Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38752979

Spontaneous and conversational laughter are important socio-emotional communicative signals. Neuroimaging findings suggest that non-autistic people engage in mentalizing to understand the meaning behind conversational laughter. Autistic people may thus face specific challenges in processing conversational laughter, due to their mentalizing difficulties. Using fMRI, we explored neural differences during implicit processing of these two types of laughter. Autistic and non-autistic adults passively listened to funny words, followed by spontaneous laughter, conversational laughter, or noise-vocoded vocalizations. Behaviourally, words plus spontaneous laughter were rated as funnier than words plus conversational laughter, and the groups did not differ. However, neuroimaging results showed that non-autistic adults exhibited greater medial prefrontal cortex activation while listening to words plus conversational laughter, than words plus genuine laughter, while autistic adults showed no difference in medial prefrontal cortex activity between these two laughter types. Our findings suggest a crucial role for the medial prefrontal cortex in understanding socio-emotionally ambiguous laughter via mentalizing. Our study also highlights the possibility that autistic people may face challenges in understanding the essence of the laughter we frequently encounter in everyday life, especially in processing conversational laughter that carries complex meaning and social ambiguity, potentially leading to social vulnerability. Therefore, we advocate for clearer communication with autistic people.


Autistic Disorder , Brain Mapping , Brain , Laughter , Magnetic Resonance Imaging , Humans , Laughter/physiology , Laughter/psychology , Male , Female , Adult , Autistic Disorder/physiopathology , Autistic Disorder/diagnostic imaging , Autistic Disorder/psychology , Young Adult , Brain/diagnostic imaging , Brain/physiopathology , Brain/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Prefrontal Cortex/physiology , Acoustic Stimulation
2.
Sci Rep ; 14(1): 11590, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773178

Human interaction is immersed in laughter; though genuine and posed laughter are acoustically distinct, they are both crucial socio-emotional signals. In this novel study, autistic and non-autistic adults explicitly rated the affective properties of genuine and posed laughter. Additionally, we explored whether their self-reported everyday experiences with laughter differ. Both groups could differentiate between these two types of laughter. However, autistic adults rated posed laughter as more authentic and emotionally arousing than non-autistic adults, perceiving it to be similar to genuine laughter. Autistic adults reported laughing less, deriving less enjoyment from laughter, and experiencing difficulty in understanding the social meaning of other people's laughter compared to non-autistic people. Despite these differences, autistic adults reported using laughter socially as often as non-autistic adults, leveraging it to mediate social contexts. Our findings suggest that autistic adults show subtle differences in their perception of laughter, which may be associated with their struggles in comprehending the social meaning of laughter, as well as their diminished frequency and enjoyment of laughter in everyday scenarios. By combining experimental evidence with first-person experiences, this study suggests that autistic adults likely employ different strategies to understand laughter in everyday contexts, potentially leaving them socially vulnerable in communication.


Autistic Disorder , Laughter , Humans , Laughter/psychology , Male , Adult , Female , Autistic Disorder/psychology , Autistic Disorder/physiopathology , Young Adult , Emotions/physiology , Middle Aged
3.
Neuroimage ; 129: 105-116, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-26777478

The contribution of orthographic representations to reading and writing has been intensively investigated in the literature. However, the distinction between neuronal correlates of the orthographic lexicon and the orthographic (graphemic) buffer has rarely been examined in alphabetic languages and never been explored in non-alphabetic languages. To determine whether the neural networks associated with the orthographic lexicon and buffer of logographic materials are comparable to those reported in the literature, the present fMRI experiment manipulated frequency and the stroke number of Chinese characters in the tasks of form judgment and stroke judgment, which emphasized the processing of character recognition and writing, respectively. It was found that the left fusiform gyrus exhibited higher activation when encountering low-frequency than high-frequency characters in both tasks, which suggested this region to be the locus of the orthographic lexicon that represents the knowledge of character forms. On the other hand, the activations in the posterior part of the left middle frontal gyrus and in the left angular gyrus were parametrically modulated by the stroke number of target characters only in the stroke judgment task, which suggested these regions to be the locus of the orthographic buffer that represents the processing of stroke sequence in writing. These results provide the first evidence for the functional and anatomical dissociation between the orthographic lexicon and buffer in reading and writing Chinese characters. They also demonstrate the critical roles of the left fusiform area and the frontoparietal network to the long-term and short-term representations of orthographic knowledge, respectively, across different orthographies.


Brain Mapping , Brain/physiology , Reading , Writing , Adult , Asian People , Female , Humans , Language , Magnetic Resonance Imaging , Male , Nerve Net/physiology , Pattern Recognition, Visual/physiology , Young Adult
...