mb), A07 (85.48-93.43 Mb), and D12 (0.40-1.43 Mb) were constructed, which span 12.25, 15.90, and 5.56 cM, with 2, 14, and 4 simple sequence repeat (SSR) and insertion/deletion (Indel) markers, respectively. QTLs of FL, FS, FM, and LP on these three intervals were verified by composite interval mapping (CIM) using WinQTL Cartographer 2.5 software via phenotyping of F2 and its derived F2:3 populations. The results validated the previous primary QTL identification of FL, FS, FM, and LP. Analysis of the RNA-seq data of the developing fibers of L28 and RIL40 at 10, 20, and 30 days post anthesis (DPA) identified seven differentially expressed genes (DEGs) as potential candidate genes. qRT-PCR verified that five of them were consistent with the RNA-seq result. These genes may be involved in regulating fiber development, leading to the formation of FL, FS, FM, and LP. This study provides an experimental foundation for further exploration of these functional genes to dissect the genetic mechanism of cotton fiber development.

10.
Int J Mol Sci ; 24(19)2023 Sep 30.
Article En | MEDLINE | ID: mdl-37834230

Duplication events occur very frequently during plant evolution. The genes in the duplicated pathway or network can evolve new functions through neofunctionalization and subfunctionalization. Flavonoids are secondary metabolites involved in plant development and defense. Our previous transcriptomic analysis of F6 recombinant inbred lines (RILs) and the parent lines after Fusarium oxysporum f. sp. vasinfectum (Fov) infection showed that CHI genes have important functions in cotton. However, there are few reports on the possible neofunctionalization differences of CHI family paralogous genes involved in Fusarium wilt resistance in cotton. In this study, the resistance to Fusarium wilt, expression of metabolic pathway-related genes, metabolite content, endogenous hormone content, reactive oxygen species (ROS) content and subcellular localization of four paralogous CHI family genes in cotton were investigated. The results show that the four paralogous CHI family genes may play a synergistic role in Fusarium wilt resistance. These results revealed a genetic channelization mechanism that can regulate the metabolic flux homeostasis of flavonoids under the mediation of endogenous salicylic acid (SA) and methyl jasmonate (MeJA) via the four paralogous CHI genes, thereby achieving disease resistance. Our study provides a theoretical basis for studying the evolutionary patterns of homologous plant genes and using homologous genes for molecular breeding.


Fusarium , Gossypium , Gossypium/genetics , Gossypium/metabolism , Fusarium/genetics , Disease Resistance/genetics , Flavonoids/metabolism , Plant Diseases/genetics
11.
Plants (Basel) ; 12(20)2023 Oct 11.
Article En | MEDLINE | ID: mdl-37895991

Sulfotransferases (SOTs) (EC 2.8.2.-) are sulfate regulatory proteins in a variety of organisms that have been previously shown to be involved in regulating a variety of physiological and biological processes, such as growth, development, adaptation to land, stomatal closure, drought tolerance, and response to pathogen infection. However, there is a lack of comprehensive identification and systematic analysis of SOT in cotton, especially in G. barbadense. In this study, we used bioinformatics methods to analyze the structural characteristics, phylogenetic relationships, gene structure, expression patterns, evolutionary relationships, selection pressure and stress response of SOT gene family members in G. barbadense. In this study, a total of 241 SOT genes were identified in four cotton species, among which 74 SOT gene members were found in G. barbadense. According to the phylogenetic tree, 241 SOT protein sequences were divided into five distinct subfamilies. We also mapped the physical locations of these genes on chromosomes and visualized the structural information of SOT genes in G. barbadense. We also predicted the cis-acting elements of the SOT gene in G. barbadense, and we identified the repetitive types and collinearity analysis of SOT genes in four cotton species. We calculated the Ka/Ks ratio between homologous gene pairs to elucidate the selective pressure between SOT genes. Transcriptome data were used to explore the expression patterns of SOT genes, and then qRT-PCR was used to detect the expression patterns of GBSOT4, GBSOT17 and GBSOT33 under FOV stress. WGCNA (weighted gene co-expression network analysis) showed that GB_A01G0479 (GBSOT4) belonged to the MEblue module, which may regulate the resistance mechanism of G. barbadense to FOV through plant hormones, signal transduction and glutathione metabolism. In addition, we conducted a VIGS (virus-induced gene silencing) experiment on GBSOT4, and the results showed that after FOV inoculation, the plants with a silenced target gene had more serious leaf wilting, drying and cracking than the control group, and the disease index of the plants with the silenced target gene was significantly higher than that of the control group. This suggests that GBSOT4 may be involved in protecting the production of G. barbadense from FOV infection. Subsequent metabolomics analysis showed that some flavonoid metabolites, such as Eupatorin-5-methylether (3'-hydroxy-5,6,7,4'-tetramethoxyflavone, were accumulated in cotton plants in response to FOV infection.

12.
Plant Sci ; 335: 111813, 2023 Oct.
Article En | MEDLINE | ID: mdl-37543225

Drought stress has a serious impact on the growth and development of cotton. To explore the relevant molecular mechanism of the drought stress response in cotton, gene mapping based on the QTL interval mapped by simplified genome BSA-seq of the drought-resistance-related RIL population was performed. A QTL region spanning 2.02 Mb on chromosome D07 was selected, and 201 resource materials were genotyped using 9 KASP markers in the interval. After local interval haplotype association analysis, the overlap of the 110 kb peak region confirmed the reliability of this region, and at the same time, the role of GhGF14-30, the only gene in the overlapping region, was modeled in the response of cotton to drought stress. qRTPCR analysis of the materials and population parents proved that this gene plays a role in the drought stress response in cotton. Virus-induced gene silencing proved the importance of this gene in drought-sensitive materials, and drought-resistance-related marker genes also proved that the GhGF14-30 gene may play an important role in the ABA and SOS signaling pathways. This study provides a basis for mining drought stress response functional genes in cotton and lays the foundation for the molecular mechanism of the GhGF14-30 gene in response to drought stress in cotton.


Droughts , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Haplotypes , Reproducibility of Results , Chromosome Mapping , Gossypium/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant
13.
Gene ; 874: 147486, 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37196889

Heat stress significantly affect plant growth and development, which is an important factor contributing to crop yield loss. However, heat shock proteins (HSPs) in plants can effectively alleviate cell damage caused by heat stress. In order to rapidly and accurately cultivate heat-tolerant cotton varieties, this study conducted correlation analysis between heat tolerance index and insertion/deletion (In/Del) sites of GhHSP70-26 promoter in 39 cotton materials, so as to find markers related to heat tolerance function of cotton, which can be used in molecular marker-assisted breeding. The results showed the natural variation allele (Del22 bp) type at -1590 bp upstream of GhHSP70-26 promoter (haplotype2, Hap2) in cotton (Gossypium spp.) promoted GhHSP70-26 expression under heat stress. The relative expression level of GhHSP70-26 of M-1590-Del22 cotton materials were significantly higher than that of M-1590-In type cotton materials under heat stress (40 ℃). Also, M-1590-Del22 material had lower conductivity and less cell damage after heat stress, indicating that it is a heat resistant cotton material. The Hap1 (M-1590-In) promoter was mutated into Hap1del22, and Hap1 and Hap1del22 were fused with GUS to transform Arabidopsis thaliana. Furthermore, Hap1del22 promoter had higher induction activity than Hap1 under heat stress and abscisic acid (ABA) treatment in transgenic Arabidopsis thaliana. Further analysis confirmed that M-1590-Del22 was the dominant heat-resistant allele. In summary, these results identify a key and previously unknown natural variation in GhHSP70-26 with respect to heat tolerance, providing a valuable functional molecular marker for genetic breeding of cotton and other crops with heat tolerance.


Arabidopsis , Thermotolerance , Gossypium/genetics , Gossypium/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Thermotolerance/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plant Breeding , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts
14.
Front Plant Sci ; 14: 1163041, 2023.
Article En | MEDLINE | ID: mdl-37089638

Introduction: Starch metabolism is involved in the stress response. Starch synthase (SS) is the key enzyme in plant starch synthesis, which plays an indispensable role in the conversion of pyrophosphoric acid to starch. However, the SS gene family in cotton has not been comprehensively identified and systematically analyzed. Result: In our study, a total of 76 SS genes were identified from four cotton genomes and divided into five subfamilies through phylogenetic analysis. Genetic structure analysis proved that SS genes from the same subfamily had similar genetic structure and conserved sequences. A cis-element analysis of the SS gene promoter showed that it mainly contains light response elements, plant hormone response elements, and abiotic stress elements, which indicated that the SS gene played key roles not only in starch synthesis but also in abiotic stress response. Furthermore, we also conducted a gene interaction network for SS proteins. Silencing GhSS9 expression decreased the resistance of cotton to drought stress. These findings suggested that SS genes could be related to drought stress in cotton, which provided theoretical support for further research on the regulation mechanism of SS genes on abiotic starch synthesis and sugar levels.

15.
Front Plant Sci ; 14: 1170048, 2023.
Article En | MEDLINE | ID: mdl-37089653

Nitrate transporters (NRTs) are crucial for the uptake, use, and storage of nitrogen by plants. In this study, 42 members of the GhNRT2 (Nitrate Transporter 2 family) were found in the four different cotton species. The conserved domains, phylogenetic relationships, physicochemical properties, subcellular localization, conserved motifs, gene structure, cis-acting elements, and promoter region expression patterns of these 42 members were analyzed. The findings confirmed that members of the NRT2 family behaved typically, and subcellular localization tests confirmed that they were hydrophobic proteins that were mostly located on the cytoplasmic membrane. The NRT2 family of genes with A.thaliana and rice underwent phylogenetic analysis, and the results revealed that GhNRT2 could be divided into three groups. The same taxa also shared similar gene structure and motif distribution. The composition of cis-acting elements suggests that most of the expression of GhNRT2 may be related to plant hormones, abiotic stress, and photoreactions. The GhNRT2 gene was highly expressed, mainly in roots. Drought, salt, and extreme temperature stress showed that GhNRT2 gene expression was significantly up-regulated or down-regulated, indicating that it may be involved in the stress response of cotton. In general, the genes of the NRT2 family of cotton were comprehensively analyzed, and their potential nitrogen uptake and utilization functions in cotton were preliminarily predicted. Additionally, we provide an experimental basis for the adverse stress conditions in which they may function.

16.
Front Plant Sci ; 14: 1127760, 2023.
Article En | MEDLINE | ID: mdl-37008510

Cotton is an important fiber crop. The cotton fiber is an extremely long trichome that develops from the epidermis of an ovule. The trichome is a general and multi-function plant organ, and trichome birefringence-like (TBL) genes are related to trichome development. At the genome-wide scale, we identified TBLs in four cotton species, comprising two cultivated tetraploids (Gossypium hirsutum and G. barbadense) and two ancestral diploids (G. arboreum and G. raimondii). Phylogenetic analysis showed that the TBL genes clustered into six groups. We focused on GH_D02G1759 in group IV because it was located in a lint percentage-related quantitative trait locus. In addition, we used transcriptome profiling to characterize the role of TBLs in group IV in fiber development. The overexpression of GH_D02G1759 in Arabidopsis thaliana resulted in more trichomes on the stems, thereby confirming its function in fiber development. Moreover, the potential interaction network was constructed based on the co-expression network, and it was found that GH_D02G1759 may interact with several genes to regulate fiber development. These findings expand our knowledge of TBL family members and provide new insights for cotton molecular breeding.

17.
Plants (Basel) ; 12(5)2023 Feb 27.
Article En | MEDLINE | ID: mdl-36903928

The increasing water scarcity associated with environmental change brings significant negative impacts to the growth of cotton plants, whereby it is urgent to enhance plant tolerance to drought. Here, we overexpressed the com58276 gene isolated from the desert plant Caragana korshinskii in cotton plants. We obtained three OE plants and demonstrated that com58276 confers drought tolerance in cotton after subjecting transgenic seeds and plants to drought. RNA-seq revealed the mechanisms of the possible anti-stress response, and that the overexpression of com58276 does not affect growth and fiber content in OE cotton plants. The function of com58276 is conserved across species, improving the tolerance of cotton to salt and low temperature, and demonstrating its applicability to improve plant resistance to environmental change.

18.
Theor Appl Genet ; 136(3): 48, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36912959

KEY MESSAGE: The fiber length-related qFL-A12-5 identified in CSSLs introgressed from Gossypium barbadense into Gossypium hirsutum was fine-mapped to an 18.8 kb region on chromosome A12, leading to the identification of the GhTPR gene as a potential regulator of cotton fiber length. Fiber length is a key determinant of fiber quality in cotton, and it is a key target of artificial selection for breeding and domestication. Although many fiber length-related quantitative trait loci have been identified, there are few reports on their fine mapping or candidate gene validation, thus hampering efforts to understand the mechanistic basis of cotton fiber development. Our previous study identified the qFL-A12-5 associated with superior fiber quality on chromosome A12 in the chromosome segment substitution line (CSSL) MBI7747 (BC4F3:5). A single segment substitution line (CSSL-106) screened from BC6F2 was backcrossed to construct a larger segregation population with its recurrent parent CCRI45, thus enabling the fine mapping of 2852 BC7F2 individuals using denser simple sequence repeat markers to narrow the qFL-A12-5 to an 18.8 kb region of the genome, in which six annotated genes were identified in Gossypium hirsutum. Quantitative real-time PCR and comparative analyses led to the identification of GH_A12G2192 (GhTPR) encoding a tetratricopeptide repeat-like superfamily protein as a promising candidate gene for qFL-A12-5. A comparative analysis of the protein-coding regions of GhTPR among Hai1, MBI7747, and CCRI45 revealed two non-synonymous mutations. The overexpression of GhTPR resulted in longer roots in Arabidopsis, suggesting that GhTPR may regulate cotton fiber development. These results provide a foundation for future efforts to improve cotton fiber length.


Gossypium , Quantitative Trait Loci , Humans , Gossypium/genetics , Chromosome Mapping/methods , Phenotype , Plant Breeding , Cotton Fiber , Genetic Association Studies
19.
Gene ; 866: 147257, 2023 May 25.
Article En | MEDLINE | ID: mdl-36754177

In eukaryotic photosynthetic organisms, chloroplast is not only a site for photosynthesis, but it also have a vital role in signal transduction mechanisms. Plants exhibit various colors in nature with various mutants induced by EMS, whose traits are regulated by developmental and environmental factors, making them ideal for studying the regulation of chloroplast development. In this study, the cotton leaf variegated mutant (VAR) induced by EMS was used for this experiment. Genetic analysis revealed that VAR phenotype was a dominant mutation and by performing freehand section inspection, it was noticed that the vascular bundles of VAR were smaller. Chloroplast ultrastructure showed that the stacking of grana thylakoid was thinner and the starch granules were increased significantly in VAR comparedto wild type (WT). Transcriptome analysis found that the KEGG was enriched in photosynthesis pathway, and GO was abundant in zinc ion transmembrane transport, electron transporter and cation binding terms. In addition, GhFTSH5 expression in VAR was significantly higher than WT and the promoter sequence of GhFTSH5 had differences. The results showed that the VAR plant had altered GhFTSH5 expression and disrupted chloroplast structure, which in turn affects plant photosynthesis. More importantly, this study lays a foundation for further analyzing molecular mechanism of cotton variegated phenotypes.


Chloroplasts , Photosynthesis , Chloroplasts/genetics , Chloroplasts/metabolism , Photosynthesis/genetics , Gene Expression Profiling , Mutation , Plant Leaves/metabolism , Gene Expression Regulation, Plant , Transcriptome/genetics
20.
PeerJ ; 11: e14367, 2023.
Article En | MEDLINE | ID: mdl-36643643

Background: Cotton is an economically important crop in China, and drought has seriously affected cotton production. Understanding genetic variation, genotype ×environment interactions, and the associations between these traits is critical for developing improved cotton varieties with high drought tolerance. Methods: To screen ideal drought-resistant cotton germplasm lines and excellent genotypes, the yield traits of 103 cotton germplasm lines were analyzed. Cotton resource material was planted under normal watering and water deficit conditions for three consecutive years. The yield traits under normal irrigation and water stress conditions were measured, and then five screening indicators were calculated based on the cotton yield per plant under the two water treatments to determine the ideal genotype and most accurate identification indicators. Results: The results of correlation analysis and principal component analysis showed that the geometric mean productivity (GMP), mean productivity (MP), and stress tolerance index (STI) were significantly positively correlated with yield under water stress and could be used to distinguish genotypes with high drought tolerance. Among the experimental germplasm lines, some had higher STI and GMP values, indicating their higher drought tolerance. This result indicates that best linear unbiased prediction (BLUP) analysis of the STI and GMP under drought stress can effectively improve screening for drought tolerance in cotton germplasm lines. The results from the screening index, three-dimensional map, and genotype ×environment (GGE) biplots were consistent with the above results. We determined that CQJ-5, Xin lu zao 45, Bellsno, Zhong R 2016 and ND 359-5 are drought-tolerant genotypes that can be used to breed drought-tolerant germplasm lines that produce high and stable yields.


Dehydration , Drought Resistance , Humans , Genotype , Phenotype , Droughts
...