Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Ecol Evol ; 14(5): e11355, 2024 May.
Article En | MEDLINE | ID: mdl-38694754

The mitochondrial genome (mitogenome) has been extensively used as molecular markers in determining the insect phylogenetic relationships. In order to resolve the relationships among tribes and subtribes of Satyrinae at the mitochondrial genomic level, we obtained the complete mitogenome of Aulocera merlina (Oberthür, 1890) (Lepidoptera: Nymphalidae: Satyrinae) with a size of 15,259 bp. The mitogenome consisted of 37 typical genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A + T-rich region. The gene organization and arrangement were similar to those of all other known Satyrinae mitogenomes. All PCGs were initiated with the canonical codon pattern ATN, except for the cox1 gene, which used an atypical CGA codon. Nine PCGs used the complete stop codon TAA, while the remaining PCGs (cox1, cox2, nad4, and nad5) were terminated with a single T nucleotide. The canonical cloverleaf secondary structures were found in all tRNAs, except for trnS1 which lacked a dihydrouridine arm. The 448 bp A + T-rich region was located between rrnS and trnM, and it included the motif ATAGA followed by a 19-bp poly-T stretch and a microsatellite-like (TA)6 element preceded by the ATTTA motif. The phylogenetic tree, inferred using Bayesian inference and maximum likelihood methods, generated similar tree topologies, revealing well-supported monophyletic groups at the tribe level and recovering the relationship ((Satyrini + Melanitini) + ((Amathusiini + Elymniini) + Zetherini)). The close relationship between Satyrina and Melanargiina within the Satyrini was widely accepted. Additionally, Lethina, Parargina, and Mycalesina were closely related and collectively formed a sister group to Coenonymphina. Moreover, A. merlina was closely related to Oeneis buddha within the Satyrina. These findings will provide valuable information for future studies aiming to elucidate the phylogenetic relationships of Satyrinae.

2.
Article En | MEDLINE | ID: mdl-38634834

A novel mesophilic, hydrogenotrophic methanogen, strain CWC-04T, was obtained from a sediment sample extracted from a gravity core retrieved at station 22 within the KP-9 area off the southwestern coast of Taiwan during the ORIII-1368 cruise in 2009. Cells of strain CWC-04T were rod-shaped, 1.4-2.9 µm long by 0.5-0.6 µm wide, and occurred singly. Strain CWC-04Tutilized formate, H2/CO2, 2-propanol/CO2 or 2-butanol/CO2 as catabolic substrates. The optimal growth conditions were 42 °C, 0.17 M NaCl and pH 5.35. The genomic DNA G+C content calculated from the genome sequence of strain CWC-04T was 46.19 mol%. Phylogenetic analysis of 16S rRNA gene revealed that strain CWC-04T is affiliated with the genus Methanocella. The 16S rRNA gene sequences similarities within strains Methanocella arvoryzae MRE50T, Methanocella paludicola SANAET and Methanocella conradii HZ254T were 93.7, 93.0 and 91.3 %, respectively. In addition, the optical density of CWC-04T culture dropped abruptly upon entering the late-log growth phase, with virus-like particles (150 nm in diameter) being observed on and around the cells. This observation suggests that strain CWC-04T harbours a lytic virus. Based on these phenotypic, phylogenetic and genomic results, we propose that strain CWC-04T represents a novel species of a novel genus in the family Methanocellaceae, for which the name Methanooceanicella nereidis gen. nov., sp. nov. is proposed. The type strain is CWC-04T (=BCRC AR10050T=NBRC 113165T).


Carbon Dioxide , Euryarchaeota , Base Composition , Phylogeny , RNA, Ribosomal, 16S/genetics , Taiwan , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Methane
3.
Materials (Basel) ; 17(6)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38541442

The usage time of air-cathode microbial fuel cells (MFCs) is significantly influenced by the moisture content within the proton exchange membrane (PEM). Therefore, enhancing the water retention capability of the PEM by applying a hydrophobic polymer coating to its surface has extended the PEM's usage time by three times and increased MFCs' operational duration by 66%. Moreover, the hydrophobic nature of the polymer coating reduces contamination on the PEM and prevents anode liquid from permeating into the air cathode. Towards the end of MFC operation, the internal resistance of the MFC is reduced by 45%. The polymer coating effectively maintained the oxygen reduction reaction activity in the cathode. The polymer coating's ability to restrict oxygen transmembrane diffusion is demonstrated by experimental data showing a significant decrease in oxygen diffusion coefficient due to its presence. The degradation efficiency of the chemical oxygen demand from 16% to 35% increased by a factor of one.

4.
Microbiol Resour Announc ; 13(4): e0007324, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38466104

Here, we report the complete genome sequence of Aminobacterium sp. strain MB27-C1, which was isolated from sewage sludge collected at the wastewater treatment plant of Sanming Steel Co. Ltd. in Fujian, China. The resulting genome of strain MB27-C1 is a single contig of 2,427,830 bp with 41.58% GC content.

5.
Microbiol Resour Announc ; 13(4): e0007824, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38501785

We report the complete genome sequence of Anaerotignum sp. strain MB30-C6, which was isolated from the dehydrated sludge collected at the wastewater treatment plant of Sanming Steel Co. Ltd. in Fujian, China. The resulting genome of strain MB30-C6 is a single contig of 3,104,838 bp with 39.49% GC content.

6.
Microbiol Resour Announc ; 13(1): e0100523, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38112478

Here, we present the complete genome sequence of Kineothrix sp. MB12-C1 (= BCRC 81406), isolated from the feces of black soldier fly (Hermetia illucens) larvae. The genome of strain MB12-C1 was chosen for further species classification and comparative genomic analysis.

7.
Front Microbiol ; 14: 1309806, 2023.
Article En | MEDLINE | ID: mdl-38116533

Introduction: In recent years, researchers have been exploring the plastic-degrading abilities of bacteria residing in the guts of Styrofoam-eating Tenebrio molitor larvae. However, none of the reported strains have displayed highly efficient plastic degradation capabilities, and it's noteworthy that none of the existing studies have focused on strictly anaerobic microbes. Methods: In this study, we exclusively fed Styrofoam to T. molitor larvae and examined how this dietary change influence the gut's bacterial community composition, as observed through fecal bacteria using bacterial 16S rRNA gene amplicon sequencing and the small-scale culturomics method with 20 types of anaerobic media under four different conditions. Results: The results revealed a significant shift in the dominant phylogroup from Lactococcus (37.8%) to Escherichia-Shigella (54.7%) when comparing the feces of larvae fed with bran and Styrofoam, as analyzing through the bacterial 16S rRNA gene amplicon sequencing. For small-scale culturomics method, a total of 226 strains of anaerobic bacteria were isolated and purified using the rolling-tube/strictly anaerobic technique. Among them, 226 strains were classified into 3 phyla, 7 classes, 9 orders, 17 families, 29 genera, 42 known species and 34 potential novel species. Discussion: Interestingly, 24 genera in total, identified through the culturomics method, were not found in the results obtained from amplicon sequencing. Here, we present a collection of culturable anaerobic bacteria from the feces of T. molitor larvae, which might be a promising avenue for investigating the biodegradability of plastics by combining specific strains, either randomly or intentionally, while considering the abundance ratio of the microbial community composition.

8.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article En | MEDLINE | ID: mdl-37938098

A novel mesophilic, hydrogenotrophic methanogen, strain CYW5T, was isolated from a sediment sample of a piston core collected from submarine mud volcano MV5 located in the offshore area of southwestern Taiwan. Cells of strain CYW5T were irregular coccids, 0.5-1.0 µm in diameter and lysed easily by 0.01 % sodium dodecyl sulphate (SDS) treatment. Strain CYW5Tutilized formate or hydrogen plus carbon dioxide as catabolic substrates for methanogenesis. The optimal growth conditions were 37 °C, 0.043-0.085 M NaCl and pH 6.02-7.32. The genomic DNA G+C content calculated from the genome sequence of strain CYW5T was 56.2 mol%. The results of phylogenetic analysis of 16S rRNA gene sequences indicated that strain CYW5T represented a member of the family Methanomicrobiaceae in the order Methanomicrobiales, and was closely related to the members of the genus Methanogenium. The most closely related species was Methanogenium cariaci JR1T (94.9 % of 16S rRNA gene sequence identity). The average nucleotide identity and average amino acid identity values between strain CYW5T and members of the family Methanomicrobiaceae were 74.7-78.5 % and 49.1-64.9%, respectively. Although many of the morphological and physiological characteristics of strain CYW5T and the species of the genus Methanogenium were similar, they were distinguishable by the differences in genomic G+C content and temperature, NaCl and pH ranges for growth. Based on these phenotypic, phylogenetic and genomic results, we propose that strain CYW5T represents a novel species, of a novel genus, named Methanovulcanius yangii gen. nov., sp. nov. The type strain is CYW5T (=BCRC AR10048T=DSM 100756T=NBRC 111404T).


Euryarchaeota , Sodium Chloride , Base Composition , Phylogeny , RNA, Ribosomal, 16S/genetics , Taiwan , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Hydrogen Peroxide , Methanomicrobiaceae
9.
Microbiol Resour Announc ; 12(11): e0060823, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-37847038

Here, we report the complete genome sequence of Proteiniborus sp. MB09-C3 (= BCRC 81405), isolated from the feces of black soldier fly (Hermetia illucens) larvae. The genome of strain MB09-C3 was selected for further species delineation and comparative genomic analysis.

10.
Microbiol Resour Announc ; 12(9): e0045023, 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37534903

Here, we report the complete genome sequence of Proteiniclasticum sp. QWL-01 (= BCRC 81396), isolated from sewage sludge of the Wastewater Treatment Plant of Sanming Steel Co. Ltd., Fujian, China. The genome of strain QWL-01 was selected for further species delineation and comparative genomic analysis.

11.
Sci Total Environ ; 896: 165291, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37406689

Microplastics (MPs) are small plastic pieces less than 5 mm in size. Previous studies have focused on the sources, transports, and fates of MPs in marine or sediment environments. However, limited attention has been given to the role of land as the primary source of MPs, and how plastic polymers are transformed into MPs through biological or abiotic effects during the transport process remains unclear. Here, we focus on the exploration of the main sources of MPs in the soil, highlighting that MP generation is not solely a byproduct of plastic production but can also result from the impact of biological and abiotic factors during the process of MPs transport. This review presents a new perspective on understanding the degradation of MPs in soil, considering soil as a distinct fluid and suggesting that the main transformation and change mediated by abiotic factors occur on the soil surface, while the main biodegradation occurs in the soil interior. This viewpoint is suggested because the role of some abiotic factors becomes less obvious in the soil interior, and MPs, whose surface is expected to colonize microorganisms, are gradually considered a carbon source independent of photosynthesis and net primary production. This review emphasizes the need to understand basic MPs information in soil for a rational evaluation of its environmental toxicity. Such understanding enables better control of MPs pollution in affected areas and prevents contamination in unaffected regions. Finally, knowledge gaps and future research directions necessary for advancements in this field are provided.

12.
Microbiol Resour Announc ; 12(6): e0027723, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-37154723

We report the complete genome sequence of Tissierella sp. strain Yu-01 (=BCRC 81391), isolated from the feces of black soldier fly (Hermetia illucens) larvae. This fly has increasingly been gaining attention because of its usefulness for recycling organic waste. The genome of strain Yu-01 was selected for further species delineation.

13.
Microbiol Resour Announc ; 11(10): e0079222, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-36066251

The family Methanocalculaceae comprises hydrogen- and formate-utilizing methanogens. Here, we report two additional draft genome sequences of Methanocalculaceae, those of Methanocalculus taiwanensis P2F9704aT (equivalent to BCRC 16182T and DSM 14663T) and Methanocalculus chunghsingensis K1F9705bT (equivalent to DSM 14646T and OCM 772T), which were selected for further species delineation and comparative genomic analyses.

14.
Microbiol Resour Announc ; 11(10): e0074322, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-36094213

The hydrogenotrophic methanogen Methanofollis aquaemaris BCRC 16166T (= N2F9704T = DSM 14661T) was isolated from a marine aquaculture fishpond near Wang-gong (Taiwan, Republic of China). The genome of strain BCRC 16166T was selected for sequencing in order to provide further information about the species delineation and its infected virus.

15.
Microbiol Resour Announc ; 11(5): e0006822, 2022 May 19.
Article En | MEDLINE | ID: mdl-35481773

The hydrogenotrophic strain Methanofollis formosanus DSM 15483T (= ML15T = OCM 798T) was isolated from an aquaculture fish pond near Wang-gong, Taiwan. The genome of strain DSM 15483T was selected for sequencing in order to provide further information about the species delineation and its unique habitat.

16.
Int J Syst Evol Microbiol ; 70(10): 5586-5593, 2020 Oct.
Article En | MEDLINE | ID: mdl-32915124

A halotolerant, psychrotolerant and methylotrophic methanogen, strain SY-01T, was isolated from the saline Lake Tus in Siberia. Cells of strain SY-01T were non-motile, cocci and 0.8-1.0 µm in diameter. The only methanogenic substrate utilized by strain SY-01T was methanol. The temperature range of growth for strain SY-01T was from 4 to 40 °C and the optimal temperature for growth was 30 °C. The pH range of growth was from pH 7.2 to 9.0, with optimal growth at pH 8.0. The NaCl range of growth was 0-1.55 M with optimal growth at 0.51 M NaCl. The G+C content of the genome of strain SY-01T was 43.6 mol % as determined by genome sequencing. Phylogenetic analysis revealed that strain SY-01T was most closely related to Methanolobus zinderi SD1T (97.3 % 16S rRNA gene sequence similarity), and had 95.5-97.2 % similarities to other Methanolobus species with valid names. Genome relatedness between strain SY-01T and DSM 21339T was computed using average nucleotide identity and digital DNA-DNAhybridization, which yielded values of 79.7 and 21.7 %, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data presented here, it is evident that strain SY-01T represents a novel species of the genus Methanolobus, and the name Methanolobus halotolerans sp. nov. is proposed. The type strain is SY-01T (=BCRC AR10051T=NBRC 113166 T=DSM 107642T).


Lakes/microbiology , Methanosarcinaceae/classification , Phylogeny , Saline Waters , Base Composition , DNA, Archaeal/genetics , Methane , Methanosarcinaceae/isolation & purification , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Siberia
17.
Int J Syst Evol Microbiol ; 70(10): 5497-5502, 2020 Oct.
Article En | MEDLINE | ID: mdl-32897849

A mesophilic, hydrogenotrophic methanogen, strain FWC-SCC2T, was isolated from deep-sea sediments collected by a real-time video multiple-corer at the C5-6 station near a cold seep at Four-Way Closure Ridge region during R/V Ocean Researcher III ORIII-1900 cruise in 2015. The cells were irregular cocci, non-motile and 0.8-1.2 µm in diameter. The methanogenic substrates utilized by strain FWC-SCC2T were formate or H2+CO2, but not acetate, methanol, ethanol or methylamines. Strain FWC-SCC2T was lysed in SDS (0.01 %, w/v). The M r of surface-layer protein was 116 400. The optimum growth conditions of strain FWC-SCC2T were 37 °C, 0.17 M NaCl and pH 6.7-7.0. The genomic DNA G+C content calculated from the genome sequence of strain FWC-SCC2T was 59.5 mol %. Phylogenetic analysis revealed that strain FWC-SCC2T was a member of the genus Methanofollis, and was most closely related to Methanofollis tationis Chile 9T (97.6 % similarity of 16S rRNA gene sequence) and shared 97.4, 95.9, 95.9 and 95.4 % with Methanofollis liminatans GKZPZT, Methanofollis formosanus ML15T, Methanofollis aquaemaris N2F9704T and Methanofollis ethanolicus HASUT, respectively. The genome relatedness values between strain FWC-SCC2T and M. tationis DSM 2702T were estimated by average nucleotide identity and digital DNA-DNA hybridization analyses and the results were 79.4 and 21.2 %, respectively. Based on the differences in physiological and biochemical properties, 16S rRNA gene phylogeny and genome relatedness presented here, it is suggested that strain FWC-SCC2T represents a novel species of the genus Methanofollis, and the name Methanofollis fontis sp. nov. is proposed. The type strain is FWC-SCC2T (=BCRC AR10052T=DSM 107935T= NBRC 113164T).


Geologic Sediments/microbiology , Methanomicrobiaceae/classification , Phylogeny , Seawater/microbiology , Base Composition , DNA, Archaeal/genetics , Methanomicrobiaceae/isolation & purification , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Taiwan
18.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Article En | MEDLINE | ID: mdl-31395643

Massilia sp. strain Mn16-1_5 was isolated from serpentine soil. This strain is able to oxidize manganese and has the potential for bioremediation of chromium. Here, we present a 5.53-Mb draft genome sequence of this strain with a G+C content of 64.8% that might provide more information for species delineation and oxidase genes in this strain.

19.
Mar Genomics ; 47: 100673, 2019 Oct.
Article En | MEDLINE | ID: mdl-30935830

To date, the only methanoarchaea isolated directly from methane hydrate bearing sediments were Methanoculleus submarinus Nankai-1T and Methanoculleus sp. MH98A. Here, we provide the genome of Methanoculleus taiwanensis CYW4T isolated from the deep-sea subseafloor sediment at the Deformation Front offshore southwestern Taiwan, where methane hydrate deposits are likely located. Through comparative genomics analyses of nine Methanoculleus strains from various habitats, 2-3 coding genes for trehalose synthases were found in all nine Methanoculleus genomes, which were not detected in other methanogens and are therefore suggested as a signature of genus Methanoculleus among methane-producing archaea. In addition, the structural genes adjacent to trehalose synthase genes are comprised of the signaling module of Per-Arnt-Sim (PAS) domain-containing proteins, Hsp20 family proteins, arabinose efflux permeases and multiple surface proteins with fasciclin-like (FAS) repeat. This indicates that trehalose synthase gene clusters in Methanoculleus might play roles in the response to various stresses and regulate carbon storage and modification of surface proteins through accumulation of trehalose. The non-gas hydrate-associated Methanoculleus strains harbor carbon-monoxide dehydrogenase (cooS/acsA) genes, which are important for the conversion of acetate to methane at the step of CO oxidation/CO2 reduction in acetoclastic methanogens and further implies that these strains may be able to utilize CO for methanogenesis in their natural habitats. In addition, both genomes of M. bourgensis strains MS2T and MAB1 harbor highly abundant transposase genes, which may be disseminated from microbial communities in their habitats, sewage treatment plants and biogas reactors, which are breeding grounds for antibiotic resistance. Through comparative genomic analyses, we gained insight into understanding the life of strictly anaerobic methane-producing archaea in various habitats, especially in methane-based deep-sea ecosystems.


Genome, Archaeal , Glucosyltransferases/genetics , Methanomicrobiaceae/genetics , Glucosyltransferases/metabolism , Methanomicrobiaceae/enzymology , RNA, Archaeal/analysis , RNA, Ribosomal, 16S/analysis
20.
Int J Syst Evol Microbiol ; 68(4): 1378-1383, 2018 Apr.
Article En | MEDLINE | ID: mdl-29509131

A psychrotolerant, methylotrophic methanogen, strain YSF-03T, was isolated from the saline meromictic Lake Shira in Siberia. Cells of strain YSF-03T were non-motile, irregular cocci and 0.8-1.2 µm in diameter. The methanogenic substrates utilized by strain YSF-03T were methanol and trimethylamine. The temperature range of growth for strain YSF-03T was from 0 to 37 °C. The optimum growth conditions were 30-37 °C, pH 7.0-7.4 and 0.17 M NaCl. The G+C content of the genome of strain YSF-03T was 41.3 mol%. Phylogenetic analysis revealed that strain YSF-03T was most closely related to Methanolobus profundi MobMT (98.15 % similarity in 16S rRNA gene sequence). Genome relatedness between strain YSF-03T and MobMT was computed using the Genome-to-Genome Distance Calculator and average nucleotide identity, which gave values of 23.5 and 79.3 %, respectively. Based on the morphological, phenotypic, phylogenetic and genomic relatedness data presented here, it is evident that strain YSF-03T represents a novel species of the genus Methanolobus, for which the name Methanolobus psychrotolerans sp. nov. is proposed. The type strain is YSF-03T (=BCRC AR10049T=DSM 104044T=NBRC 112514T).


Lakes/microbiology , Methanosarcinaceae/classification , Phylogeny , Salinity , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Methanosarcinaceae/genetics , Methanosarcinaceae/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Siberia
...