Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
2.
Bioorg Chem ; 146: 107308, 2024 May.
Article En | MEDLINE | ID: mdl-38531151

Genome mining of the Actinomycete Crossiella cryophila facilitated the discovery of a minimal terpenoid biosynthetic gene cluster of cry consisting of a class I terpene cyclase CryA and a CYP450 monooxygenase CryB. Heterologous expression of cry allowed the isolation and characterization of two new sesquiterpenoids, ent-viridiflorol (1) and cryophilain (2). Notably, cryophilain (2) possesses a 5/7/3-fused tricyclic skeleton bearing a distinctive bridgehead hydroxy group. The combined in vivo and in vitro experiments revealed that CryA, the first ent-viridiflorol terpene cyclase, catalyzes farnesyl diphosphate to form the 5/7/3 sesquiterpene core scaffold and P450 CryB serves as a tailoring enzyme responsible for installing a hydroxy group at the bridgehead carbon.


Actinobacteria , Actinomycetales , Sesquiterpenes , Terpenes , Sesquiterpenes/metabolism , Actinobacteria/genetics , Actinobacteria/metabolism , Actinomycetales/metabolism , Cytochrome P-450 Enzyme System/metabolism
3.
J Nat Prod ; 87(2): 195-206, 2024 02 23.
Article En | MEDLINE | ID: mdl-38266176

Terpenoids, the largest and most structurally diverse natural product family, are predominantly found in fungi and plants, with bacterial terpenoids forming a minor fraction. Here, we established an efficient platform that integrates genome mining and NMR-tracking for prioritizing strains and tracking bacterial terpenoids. By employing this platform, we selected Crossiella cryophila for a comprehensive investigation of its capacity for terpenoid production, resulting in the characterization of 15 sesquiterpenoids. These compounds comprise nine new sesquiterpenoids (1-9), along with six known analogs (10-15), which are categorized into five distinctive carbon skeletons: bicyclogermacrane, maaliane, cadinane, eudesmane, and nor-eudesmane. Their chemical structures were determined through a combination of spectroscopic analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Notably, the absolute configurations of compounds 1, 2, 5-7, 9, and 13-15 were determined via single-crystal X-ray diffraction analyses. The selected compounds were evaluated for their anticancer, antimicrobial, and anti-inflammatory bioactivities; however, none of these compounds displayed any significant bioactivity. This study enriches the repertoire of bacterial terpenoids, offers a practical process for prioritizing strains for bacterial terpenoids discovery, and establishes a foundation for exploring terpenoid biosynthesis.


Actinobacteria , Sesquiterpenes, Eudesmane , Sesquiterpenes , Sesquiterpenes/chemistry , Terpenes/chemistry , Anti-Inflammatory Agents , Molecular Structure
...