Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 131: 155771, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851101

RESUMEN

BACKGROUND: Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1ß and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE: The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN: The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS: Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION: Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.


Asunto(s)
Cardiomiopatías , Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Cardiomiopatías/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Ratones , Masculino , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Lipoilación/efectos de los fármacos , Ratas , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Lipopolisacáridos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-18/metabolismo
2.
Plants (Basel) ; 13(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38611565

RESUMEN

Soil salinity imposes osmotic, ionic, and oxidative stresses on plants, resulting in growth inhibition, developmental changes, metabolic adaptations, and ion sequestration or exclusion. Identifying salinity-tolerant resources and understanding physiological and molecular mechanisms of salinity tolerance could lay a foundation for the improvement of salinity tolerance in rice. In this study, a series of salinity-tolerance-related morphological and physiological traits were investigated in 46 rice genotypes, including Sea Rice 86, to reveal the main strategies of rice in responding to salinity stress at the seedling stage. No genotypes showed the same tolerance level as the two landraces Pokkali and Nona Bokra, which remain the donors for improving the salinity tolerance of rice. However, due to undesirable agronomic traits of these donors, alternative cultivars such as JC118S and R1 are recommended as novel source of salinity tolerance. Correlation and principal component analyses revealed that the salinity tolerance of rice seedlings is not only controlled by growth vigor but also regulated by ion transport pathways such as long-distance Na+ transport, root Na+ sequestration, and root K+ retention. Therefore, such key traits should be targeted in future breeding programs as the strategy of obtaining better Na+ exclusion is still the bottleneck for improving salinity tolerance in rice.

4.
Genes (Basel) ; 14(6)2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372479

RESUMEN

Acacia melanoxylon (blackwood) is a valuable wood with excellent-quality heartwood extensively utilized worldwide. The main aim of this study was to confirm the horizontal and vertical variation and provide estimated values of genetic gains and clonal repeatabilities for improving breeding program of A. melanoxylon. Six blackwood clones at 10 years old were analyzed in Heyuan and Baise cities in China. Stem trunk analysis was conducted for sample trees to explore the differences between heartwood and sapwood. The heartwood radius (HR), heartwood area (HA), and heartwood volume (HV) in heartwood properties decreased as tree height (H) in growth traits increased, and the HV = 1.2502 DBH (diameter at breast height)1.7009 model can accurately estimate the heartwood volume. Furthermore, G × E analysis showed that the heritabilities of the eleven indices, including DBH, DGH (diameter at ground height), H, HR, SW (sapwood width), BT (bark thickness), HA, SA (sapwood area), HV, HRP (heartwood radius percentage), HAP (heartwood area percentage), and HVP (heartwood volume percentage) were between 0.94 and 0.99, and repeatabilities of the eleven indices were between 0.74 and 0.91. Clonal repeatability of DBH (0.91), DGH (0.88), and H (0.90) in growth traits, HR (0.90), HVP (0.90), and HV (0.88) in heartwood properties were slightly higher than for SA (0.74), SW (0.75), HAP (0.75), HRP (0.75), and HVP (0.75). These data also implied that the growth characteristics of heartwood and sapwood of blackwood clones were less affected by the environment and had substantial heritability.


Asunto(s)
Acacia , Acacia/genética , Interacción Gen-Ambiente , Fitomejoramiento , Árboles , Genotipo
5.
Foodborne Pathog Dis ; 20(4): 138-148, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37010405

RESUMEN

Shigella sonnei, the causative agents of bacillary dysentery, remains a significant threat to public health. Litsea cubeba essential oil (LC-EO), one of the natural essential oils, exhibited promising biological activities. In this study, the antibacterial effects and possible mechanisms of LC-EO on S. sonnei and its application in lettuce medium were investigated. The minimum inhibitory concentration (MIC) of LC-EO against S. sonnei ATCC 25931 and CMCC 51592 was 4 and 6 µL/mL, respectively. The LC-EO could inhibit the growth of S. sonnei, and decreased S. sonnei to undetectable levels with 4 µL/mL for 1 h in Luria-Bertani broth. The antibacterial mechanism indicated that after the treatment of LC-EO, the production of reactive oxygen species and the activity of superoxide dismutase were significantly elevated in S. sonnei cells, and eventually led to the lipid oxidation product, the malondialdehyde content that significantly increased. Moreover, LC-EO at 2 MIC could destroy 96.51% of bacterial cell membrane integrity, and made S. sonnei cells to appear wrinkled with a rough surface, so that the intracellular adenosine triphosphate leakage was about 0.352-0.030 µmol/L. Finally, the results of application evaluation indicated that the addition of LC-EO at 4 µL/mL in lettuce leaves and 6 µL/mL in lettuce juice could decrease the number of S. sonnei to undetectable levels without remarkable influence on the lettuce leaf sensory quality. In summary, LC-EO exerted strong antibacterial activity and has the potential to control S. sonnei in food industry.


Asunto(s)
Litsea , Aceites Volátiles , Aceites Volátiles/farmacología , Lactuca , Shigella sonnei , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
6.
Front Plant Sci ; 13: 962253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909739

RESUMEN

Lodging in wheat (Triticum aestivum L.) is a complicated phenomenon that is influenced by physiological, genetics, and external factors. It causes a great yield loss and reduces grain quality and mechanical harvesting efficiency. Lodging resistance is contributed by various traits, including increased stem strength. The aim of this study was to map quantitative trait loci (QTL) controlling stem strength-related features (the number of big vascular bundles, stem diameter, stem wall thickness) using a doubled haploid (DH) population derived from a cross between Baiqimai and Neixiang 5. Field experiments were conducted during 2020-2022, and glasshouse experiments were conducted during 2021-2022. Significant genetic variations were observed for all measured traits, and they were all highly heritable. Fifteen QTL for stem strength-related traits were identified on chromosomes 2D, 3A, 3B, 3D, 4B, 5A, 6B, 7A, and 7D, respectively, and 7 QTL for grain yield-related traits were identified on chromosomes 2B, 2D, 3D, 4B, 7A, and 7B, respectively. The superior allele of the major QTL for the number of big vascular bundle (VB) was independent of plant height (PH), making it possible to improve stem strength without a trade-off of PH, thus improving lodging resistance. VB also showed positive correlations with some of the yield components. The result will be useful for molecular marker-assisted selection (MAS) for high stem strength and high yield potential.

7.
Front Genet ; 13: 903267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873485

RESUMEN

Mung bean (Vigna radiata L.) is an economically important grain legume cultivated in Asian countries. High-density genetic linkage is a valuable and effective tool for mapping quantitative trait loci (QTL). In the current study, a high-resolution genetic map containing 4,180 single-nucleotide polymorphisms (SNPs) was assigned to 11 linkage groups (LGs) and spanning 1,751.39 cM in length was constructed for mung bean, and the average distance between adjacent markers was 0.42 cM. Bruchids (Callosobruchus spp.) cause significant damage to and loss of legume seeds. A locus for bruchid resistance was detected. The gene Vradi05g03810, encoding a probable resistance-specific protein, was found to be the most likely key candidate gene in mung beans. A 69-bp sequence deletion was identified in the coding region by comparing the cDNA sequences of bruchid-resistant and bruchid-susceptible lines. This SNP-based high-density linkage map is one of the first to be constructed across the mung bean genome. This map will not only facilitate the genetic mapping of genes or complex loci that control important agronomic traits but also offer a tool for promoting future genetics and comparative genomic studies in Vigna.

8.
BMC Plant Biol ; 22(1): 305, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751018

RESUMEN

BACKGROUND: Carbohydrate accumulation of photosynthetic organs, mainly leaves, are the primary sources of grain yield in cereals. The flag leaf plays a vital role in seed development, which is probably the most neglected morphological characteristic during traditional selection processes. RESULTS: In this experiment, four flag leaf morphological traits and seven yield-related traits were investigated in a DH population derived from a cross between a wild barley and an Australian malting barley cultivar. Flag leaf thickness (FLT) showed significantly positive correlations with grain size. Four QTL, located on chromosomes 1H, 2H, 3H, and 5H, respectively, were identified for FLT. Among them, a major QTL was located on chromosome 3H with a LOD value of 18.4 and determined 32% of the phenotypic variation. This QTL showed close links but not pleiotropism to the previously reported semi-dwarf gene sdw1 from the cultivated barley. This QTL was not reported before and the thick leaf allele from the wild barley could provide a useful source for improving grain yield through breeding. CONCLUSIONS: Our results also provided valuable evidence that source traits and sink traits in barley are tightly connected and suggest further improvement of barley yield potential with enhanced and balanced source and sink relationships by exploiting potentialities of the wild barley resources. Moreover, this study will provide a novel sight on understanding the evolution and development of leaf morphology in barley and improving barley production by rewilding for lost superior traits during plant evolution.


Asunto(s)
Hordeum , Australia , Mapeo Cromosómico , Grano Comestible/genética , Hordeum/genética , Fenotipo , Fitomejoramiento , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo/genética
9.
J Integr Plant Biol ; 64(6): 1246-1263, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35442537

RESUMEN

Pre-harvest sprouting (PHS), which reduces grain yield and quality, is controlled by seed dormancy genes. Because few dormancy-related genes have been cloned, the genetic basis of seed dormancy in rice (Oryza sativa L.) remains unclear. Here, we performed a genome-wide association study and linkage mapping to dissect the genetic basis of seed dormancy in rice. Our findings suggest that Seed Dormancy4 (Sdr4), a central modulator of seed dormancy, integrates the abscisic acid and gibberellic acid signaling pathways at the transcriptional level. Haplotype analysis revealed that three Sdr4 alleles in rice cultivars already existed in ancestral Oryza rufipogon accessions. Furthermore, like the semi-dwarf 1 (SD1) and Rc loci, Sdr4 underwent selection during the domestication and improvement of Asian cultivated rice. The distribution frequency of the Sdr4-n allele in different locations in Asia is negatively associated with local annual temperature and precipitation. Finally, we developed functional molecular markers for Sdr4, SD1, and Rc for use in molecular breeding. Our results provide clues about the molecular basis of Sdr4-regulated seed dormancy. Moreover, these findings provide guidance for utilizing the favorable alleles of Sdr4 and Rc to synergistically boost PHS resistance, yield, and quality in modern rice varieties.


Asunto(s)
Oryza , Estudio de Asociación del Genoma Completo , Oryza/genética , Oryza/metabolismo , Latencia en las Plantas/genética , Semillas/genética , Sindactilia
10.
BMC Genomics ; 22(1): 602, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362301

RESUMEN

BACKGROUND: Grain weight and grain shape are important agronomic traits that affect the grain yield potential and grain quality of rice. Both grain weight and grain shape are controlled by multiple genes. The 3,000 Rice Genomes Project (3 K RGP) greatly facilitates the discovery of agriculturally important genetic variants and germplasm resources for grain weight and grain shape. RESULTS: Abundant natural variations and distinct phenotic differentiation among the subgroups in grain weight and grain shape were observed in a large population of 2,453 accessions from the 3 K RGP. A total of 21 stable quantitative trait nucleotides (QTNs) for the four traits were consistently identified in at least two of 3-year trials by genome-wide association study (GWAS), including six new QTNs (qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10, and qRLW1) for grain weight and grain shape. We further predicted seven candidate genes (Os03g0186600, Os09g0544400, Os11g0163600, Os04g0580700, Os10g0399700, Os10g0400100 and Os01g0171000) for the six new QTNs by high-density association and gene-based haplotype analyses. The favorable haplotypes of the seven candidate genes and five previously cloned genes in elite accessions with high TGW and RLW are also provided. CONCLUSIONS: Our results deepen the understanding of the genetic basis of grain weight and grain shape in rice and provide valuable information for improving rice grain yield and grain quality through molecular breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oryza , Alelos , Grano Comestible/genética , Oryza/genética , Sitios de Carácter Cuantitativo
11.
Rice (N Y) ; 13(1): 13, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060661

RESUMEN

BACKGROUND: The construction of genetic maps based on molecular markers is a crucial step in rice genetic and genomic studies. Pure lines derived from multiple parents provide more abundant genetic variation than those from bi-parent populations. Two four-parent pure-line populations (4PL1 and 4PL2) and one eight-parent pure-line population (8PL) were developed from eight homozygous indica varieties of rice by the International Rice Research Institute (IRRI). To the best of our knowledge, there have been no reports on linkage map construction and their integration in multi-parent populations of rice. RESULTS: We constructed linkage maps for the three multi-parent populations and conducted quantitative trait locus (QTL) mapping for heading date (HD) and plant height (PH) based on the three maps by inclusive composite interval mapping (ICIM). An integrated map was built from the three individual maps and used for QTL projection and meta-analysis. QTL mapping of the three populations was also conducted based on the integrated map, and the mapping results were compared with those from meta-analysis. The three linkage maps developed for 8PL, 4PL1 and 4PL2 had 5905, 4354 and 5464 bins and were 1290.16, 1720.01 and 1560.30 cM in length, respectively. The integrated map was 3022.08 cM in length and contained 10,033 bins. Based on the three linkage maps, 3, 7 and 9 QTLs were detected for HD while 6, 9 and 10 QTLs were detected for PH in 8PL, 4PL1 and 4PL2, respectively. In contrast, 19 and 25 QTLs were identified for HD and PH by meta-analysis using the integrated map, respectively. Based on the integrated map, 5, 9, and 10 QTLs were detected for HD while 3, 10, and 12 QTLs were detected for PH in 8PL, 4PL1 and 4PL2, respectively. Eleven of these 49 QTLs coincided with those from the meta-analysis. CONCLUSIONS: In this study, we reported the first rice linkage map constructed from one eight-parent recombinant inbred line (RIL) population and the first integrated map from three multi-parent populations, which provide essential information for QTL linkage mapping, meta-analysis, and map-based cloning in rice genetics and breeding.

12.
Cell Mol Immunol ; 15(12): 1057-1070, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30275535

RESUMEN

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, and the pathogenesis of SLE has not been fully elucidated. The E3 ubiquitin ligase FBXW7 has been well characterized in cancer as a tumor suppressor that can promote the ubiquitination and subsequent degradation of various oncoproteins; however, the potential role of FBXW7 in autoimmune diseases is unclear. In the present study, we identified that FBXW7 is a crucial exacerbating factor for SLE development and progression in a mouse model induced by 2, 6, 10, 14-tetramethylpentadecane (TMPD). Myeloid cell-specific FBXW7-deficient (Lysm+FBXW7f/f) C57BL/6 mice showed decreased immune complex accumulation, glomerulonephritis, glomerular mesangial cell proliferation, and base-membrane thickness in the kidney. Lysm+FBXW7f/f mice produced fewer anti-Sm/RNP and anti-ANA autoantibodies and showed a decreased MHC II expression in B cells. In Lysm+FBXW7f/f mice, we observed that cell apoptosis was reduced and that fewer CD11b+Ly6Chi inflammatory monocytes were recruited to the peritoneal cavity. Consistently, diffuse pulmonary hemorrhage (DPH) was also decreased in Lysm+FBXW7f/f mice. Mechanistically, we clarified that FBXW7 promoted TMPD-induced cell apoptosis by catalyzing MCL1 degradation through K48-linked ubiquitination. Our work revealed that FBXW7 expression in myeloid cells played a crucial role in TMPD-induced SLE progression in mice, which may provide novel ideas and theoretical support for understanding the pathogenesis of SLE.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Riñón/patología , Lupus Eritematoso Sistémico/metabolismo , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Apoptosis , Antígeno CD11b/metabolismo , Modelos Animales de Enfermedad , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Humanos , Riñón/metabolismo , Lupus Eritematoso Sistémico/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Picolinas , Proteolisis
13.
PLoS One ; 13(6): e0198589, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29894520

RESUMEN

Aluminum (Al) stress is becoming the major limiting factor in crop production in acidic soils. Rice has been reported as the most Al-tolerant crop and the capacity of Al toxicity tolerance is generally evaluated by comparing root growth under Al stress. Here, we performed an association mapping of Al toxicity tolerance using a core collection of 211 indica rice accessions with 700 K high quality SNP data. A total of 21 putative QTL affecting shoot height (SH), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root dry weight (RDW) and shoot water content (SWC) were identified at seedling stage, including three QTL detected only under control condition, eight detected only under Al stress condition, ten simultaneously detected in both control and Al stress conditions, and seven were identified by stress tolerance index of their corresponding traits. Total of 21 candidate genes for 7 important QTL regions associated with Al toxicity tolerance were identified based on combined haplotype analysis and functional annotation, and the most likely candidate gene(s) for each important QTL were also discussed. Also a candidate gene Nrat1 on chromosome 2 was further fine-mapped using BSA-seq and linkage analysis in the F2 population derived from the cross of Al tolerant accession CC105 and super susceptible accession CC180. A new non-synonymous SNP variation was observed at Nrat1 between CC105 and CC180, which resulted in an amino-acid substitution from Ala (A) in CC105 to Asp (D) in CC180. Haplotype analysis of Nrat1 using 327 3K RGP accessions indicated that minor allele variations in aus and indica subpopulations decreased Al toxicity tolerance in rice. The candidate genes identified in this study provide valuable information for improvement of Al toxicity tolerance in rice. Our research indicated that minor alleles are important for QTL mapping and its application in rice breeding when natural gene resources are used.


Asunto(s)
Aluminio/toxicidad , Mapeo Cromosómico/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Oryza/efectos de los fármacos , Oryza/genética , Proteínas de Plantas/genética , Cromosomas de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Estrés Fisiológico
14.
Anal Sci ; 33(12): 1333-1337, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225220

RESUMEN

A sensitive fluorescent method for the detection of Hg2+ was developed based on triple-helix molecular switch (THMS)-induced hybridization chain reaction (HCR) amplification. THMS was composed of a T-rich mercury-specific probe and an initiator probe, designed by the Watson-Crick and Hoogsteen base pairings and employed as a signal trigger. Two hairpin probes containing the G-quadruplex sequence were used as signal amplification elements. In the presence of Hg2+, the T-Hg2+-T mismatch resulted in disassembling the THMS and releasing the initiator probe. One of the hairpins was opened by the released initiator probe, which triggered a successive cross-opening of two hairpins based the strand displacement principle, resulting in the formation of long-chain DNA with multiple G-quadruplex. When thioflavin T (ThT), a fluorophore, was bound to the G-quadruplex, an obvious fluorescence enhancement would occur. This sensing system enabled the highly sensitive and selective detection of aqueous Hg2+ with a limit-of-detection of 10.2 pM.


Asunto(s)
G-Cuádruplex , Mercurio/análisis , Tiazoles/química , Benzotiazoles , Límite de Detección , Mercurio/química , Hibridación de Ácido Nucleico , Espectrometría de Fluorescencia
15.
PLoS One ; 10(12): e0145704, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26713764

RESUMEN

Cold stress is one of the major abiotic stresses that impede rice production. A interconnected breeding (IB) population consisted of 497 advanced lines developed using HHZ as the recurrent parent and eight diverse elite indica lines as the donors were used to identify stably expressed QTLs for CT at the booting stage. A total of 41,754 high-quality SNPs were obtained through re-sequencing of the IB population. Phenotyping was conducted under field conditions in two years and three locations. Association analysis identified six QTLs for CT on the chromosomes 3, 4 and 12. QTL qCT-3-2 that showed stable CT across years and locations was fine-mapped to an approximately 192.9 kb region. Our results suggested that GWAS applied to an IB population allows better integration of gene discovery and breeding. QTLs can be mapped in high resolution and quickly utilized in breeding.


Asunto(s)
Mapeo Cromosómico , Respuesta al Choque por Frío/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/fisiología , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...