Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 124: 915-922, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182194

RESUMEN

As a biosorbent, algae are frequently used for the biotreatment or bioremediation of water contaminated by heavy metal or radionuclides. However, it is unclear that whether or not the biomineralization of these metal or radionuclides can be induced by algae in the process of bioremediation and what the mechanism is. In this work, Ankistrodsemus sp. has been used to treat the uranium-contaminated water, and more than 98% of uranium in the solution can be removed by the alga, when the initial uranium concentration ranges from 10 to 80 mg/L. Especially, an unusual phenomenon of algae-induced uranium biomineralization has been found in the process of uranium bioremediation and its mineralization mechanism has been explored by multiple approaches. It is worth noticing that the biomineralization of uranium induced by Ankistrodsemus sp. is significantly affected by contact time and pH. Uranium is captured rapidly on the cell surface via complexation with the carboxylate radical, amino and amide groups of the microalgae cells, which provides nucleation sites for the precipitation of insoluble minerals. Uranium stimulates Ankistrodsemus sp. to metabolize potassium ions (K+), which may endow algae with the ability to biomineralize uranium into the rose-like compreignacite (K2[(UO2)6O4(OH)6]•8H2O). As the time increased, the amorphous gradually converted into compreignacite crystals and a large number of crystals would expand over both inside and outside the cells. To the best of our knowledge, this is the first investigated microalgae with a time-dependent uranium biomineralization ability and superior tolerance to uranium. This work validates that Ankistrodsemus sp. is a promising alga for the treatment of uranium-contaminated wastewater.


Asunto(s)
Chlorophyta , Uranio , Amidas , Biomineralización , Minerales/química , Potasio , Radioisótopos , Uranio/química , Compuestos de Uranio , Aguas Residuales , Agua
2.
Chemosphere ; 298: 134196, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35276103

RESUMEN

The important role of microbes in the biomineralization and migration behavior of uranium in the field of environmental chemistry has been well emphasized in previous work. However, limited work on mineralization processes of indigenous microorganism has prevented us from a deeper understanding of the process and mechanisms of uranium biomineralization. In this work, the dynamic process and mechanism of uranium biomineralization in Enterobacter sp. X57, a novel uranium-tolerant microorganism separated from uranium contaminated soil, were systematically investigated. Enterobacter sp. X57 can induce intracellular mineralization of U (VI) to Uramphite (NH4UO2PO4·3H2O) under neutral conditions by alkaline phosphatase. In this biomineralization process, soluble U (VI) first bonded with the amino and phosphate groups on the plasma membrane, providing initial nucleation site for the formation of U (VI) biominerals. Then the impairment of cell barrier function and the enhancement of alkaline phosphatase metabolism occurred with the accumulation of uranium in cells, creating a possible pathway for soluble U (VI) to diffuse into the cell and be further mineralized into U (VI)-phosphate minerals. All the results revealed that the intracellular biomineralization of uranium by Enterobacter sp. X57 was a combined result of biosorption, intracellular accumulation and phosphatase metabolism. These findings may contribute to a better understanding of uranium biomineralization behavior and mechanism of microorganisms, as well as possible in-situ bioremediation strategies for uranium by indigenous microorganisms.


Asunto(s)
Uranio , Fosfatasa Alcalina/metabolismo , Biodegradación Ambiental , Biomineralización , Enterobacter/metabolismo , Fosfatos/metabolismo , Uranio/química
3.
J Hazard Mater ; 407: 124761, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33316687

RESUMEN

Consecutive microwave sintering is a method proposed in this study to dispose soil contaminated by Sr during a nuclear accident by rapidly solidifying the contaminated soil. The results show that soil contaminated with 20 wt% SrSO4 and 30 wt% SrSO4 can be completely solidified by microwave sintering at 1100-1200 and 1300 â„ƒ, respectively, for 30 min. Sr was found to be cured into slawsonite (SrAl2Si2O8) and glass structures. Moreover, soil sintered at 1300 â„ƒ has large cured solubility (30 wt.%), good uniformity, and excellent hardness (6.9-7.2 GPa) and chemical durability (below 1.46 × 10-5 g m-2 d-1 at 28 d). Thus, consecutive microwave sintering technology may provide a new method for treating Sr-contaminated soil in case of a nuclear accident emergency.

4.
J Hazard Mater ; 403: 123588, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32777747

RESUMEN

To better deal with the radioactive iodine generated during the development of nuclear energy, B2O3, Bi2O3, ZnO, and SiO2 were used to sinter borosilicate glass for the immobilization of iodine. The effect of B2O3 on glass formation was discussed by changing the molar ratio of B2O3 in the matrix. When B2O3 content is 50 mol% and sintering temperature is 600 ℃, the amorphous degree of quaternary glass is the highest. The sintered body with the highest degree of amorphous was selected to study radioactive iodine. Then, the effects of different iodine loading concentrations for sintering borosilicate glass in terms of microstructure and phase change were discussed. With the increase in iodine content on silica-gel, the degree of amorphous of the specimens presented a decreasing trend, and there are obvious SiO2 peaks. When the content was 20 wt.%-30 wt.%, a large number of new phases were generated. When the iodine content is 20 wt.%, in addition to the enrichment of Si and O elements, the elemental distribution for B, Bi, Zn, I, and Ag was even. TEM results also showed that there was a crystalline phase in the sinter.

5.
J Hazard Mater ; 405: 124273, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33131939

RESUMEN

In the field of radioactive waste immobilization, the investigation of irradiation stability is of considerable importance. In this study, uranium-contaminated soil samples were irradiated by 1.5 MeV Xe20+ ions with fluences ranging from 1 × 1012 to 1 × 1015 ions/cm2. Xe20+ heavy-ion radiation was used to simulate the self-irradiation of actinide nuclides. The uranium-contaminated soil samples were sintered via microwaves. Grazing incidence X-ray diffraction results showed that irradiation can cause crystallization of the sample. After irradiation, the Vickers hardness of the samples decreased slightly. Comparative analysis showed that the sample had good radiation resistance, and the leaching rate (28 d) of the sample increased slightly after irradiation, but the overall performance was stable. Our investigation reveals the corresponding mechanism of uranium-contaminated soil irradiation of 1.5 MeV Xe20+ ions.

6.
J Hazard Mater ; 357: 424-430, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-29929095

RESUMEN

In this research, the heavy-ion irradiation effects of U-bearing Gd2Zr2O7 ceramics were explored for nuclear waste immobilization. U3O8 was designed to be incorporated into Gd2Zr2O7 from two different routes in the form of (Gd1-4xU2x)2(Zr1-xUx)2O7 (x = 0.1, 0.14). The self-irradiation of actinide nuclides was simulated by Xe20+ heavy-ion radiation under different fluences. Grazing incidence X-ray diffraction (GIXRD) analysis reveals the relationship between radiation dose, damage and depth. The radiation tolerance is promoted with the increment of U3O8 content in the discussed range. Raman spectroscopy testifies the enhancement of radiation tolerance and microscopically existed phase evolution from the chemical bond vibrations. In addition, the microstructure and elemental distribution of the irradiated samples were analyzed as well. The amorphization degree of the sample surface declines as the U content was elevated from x = 0.1 to x = 0.14.

7.
J Hazard Mater ; 337: 20-26, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28501640

RESUMEN

A rapid and efficient method is particularly necessary in the timely disposal of seriously radioactive contaminated soil. In this paper, a series of simulated radioactive soil waste containing different contents of neodymium oxide (3-25wt.%) has been successfully vitrified by microwave sintering at 1300°C for 30min. The microstructures, morphology, element distribution, density and chemical durability of as obtained vitrified forms have been analyzed. The results show that the amorphous structure, homogeneous element distribution, and regular density improvement are well kept, except slight cracks emerge on the magnified surface for the 25wt.% Nd2O3-containing sample. Moreover, all the vitrified forms exhibit excellent chemical durability, and the leaching rates of Nd are kept as ∼10-4-10-6g/(m2day) within 42days. This demonstrates a potential application of microwave sintering in radioactive contaminated soil disposal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA