Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
2.
Acta Pharmacol Sin ; 45(6): 1237-1251, 2024 Jun.
Article En | MEDLINE | ID: mdl-38472317

Both epidemiological and animal studies suggest that adverse environment during pregnancy can change the offspring development programming, but it is difficult to achieve prenatal early warning. In this study we investigated the impact of prenatal dexamethasone exposure (PDE) on sperm quality and function of blood-testis barrier (BTB) in adult offspring and the underlying mechanisms. Pregnant rats were injected with dexamethasone (0.1, 0.2 and 0.4 mg·kg-1·d-1, s.c.) from GD9 to GD20. After weaning (PW4), the pups were fed with lab chow. At PW12 and PW28, the male offspring were euthanized to collect blood and testes samples. We showed that PDE significantly decreased sperm quality (including quantity and motility) in male offspring, which was associated with impaired BTB and decreased CX43/E-cadherin expression in the testis. We demonstrated that PDE induced morphological abnormalities of fetal testicle and Sertoli cell development originated from intrauterine. By tracing to fetal testicular Sertoli cells, we found that PDE dose-dependently increased expression of histone lysine demethylases (KDM1B), decreasing histone 3 lysine 9 dimethylation (H3K9me2) levels of follistatin-like-3 (FSTL3) promoter region and increased FSTL3 expression, and inhibited TGFß signaling and CX43/E-cadherin expression in offspring before and after birth. These results were validated in TM4 Sertoli cells following dexamethasone treatment. Meanwhile, the H3K9me2 levels of FSTL3 promoter in maternal peripheral blood mononuclear cell (PBMC) and placenta were decreased and its expression increased, which was positively correlated with the changes in offspring testis. Based on analysis of human samples, we found that the H3K9me2 levels of FSTL3 promoter in maternal blood PBMC and placenta were positively correlated with fetal blood testosterone levels after prenatal dexamethasone exposure. We conclude that PDE can reduce sperm quality in adult offspring rats, which is related to the damage of testis BTB via epigenetic modification and change of FSTL3 expression in Sertoli cells. The H3K9me2 levels of the FSTL3 promoter and its expression in the maternal blood PBMC can be used as a prenatal warning marker for fetal testicular dysplasia.


Blood-Testis Barrier , Dexamethasone , Prenatal Exposure Delayed Effects , Signal Transduction , Animals , Male , Female , Pregnancy , Dexamethasone/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Blood-Testis Barrier/drug effects , Blood-Testis Barrier/metabolism , Signal Transduction/drug effects , Rats , Spermatozoa/drug effects , Spermatozoa/metabolism , Transforming Growth Factor beta/metabolism , Rats, Sprague-Dawley , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Testis/drug effects , Testis/metabolism , Testis/pathology
3.
J Ethnopharmacol ; 324: 117704, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38176664

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and arthritic pain. Sinomenine (SIN), derived from the rhizome of Chinese medical herb Qing Teng (scientific name: Sinomenium acutum (Thunb.) Rehd. Et Wils), has a longstanding use in Chinese traditional medicine for treating rheumatoid arthritis. It has been shown to possess anti-inflammatory, analgesic, and immunosuppressive effects with minimal side-effects clinically. However, the mechanisms governing its effects in treatment of joint pathology, especially on fibroblast-like synoviocytes (FLSs) dysfunction, and arthritic pain remains unclear. AIM: This study aimed to investigate the effect and underlying mechanism of SIN on arthritic joint inflammation and joint FLSs dysfunctions. MATERIALS AND METHODS: Collagen-induced arthritis (CIA) was induced in rats and the therapeutic effects of SIN on joint pathology were evaluated histopathologically. Next, we conducted a series of experiments using LPS-induced FLSs, which were divided into five groups (Naïve, LPS, SIN 10, 20, 50 µg/ml). The expression of inflammatory factors was measured by qPCR and ELISA. The invasive ability of cells was detected by modified Transwell assay and qPCR. Transwell migration and cell scratch assays were used to assess the migration ability of cells. The distribution and content of relevant proteins were observed by immunofluorescence and laser confocal microscopy, as well as Western Blot and qPCR. FLSs were transfected with plasmids (CRMP2 T514A/D) to directly modulate the post-translational modification of CRMP2 protein and downstream effects on FLSs function was monitored. RESULTS: SIN alleviated joint inflammation in rats with CIA, as evidenced by improvement of synovial hyperplasia, inflammatory cell infiltration and cartilage damage, as well as inhibition of pro-inflammatory cytokines release from FLSs induced by LPS. In vitro studies revealed a concentration-dependent suppression of SIN on the invasion and migration of FLSs induced by LPS. In addition, SIN downregulated the expression of cellular CRMP2 that was induced by LPS in FLSs, but increased its phosphorylation at residue T514. Moreover, regulation of pCRMP2 T514 by plasmids transfection (CRMP2 T514A/D) significantly influenced the migration and invasion of FLSs. Finally, SIN promoted nuclear translocation of pCRMP2 T514 in FLSs. CONCLUSIONS: SIN may exert its anti-inflammatory and analgesic effects by modulating CRMP2 T514 phosphorylation and its nuclear translocation of FLSs, inhibiting pro-inflammatory cytokine release, and suppressing abnormal invasion and migration. Phosphorylation of CRMP2 at the T514 site in FLSs may present a new therapeutic target for treating inflammatory joint's destruction and arthritic pain in RA.


Arthritis, Experimental , Arthritis, Rheumatoid , Morphinans , Synoviocytes , Rats , Animals , Phosphorylation , Lipopolysaccharides/pharmacology , Cell Movement , Arthritis, Rheumatoid/pathology , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Fibroblasts , Pain/drug therapy , Cells, Cultured , Cell Proliferation
4.
J Affect Disord ; 335: 418-430, 2023 08 15.
Article En | MEDLINE | ID: mdl-37164063

BACKGROUND: The corpus callosum (CC) is the main structure transferring information between the cerebral hemispheres. Although previous large-scale genome-wide association study (GWAS) has illustrated the genetic architecture of white matter integrity of CC, CC volume is less stressed. METHODS: Using MRI data from 33,861 individuals in UK Biobank, we conducted univariate and multivariate GWAS for CC fractional anisotropy (FA) and volume with PLINK 2.0 and MOSTest. All discovered SNPs in the multivariate framework were functionally annotated in FUMA v1.3.8. In the meanwhile, a series of gene property analyses was conducted simultaneously. In addition, we estimated genetic relationship between CC metrics and other neuropsychiatric traits and diseases. RESULTS: We identified a total of 36 and 82 significant genomic loci for CC FA and volume (P < 5 × 10-8). And 53 and 27 genes were respectively mapped by four mapping strategies. For CC volume, gene-set analysis revealed pathways mainly relating to cell migration; cell-type analysis found the top enrichment in neuroglia while for CC FA in GABAergic neurons. Furthermore, we found a lot of genetic overlap and shared loci between CC FA and volume and common neuropsychiatric diseases. DISCUSSION: Collectively, this study helps to better understand the genetic architecture of whole CC and CC subregions. However, the way to divide CC FA and volume in our study restricts the interpretations of our results. Future work will be needed to pay attention to the genetic structure of white matter volume, and an appropriate division of CC may help to better understand CC structure.


Corpus Callosum , White Matter , Humans , Corpus Callosum/diagnostic imaging , Diffusion Tensor Imaging , Genome-Wide Association Study , Magnetic Resonance Imaging , White Matter/diagnostic imaging , Anisotropy
5.
Transl Psychiatry ; 12(1): 514, 2022 12 14.
Article En | MEDLINE | ID: mdl-36517471

Circadian rhythm disruption (CRD) is a shared characteristic of various brain disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and major depression disorder (MDD). Disruption of circadian rhythm might be a risk factor for brain disorder incidents. From 7-day accelerometry data of 72,242 participants in UK Biobank, we derived a circadian relative amplitude variable, which to some extent reflected the degree of circadian rhythm disruption. Records of brain disorder incidents were obtained from a wide range of health outcomes across self-report, primary care, hospital inpatient data, and death data. Using multivariate Cox proportional hazard ratio regression, we created two models adjusting for different covariates. Then, linear correlations between relative amplitude and several brain morphometric measures were examined in participants with brain MRI data. After a median follow-up of around 6.1 years, 72,242 participants were included in the current study (female 54.9%; mean age 62.1 years). Individuals with reduced relative amplitude had increasing risk of all-cause dementia (Hazard ratio 1.23 [95% CI 1.15 to 1.31]), PD (1.33 [1.25 to 1.41]), stroke (1.13 [1.06 to 1.22]), MDD (1.18 [1.13 to 1.23]), and anxiety disorder (1.14 [1.09 to 1.20]) in fully adjusted models. Additionally, significant correlations were found between several cortical regions and white matter tracts and relative amplitude that have been linked to dementia and psychiatric disorders. We confirm CRD to be a risk factor for various brain disorders. Interventions for regulating circadian rhythm may have clinical relevance to reducing the risk of various brain disorders.


Alzheimer Disease , Depressive Disorder, Major , Parkinson Disease , Humans , Female , Middle Aged , Prospective Studies , Circadian Rhythm/physiology , Brain/diagnostic imaging , Parkinson Disease/epidemiology
6.
Front Pain Res (Lausanne) ; 3: 937259, 2022.
Article En | MEDLINE | ID: mdl-35959238

Chronic pain, a common symptom of people with rheumatoid arthritis, usually behaves as persistent polyarthralgia pain and causes serious damage to patients' physical and mental health. Opioid analgesics can lead to a series of side effects like drug tolerance and addiction. Thus, seeking an alternative therapy and screening out the corresponding analgesic drugs is the key to solving the current dilemma. Traditional Chinese Medicine (TCM) therapy has been recognized internationally for its unique guiding theory and definite curative effect. In this study, we used the Apriori Algorithm to screen out potential analgesics from 311 cases that were treated with compounded medication prescription and collected from "Second Affiliated Hospital of Zhejiang Chinese Medical University" in Hangzhou, China. Data on 18 kinds of clinical symptoms and 16 kinds of Chinese herbs were extracted based on this data mining. We also found 17 association rules and screened out four potential analgesic drugs-"Jinyinhua," "Wugong," "Yiyiren," and "Qingfengteng," which were promised to help in the clinical treatment. Besides, combined with System Cluster Analysis, we provided several different herbal combinations for clinical references.

7.
Front Pain Res (Lausanne) ; 3: 946846, 2022.
Article En | MEDLINE | ID: mdl-35859655

Chronic pain is a long-standing unpleasant sensory and emotional feeling that has a tremendous impact on the physiological functions of the body, manifesting itself as a dysfunction of the nervous system, which can occur with peripheral and central sensitization. Many recent studies have shown that a variety of common immune cells in the immune system are involved in chronic pain by acting on the peripheral or central nervous system, especially in the autoimmune diseases. This article reviews the mechanisms of regulation of the sensory nervous system by neutrophils, macrophages, mast cells, B cells, T cells, and central glial cells. In addition, we discuss in more detail the influence of each immune cell on the initiation, maintenance, and resolution of chronic pain. Neutrophils, macrophages, and mast cells as intrinsic immune cells can induce the transition from acute to chronic pain and its maintenance; B cells and T cells as adaptive immune cells are mainly involved in the initiation of chronic pain, and T cells also contribute to the resolution of it; the role of glial cells in the nervous system can be extended to the beginning and end of chronic pain. This article aims to promote the understanding of the neuroimmune mechanisms of chronic pain, and to provide new therapeutic ideas and strategies for the control of chronic pain at the immune cellular level.

8.
Front Cell Dev Biol ; 10: 1041006, 2022.
Article En | MEDLINE | ID: mdl-36619869

Chronic pain is a disease of long-lasting pain with unpleasant feelings mediated by central and (or) peripheral sensitization, its duration usually lasts more than 3 months or longer than the expected recovery time. The patients with chronic pain are manifested with enhanced sensitivity to noxious and non-noxious stimuli. Due to an incomplete understanding of the mechanisms, patients are commonly insensitive to the treatment of first line analgesic medicine in clinic. Thus, the exploration of non-opioid-dependent analgesia are needed. Recent studies have shown that "sinomenine," the main active ingredient in the natural plant "sinomenium acutum (Thunb.) Rehd. Et Wils," has a powerful inhibitory effect on chronic pain, but its underlying mechanism still needs to be further elucidated. A growing number of studies have shown that various immune cells such as T cells, B cells, macrophages, astrocytes and microglia, accompanied with the relative inflammatory factors and neuropeptides, are involved in the pathogenesis of chronic pain. Notably, the interaction of the immune system and sensory neurons is essential for the development of central and (or) peripheral sensitization, as well as the progression and maintenance of chronic pain. Based on the effects of sinomenine on immune cells and their subsets, this review mainly focused on describing the potential analgesic effects of sinomenine, with rationality of regulating the neuroimmune interaction.

9.
Ann Palliat Med ; 11(2): 466-479, 2022 Feb.
Article En | MEDLINE | ID: mdl-34775770

BACKGROUND: This study aims to explore whether Fufang Shatai Heji (STHJ), as a mixture collected by a decoction of a variety of Chinese herbal medicines for immune system diseases, can improve the cartilage destruction of rheumatoid arthritis (RA). METHODS: The therapeutic effects of STHJ were studied using collagen induced arthritis (CIA) mice. The improvement effect of STHJ on synovitis and cartilage damage caused by arthritis was studied by joint pathological analysis. The inhibitory effect of STHJ on related degradation enzymes in cartilage was studied by immunohistochemistry and real-time polymerase chain reaction (PCR). The specific targets of STHJ were predicted by molecular docking. RESULTS: After successfully inducing CIA, the paws of the mice showed significant swelling, and athological analysis of the ankle and knee joints also showed significant cartilage destruction and synovial hyperplasia. However, synovial hyperplasia and cartilage destruction were markedly alleviated after administration of STHJ. And after STHJ treatment, the expression of ADAMTS-4, ADAMTS-5, MMP-9 and MMP-13, in the cartilage layer of CIA mice was significantly inhibited. Through molecular docking assays, we proved that acteoside in STHJ could directly bind to the Glu111, Phe110 residues in MMP-9 and glycyrrhizic acid in STHJ bind to the Glu382, Asn433 residues in MMP-13. CONCLUSIONS: Our results suggested that STHJ may alleviate synovial hyperplasia and cartilage destruction in CIA mice and protect cartilage by inhibiting the expression of MMP-9 and other enzymes.


Arthritis, Experimental , Drugs, Chinese Herbal , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Cartilage/metabolism , Cartilage/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/pharmacology , Matrix Metalloproteinases/therapeutic use , Mice , Molecular Docking Simulation
10.
Front Aging Neurosci ; 13: 753351, 2021.
Article En | MEDLINE | ID: mdl-34790112

Vitamin A deficiency (VAD) plays an essential role in the pathogenesis of Alzheimer's disease (AD). However, the specific mechanism by which VAD aggravates cognitive impairment is still unknown. At the intersection of microbiology and neuroscience, the gut-brain axis is undoubtedly contributing to the formation and function of neurological systems, but most of the previous studies have ignored the influence of gut microbiota on the cognitive function in VAD. Therefore, we assessed the effect of VAD on AD pathology and the decline of cognitive function in AD model mice and determined the role played by the intestinal microbiota in the process. Twenty 8-week-old male C57BL/6J amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice were randomly assigned to either a vitamin A normal (VAN) or VAD diet for 45 weeks. Our results show that VAD aggravated the behavioral learning and memory deficits, reduced the retinol concentration in the liver and the serum, decreased the transcription of vitamin A (VA)-related receptors and VA-related enzymes in the cortex, increased amyloid-ß peptides (Aß40 and Aß42) in the brain and gut, upregulate the translation of beta-site APP-cleaving enzyme 1 (BACE1) and phosphorylated Tau in the cortex, and downregulate the expression of brain-derived neurotrophic factor (BDNF) and γ-aminobutyric acid (GABA) receptors in the cortex. In addition, VAD altered the composition and functionality of the fecal microbiota as exemplified by a decreased abundance of Lactobacillus and significantly different α- and ß-diversity. Of note, the functional metagenomic prediction (PICRUSt analysis) indicated that GABAergic synapse and retinol metabolism decreased remarkably after VAD intervention, which was in line with the decreased expression of GABA receptors and the decreased liver and serum retinol. In summary, the present study provided valuable facts that VAD exacerbated the morphological, histopathological, molecular biological, microbiological, and behavioral impairment in the APP/PS1 transgenic mice, and the intestinal microbiota may play a key mediator role in this mechanism.

11.
Zhongguo Zhen Jiu ; 41(6): 651-6, 2021 Jun 12.
Article Zh | MEDLINE | ID: mdl-34085483

OBJECTIVE: To observe the effect of electroacupuncture (EA) pretreatment on inflammatory reaction, apoptosis and expression of Yes-associated protein (YAP) of ischemic penumbra of cerebral cortex in cerebral ischemia reperfusion injury rats, and to explore the possible mechanism of its neuroprotection effect. METHODS: A total of 84 SD rats were randomized into a sham operation group (12 rats), a model group (18 rats), an EA group (18 rats), an EA+YAP virus transfection group (18 rats) and an EA+virus control group (18 rats). Except for the sham operation group, thread embolization method was adopted to establish the middle cerebral artery occlusion (MCAO) model in rats of the other groups. EA was applied at "Baihui" (GV 20) and "Dazhui" (GV 14) for 30 min in the 3 EA intervention groups 2 h before model establishment, disperse-dense wave, 2 Hz/15 Hz in frequency and 1 mA in intensity. Adenovirus transfection technique was used to induce gene silencing of YAP in the EA+YAP virus transfection group, and adenovirus vectors was injected as negative control in the EA+virus control group 4 d before model establishment. Twenty-four hours after model establishment, neurological function score was evaluated, the relative cerebral infarction area was observed by TTC staining, the apoptosis in the ischemic penumbra of cerebral cortex was detected by TUNEL staining, the levels of inflammatory factors IL-1ß, IL-6 and TNF-α in the ischemic penumbra of cerebral cortex was detected by ELISA method, the expression of YAP was detected by Western blot and immunofluorescence. RESULTS: Compared with the sham operation group, the expression of YAP was increased in the model group (P<0.05); compared with the model group, the expression of YAP in the ischemic penumbra of cerebral cortex was increased in the EA group (P<0.05). Compared with the sham operation group, the neurological function score, the percentage of TUNEL positive cells and the levels of IL-1ß, IL-6 and TNF-α in the ischemic penumbra of cerebral cortex were increased in the model group (P<0.001, P<0.01); compared with the model group, the neurological function score, the relative cerebral infarction area, the percentage of TUNEL positive cells and the levels of IL-1ß, IL-6 and TNF-α in the ischemic penumbra of cerebral cortex were decreased in the EA group (P<0.05, P<0.01); compared with the EA group, the neurological function score, the relative cerebral infarction area, the percentage of TUNEL positive cells and the levels of IL-1ß, IL-6 and TNF-α in the ischemic penumbra of cerebral cortex were increased in the EA+YAP virus transfection group (P<0.01, P<0.05); compared with the EA+YAP virus transfection group, the neurological function score, the relative cerebral infarction area, the percentage of TUNEL positive cells and the levels of IL-1ß, IL-6 and TNF-α in the ischemic penumbra of cerebral cortex were decreased in the EA+virus control group (P<0.01, P<0.05). CONCLUSION: Electroacupuncture pretreatment can effectively improve the ischemia reperfusion injury, its mechanism may be related to up-regulating the expression of YAP in the ischemic penumbra of cerebral cortex and relieving the apoptosis and inflammatory reaction.


Brain Ischemia , Electroacupuncture , Reperfusion Injury , Animals , Brain Ischemia/genetics , Brain Ischemia/therapy , Infarction, Middle Cerebral Artery , Rats , Rats, Sprague-Dawley , Reperfusion Injury/genetics , Reperfusion Injury/therapy
12.
Front Oncol ; 11: 621462, 2021.
Article En | MEDLINE | ID: mdl-34113558

Sporamin, a proteinase inhibitor isolated from the sweet potato (Ipomoea batatas), has shown promising anticancer effect against colorectal cancer (CRC) in vitro and in vivo but its mechanisms of action are poorly understood. In the present study, high throughput RNA sequencing (RNA-seq) technology was applied to explore the transcriptomic changes induced by sporamin in the presence of thapsigargin (TG), a non-12-O-tetradecanolphorbol-13-acetate type cancer promoter, in the LoVo human CRC cells. Cellular total RNA was extracted from the cells after they were treated with vehicle (CTL), 1 µM of thapsigargin (TG), or 1 µM of TG plus 30 µM of sporamin (TGSP) for 24 h. The migratory capacity of the cells was determined by wound healing assay. The gene expression profiles of the cells were determined by RNA-seq on an Illumina platform. GO enrichment analysis, KEGG pathway analysis, protein-protein interaction (PPI) network construction, and transcription factors (TF) prediction were all performed based on the differentially expressed genes (DEGs) across groups with a series of bioinformatics tools. Finally, the effect and potential molecular targets of the sporamin at the transcriptome level were evaluated. Sporamin significantly inhibited the migration of cells induced by TG. Among the 17915 genes detected in RNA-seq, 46 DEGs were attributable to the effect of sporamin. RT-PCR experiment validated that the expression of RGPD2, SULT1A3, and BIVM-ERCC5 were up-regulated while NYP4R, FOXN1, PAK6, and CEACAM20 were down-regulated. Sporamin enhanced the mineral absorption pathway, worm longevity regulating pathway, and pyrimidine metabolism pathway. Two TFs (SMIM11A and ATOH8) were down-regulated by sporamin. HMOX1 (up-regulated) and NME1-NME2 (down-regulated) were the main nodes in a PPI network consisting of 16 DEGs that were modulated by sporamin in the presence of TG. Sporamin could favorably alter the gene expression profile of CRC cells, up-regulating the genes that contribute to the homeostasis of intracellular metal ions and the activities of essential enzymes and DNA damage repairment. More studies are warranted to verify its effect on specific genes and delineate the mechanism of action implicated in the process.

13.
Angew Chem Int Ed Engl ; 60(20): 11211-11216, 2021 05 10.
Article En | MEDLINE | ID: mdl-33683807

A novel method for the concise synthesis of cyclohepta[b]indoles in high yields was developed. The method involves a visible-light-induced, photocatalyzed [2+2]-cycloaddition/ retro-Mannich-type reaction of enaminones. Experimental and computational studies suggested that the reaction is a photoredox process initiated by single-electron oxidation of an enaminone moiety, which undergoes subsequent cyclobutane formation and rapidly fragmentation in a radical-cation state to form cyclohepta[b]indoles.

14.
Acta Pharmacol Sin ; 42(3): 436-450, 2021 Mar.
Article En | MEDLINE | ID: mdl-32647339

Acute renal injury (AKI) causes a long-term risk for progressing into chronic kidney disease (CKD) and interstitial fibrosis. Yes-associated protein (YAP), a key transcriptional cofactor in Hippo signaling pathway, shuttles between the cytoplasm and nucleus, which is required for the renal tubular epithelial cells repair in the acute phase of AKI. In this study we investigated the role of YAP during ischemia-reperfusion (IR)-induced AKI to CKD. Mice were subjected to left kidney IR followed by removal of the right kidney on the day before tissue harvests. Mouse shRNA expression adenovirus (Ad-shYAP or Ad-shKLF4) and mouse KLF4 expression adenovirus (Ad-KLF4) were delivered to mice by intrarenal injection on D7 after IR. We showed that the expression and nucleus distribution of YAP were persistently increased until the end of experiment (D21 after IR). The sustained activation of YAP in post-acute phase of AKI was accompanied by renal dysfunction and interstitial fibrosis. Knockdown of YAP significantly attenuated IR-induced renal dysfunction and decreased the expression of fibrogenic factors TGF-ß and CTGF in the kidney. We showed that the expression of the transcription factor KLF4, lined on the upstream of YAP, was also persistently increased. Knockdown on KLF4 attenuated YAP increase and nuclear translocation as well as renal functional deterioration and interstitial fibrosis in IR mice, whereas KLF4 overexpression caused opposite effects. KLF4 increased the expression of ITCH, and ITCH facilitated YAP nuclear translocation via degrading LATS1. Furthermore, we demonstrated in primary cultured renal tubular cells that KLF4 bound to the promoter region of YAP and positively regulates YAP expression. In biopsy sample from CKD patients, we also observed increased expression and nuclear distribution of YAP. In conclusion, the activation of YAP in the post-acute phase of AKI is implicated in renal functional deterioration and fibrosis although it exhibits beneficial effect in acute phase. Reprogramming factor KLF4 is responsible for the persistent activation of YAP. Blocking the activation of KLF4-YAP pathway might be a way to prevent the transition of AKI into CKD.


Acute Kidney Injury/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Fibrosis/metabolism , Kruppel-Like Transcription Factors/metabolism , Reperfusion Injury/metabolism , Acute Kidney Injury/etiology , Animals , Cell Nucleus/metabolism , Cells, Cultured , Fibrosis/etiology , Kruppel-Like Factor 4 , Male , Mice, Inbred C57BL , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/metabolism , Reperfusion Injury/complications , Ubiquitin-Protein Ligases/metabolism , Up-Regulation/physiology , YAP-Signaling Proteins
15.
PLoS One ; 13(12): e0206135, 2018.
Article En | MEDLINE | ID: mdl-30550543

The size distribution of manufactured sand particles has a significant influence on the quality of concrete. To overcome the shortcomings of the traditional vibration-sieving method, a manufactured sand casting/dispersing system was developed, based on the characteristics of the sand particle contours (as determined by backlit image acquisition) and an extraction mechanism. Algorithms for eliminating particles from the image that had be repeatedly captured, as well as for identifying incomplete particles at the boundaries of the image, granular contour segmentation, and the determination of an equivalent particle size, are studied. The hardware and software for the image-based detection device were developed. A particle size repeatability experiment was carried out on the single-grade sands, grading the size fractions of the manufactured sand over a range of 0.6-4.75 mm. A method of particle-size correction is proposed to compensate for the difference in the results obtained by the image-based method and those obtained by the sieving method. The experimental results show that the maximum repeatability error of single-grade fractions is 3.46% and the grading size fraction is 0.51%. After the correction of the image method, the error between the grading size fractions obtained by the two methods was reduced from 7.22%, 6.10% and 5% to 1.47%, 1.65%, and 3.23%, respectively. The accuracy of the particle-size detection can thus satisfy real-world measuring requirements.


Construction Industry , Image Processing, Computer-Assisted/methods , Models, Theoretical , Particle Size
16.
Recent Pat Anticancer Drug Discov ; 13(2): 248-254, 2018.
Article En | MEDLINE | ID: mdl-29268690

BACKGROUND: Vincristine (VCR) resistance can lead to cancer chemotherapy failure. Although changes in gene expression are responsible for drug resistance, the specific identities and roles of these genes remain unclear. OBJECTIVE: In this study, we aimed to identify differentially expressed genes and mechanisms of VCR resistance in colorectal cancer (CRC) cells. METHODS: A VCR-resistant CRC cell line (HCT-8/VCR) was established, and differentially expressed proteins between HCT-8 and HCT-8/VCR cells were screened using a human cytokine array; the results were confirmed by reverse transcription polymerase chain reaction and Western blotting. Furthermore, differentially expressed proteins were downregulated using siRNA, and cell proliferation and apoptosis were assessed by Cell Counting Kit-8 assay and flow cytometry, respectively. RESULTS: Compared with HCT-8 CRC cells, HCT-8/VCR cells showed downregulation of lipocalin 2 (LCN2). We found that siRNA-mediated downregulation of LCN2 in HCT-8 cells significantly increased VCR resistance. Furthermore, when we downregulated LCN2, we observed significant decreases in apoptosis, but no significant effect on cell cycle. CONCLUSION: Overall, these results demonstrate that LCN2 plays an important role in VCR resistance and is a potential therapeutic target for this disease.


Antineoplastic Agents, Phytogenic/pharmacology , Colonic Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic , Lipocalin-2/biosynthesis , Vincristine/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/physiology , Humans , Lipocalin-2/genetics , Vincristine/therapeutic use
17.
FEBS Open Bio ; 7(12): 2021-2030, 2017 12.
Article En | MEDLINE | ID: mdl-29226088

Chinese hamster ovary (CHO) cells are one of the most commonly used expression systems for the production of recombinant proteins but low levels of transgene expression and transgene silencing are frequently encountered. Epigenetic regulatory elements such as the chicken ß-globin locus control region hypersensitive site 4 (HS4) and scaffold/matrix attachment regions (S/MARs) have positive effects on transgene expression. In this study, a chimeric HS4-SAR was cloned upstream or downstream of an enhanced green fluorescent protein (eGFP) expression cassette in a eukaryotic vector, and the resulting vectors were transfected into CHO cells. eGFP was detected by flow cytometry. Real-time quantitative PCR (qPCR) was used to determine copy numbers of the stably transfected cells. And fluorescence in situ hybridization (FISH) was used to detect the status of vector in the host cell chromosome. The results showed that HS4-SAR positioned downstream of the expression cassette could enhance eGFP expression by 4.83-fold compared with the control vector. There may not be a relationship between transgene copy number and gene expression level. HS4-SAR did not appear to alter the integration of the transgene into the host cell chromosome or its position in the chromosome. We found a synthetic chimeric HS4-SAR positively increased transgene expression in CHO cells.

18.
Sci Rep ; 7: 42805, 2017 02 20.
Article En | MEDLINE | ID: mdl-28216629

Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human ß-interferon and ß-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes.


Green Fluorescent Proteins/metabolism , Interferon-beta/genetics , Matrix Attachment Regions , Transfection/methods , beta-Globins/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Gene Expression , Green Fluorescent Proteins/genetics , Humans , Transgenes
19.
Psychooncology ; 25(8): 905-12, 2016 08.
Article En | MEDLINE | ID: mdl-26525458

OBJECTIVE: This study explores the unmet psychosocial rehabilitation needs of cancer survivors. METHODS: Sixty-eight cancer survivors from the Shanghai Cancer Rehabilitation Club in China participated in one of the eight focus groups. These were transcribed verbatim, coded using thematic analysis and analysed using NVivo 10. RESULTS: Five main themes were identified: the need for (1) better information: Chinese cancer survivors find it difficult to sort and evaluate the overwhelming mass of information with which they are confronted; (2) psychological support: survivors fear cancer relapse and neighbours' discrimination against them; support from other cancer survivors can relieve the stress; (3) support for survivors' families: like the survivors, family members are under great but usually unacknowledged pressure; (4) improved health and medical services: community health service centres provide little medical, informational or psychological support for cancer survivors, who seek and expect more communication with doctors; and (5) assistance with the financial burden: costs of treatment and lack of adequate medical insurance cause substantial financial pressure for survivors. CONCLUSIONS: This study shows that, in addition to their illness, Chinese cancer survivors experience a range of stresses related to their financial circumstances, lack of reliable and summarised information, poor access to support and services (including for their families) and discrimination. Support from families seems to improve survivors' ability to cope. Cancer survivors (and their families) need an integrated package of support from their families, doctors and other service providers, hospitals and communities. These findings can inform approaches to continuing care for cancer survivors. Copyright © 2015 John Wiley & Sons, Ltd.


Adaptation, Psychological , Cancer Survivors/psychology , Psychiatric Rehabilitation , China , Family , Female , Focus Groups , Humans , Middle Aged
20.
Qual Life Res ; 24(12): 2815-22, 2015 Dec.
Article En | MEDLINE | ID: mdl-26094007

PURPOSE: Cancer survivors are often embroiled in various physical and psycho-social issues as a consequence of cancer diagnosis and treatment. Psycho-social support activities in the phase of rehabilitation were provided to enhance their quality of life. This study seeks to explore and understand their experience of engagement in Shanghai Cancer Rehabilitation Club (SCRC). METHODS: Sixty-eight participants attended eight semi-structured focus group interviews. Data were transcribed verbatim, and thematic analysis framework was adopted for data analysis. RESULTS: The participants reported benefits such as psychological support, informational provision and tangible support in the activities. Public services were reported to have restored their dignity and enabled them to rediscover their own meaning of life. Participants also pointed out challenges on functioning and opportunity for development of SCRC. CONCLUSIONS: The psycho-social support activities of SCRC had influenced cancer survivor's life. Public health resources and supportive policies should be in place to support local self-help cancer rehabilitation groups.


Neoplasms/psychology , Quality of Life/psychology , Self-Help Groups , Social Support , Adult , Aged , China , Female , Focus Groups , Health Services , Humans , Male , Middle Aged , Motor Activity , Qualitative Research , Survivors/psychology
...