Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 951: 175607, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39159688

RESUMEN

Soil organic carbon (SOC) and iron/aluminum (Fe/Al) oxides are key cementing agents in driving soil aggregate formation, yet their direct effects and interactions on aggregate under long-term rice straw cyclic utilization (LSCU) in cold regions are still unclear. We compared chemical fertilizer (CF) with LSCU strategy: rice-straw (RS), biochar (RB), and biochar-based fertilizer (BF). We showed that the increase of macroaggregate (2-0.25 mm) is associated with SOC, dissolved organic carbon (DOC), humin carbon (HUC), amorphous and organic complexed Fe/Al oxides (Feo, Fep, Alo, Alp), and in each size of the aggregate, there exists an interaction between SOC (fractions) and Fe/Al oxides. Furthermore, aggregate stability was determined by Feo, Fep, and Alo. LSCU enhances macroaggregate and aggregate stability by increasing SOC and Fe/Al oxides in the bulk soil and aggregates, but there are differences among LSCU. In all treatments, RS had more DOC, fulvic acid carbon (FAC), humic acid carbon (HAC) and Fep; while RB had more SOC, HUC, free Fe/Al oxides (Fed, Ald), Feo, Alp; and BF had more Alo in bulk soil. Over the years, RS increased the DOC, FAC and HAC, whereas RB enhanced the stable SOC fractions (HUC) and promoted high reactive Fe/Al oxides formation (Feo, Fep, Alo), and BF increased DOC, Feo, Fep and Alo. Moreover, RB increases the direct pathway of SOC and Fe/Al oxides to aggregate, promoting aggregate formation. Our study provides new perspective on the mechanisms and promising practice for improving rice straw utilization efficiently, paddy soil fertility and productivity sustainably in cold regions.

2.
New Phytol ; 243(6): 2251-2264, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39073105

RESUMEN

The shape of rice grains not only determines the thousand-grain weight but also correlates closely with the grain quality. Here we identified an ultra-large grain accession (ULG) with a thousand-grain weight exceeding 60 g. The integrated analysis of QTL, BSA, de novo genome assembled, transcription sequencing, and gene editing was conducted to dissect the molecular basis of the ULG formation. The ULG pyramided advantageous alleles from at least four known grain-shaping genes, OsLG3, OsMADS1, GS3, GL3.1, and one novel locus, qULG2-b, which encoded a leucine-rich repeat receptor-like kinase. The collective impacts of OsLG3, OsMADS1, GS3, and GL3.1 on grain size were confirmed in transgenic plants and near-isogenic lines. The transcriptome analysis identified 112 genes cooperatively regulated by these four genes that were prominently involved in photosynthesis and carbon metabolism. By leveraging the pleiotropy of these genes, we enhanced the grain yield, appearance, and stress tolerance of rice var. SN265. Beyond showcasing the pyramiding of multiple grain size regulation genes that can produce ULG, our study provides a theoretical framework and valuable genomic resources for improving rice variety by leveraging the pleiotropy of grain size regulated genes.


Asunto(s)
Grano Comestible , Regulación de la Expresión Génica de las Plantas , Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética , Genes de Plantas , Plantas Modificadas Genéticamente , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenotipo , Alelos , Estrés Fisiológico/genética
3.
Plants (Basel) ; 13(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611456

RESUMEN

China is the only country that extensively cultivates the indica and japonica rice varieties, with the largest japonica rice production area being in northeast China. A study of the relationship between the yield and quality of japonica rice and the effect of nitrogen fertilizer application on this relationship is important. In this paper, we aimed to assess the current yield and quality of japonica rice in northeast China. We selected erect-panicle varieties as the test materials. Field experiments were conducted using different nitrogen fertilizer levels for two consecutive years to analyze the rice varieties' yield, quality, interrelationship, and nitrogen fertilizer response. The average yield following high- and low-nitrogen treatments exceeded 10,000.00 kg/hm2, with a maximum of 12,285.63 kg/hm2. The high-yield-high-nitrogen treatment group had more panicles, a higher seed-setting rate, and a higher 1000-grain weight than the other groups. The high-yield-low-nitrogen group had a higher number of panicles and seed-setting rate than the other groups. The low-yield-high-nitrogen group had a lower number of whole grains, grain length-to-width ratio, and taste value than the other groups. The low-yield-low-nitrogen group had fewer primary branches than the other groups; excluding the primary branch-setting rate and 1000-grain weight, the values of the other panicle traits of the group were significantly higher than those of the other groups. The high-nitrogen-high-flavor group had lower panicle and spikelet numbers and higher spikelet fertility rates than the other groups. The low-nitrogen-high-flavor group had higher spikelet fertility rates and 1000-grain weight than the other groups. Compared to the other groups, the low-nitrogen-high-flavor group had a higher head rice yield, and the high-nitrogen-high-flavor group had a lower chalkiness rate. The main goal of the breeding and cultivation of high-yield and high-quality erect-panicle japonica rice in northern China is to achieve "dual high, dual low, and one high and one low" conditions, signifying a high yield with high or low nitrogen levels, low protein and amylose contents, high head rice rates, and low chalkiness. This study provides a new technique for enhancing the taste of northern erect-panicle japonica rice to promote the sustainable, high-yield, and high-quality development of japonica rice in northern China.

4.
Adv Mater ; 36(21): e2313909, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38349232

RESUMEN

Hufu, serving as evidence of imperial authorization in ancient China, comprises two parts in the form of tiger-shaped tallies that only become effective when matched. Drawing inspiration from the concept of Hufu, a reconfigurable electroluminescent (EL) device is designed by separating conventional integral devices into two parts that contain the EL layer (part A) and the transparent electrode (part B), respectively. The key to realizing such strategy is employing an adhesive and stretchable polymer gel composite as the transparent electrodes for the EL devices. The polymer gel composite facilitates robust yet reversible contact between the EL layer and transparent electrode, enabling high-performance and stretchable EL devices that can be readily disassembled and reassembled: the EL devices can maintain ≈81% of their initial luminance after 1000 times of repeated disassembly and reassembly. Moreover, the precursor ink of the polymer gel composite is compatible with a wide variety of coating and printing technologies, such as spin-coating, inkjet printing, dispensing, and brush painting. Importantly, the reconfigurable feature of the devices opens up a new path to encryption display systems, and as a proof-of-concept, EL encrypted password, and content-changeable digital clock are demonstrated.

5.
J Sci Food Agric ; 104(5): 3113-3122, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38072657

RESUMEN

BACKGROUND: Photosynthesis is the key to crop yield. The effect of biochar on photosynthetic physiology and soybean yield under continuous cropping is unclear. We conducted a long-term field experiment to investigate the effects of co-application of biochar and fertilizer (BCAF) on these parameters. Five treatments were established: F2 (fertilizer), B1F1 (3 t hm-2 biochar plus fertilizer), B1F2 (3 t hm-2 biochar plus reduced fertilizer), B2F1 (6 t hm-2 biochar plus fertilizer), and B2F2 (6 t hm-2 biochar plus reduced fertilizer). RESULTS: BCAF increased chlorophyll and leaf area, enhancing soybean photosynthesis. The net photosynthetic rate (Pn ), transpiration rate (Tr ), stomatal conductance (Gs ), water use efficiency (WUE) and intercellular carbon dioxide (CO2 ) concentration (Ci ) were enhanced by BCAF. In addition, BCAF improved soybean photosystem II (PSII) photosynthetic performance, driving force, potential photochemical efficiency (Fv /F0 ), and quantum yield of electron transfer (φE0 ). Furthermore, BCAF enhanced the accumulation of photosynthetic products, such as soluble proteins, soluble sugars and sucrose content, resulting in higher leaf dry weight. Consequently, BCAF increased the soybean yield, with the highest increase of 41.54% in B2F1. The correlation analysis revealed positive relationships between soybean yield and chlorophyll, leaf area, maximal quantum yield of PSII (Fv /Fm ), electron transport flux per cross-section at t = 0 (ET0 /CS0 ), trapped energy flux per cross-section at t = 0 (TR0 /CS0 ), composite blade driving force (DFTotal ), and leaf dry weight. CONCLUSIONS: We demonstrated that long-term BCAF enhances soybean photosynthesis under continuous planting, reduces fertilizer use and increases yield. This study reveals a novel way and theory to sustainably increase soybean productivity. © 2023 Society of Chemical Industry.


Asunto(s)
Carbón Orgánico , Fertilizantes , Glycine max , Fotosíntesis , Clorofila/metabolismo , Hojas de la Planta/metabolismo
6.
Environ Sci Pollut Res Int ; 30(51): 110674-110686, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37792197

RESUMEN

Biochar amendment can benefit rice growth, but the long-term effects of rice straw carbonized utilization (RSCU, biochar, and biochar-based fertilizer) on rice production in cold areas are still unclear. Herein, we conducted a field experiment over 6 years with four treatments: F (conventional fertilization) as the control, RB1 (biochar, 3 t·ha-1), RB2 (biochar, 6 t·ha-1), and RBF (biochar-based fertilizer, 0.75 t·ha-1). We found that rice straw biochar significantly improved soil physical properties by reducing soil bulk density, increasing soil porosity and liquid and gas phases ratio, and enhancing soil aggregate stability. RSCU also increased soil fertility by improving soil organic carbon (SOC), active organic carbon, and soil nutrients (N, P, K) and their availability, as indicated by an increase in soil C:N and a decrease in soil N:P. Moreover, biochar increased soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and enzyme activities. As a result, RSCU increased rice yield, which was positively correlated with soil total porosity, total phosphorus, available potassium, dissolved organic carbon (DOC), easily oxidizable carbon (EOC), labile fraction of organic carbon (LFOC), and urease activity. RB2 had the highest rice yield (5.94% higher than F). Our study suggests that RSCU can synergistically improve the rice straw utilization rate, soil fertility, and rice productivity in cold areas.


Asunto(s)
Oryza , Suelo , Carbono , Fertilizantes , Carbón Orgánico , Agricultura
7.
Environ Pollut ; 337: 122637, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769707

RESUMEN

Sorption and oxidation are two potential pathways for the decontamination of trivalent antimony (Sb(III))-bearing water, using iron (Fe)-modified biochar (FeBC). Here we investigated the sorption and oxidation behavior of FeBC for Sb(III) in aqueous solutions. Results revealed that Sb(III) removal by FeBC was significantly improved showing the maximum Sb(III) sorption (64.0 mg g-1). Density functional theory (DFT) calculations indicated that magnetite (Fe3O4) in FeBC offered a sorption energy of -0.22 eV, which is 5 times that of non-modified biochar. With the addition of peroxymonosulfate (PMS), the sorption of Sb(III) on FeBC was 7 times higher than that on BC, indicating the sorption capacity of FeBC for Sb(III) could be substantially increased by adding oxidizing agents. Electrochemical analysis showed that Fe modification imparted FeBC higher electron-donating capacity than that of BC (0.045 v. s. 0.023 mmol e- (g biochar)-1), which might be the reason for the strong Sb(III) oxidation (63.6%) on the surface of FeBC. This study provides new information that is key for the development of effective biochar-based composite materials for the removal of Sb(III) from drinking water and wastewater. The findings from this study have important implications for protecting human health and agriculture.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Humanos , Hierro/análisis , Antimonio/análisis , Electrones , Adsorción , Carbón Orgánico , Agua , Estrés Oxidativo , Contaminantes Químicos del Agua/análisis
8.
Sci Total Environ ; 900: 166344, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37597543

RESUMEN

Straw biochar amended soils reduce fertilizer losses and alleviate soil K-exhaustion, while decrease grain yield due to its high pH. H2SO4-modified biochar has been studied as a means to enhance the advantages of biochar and address yield decrease. However, little information is available on its effects on aboveground K uptake, soil K fixation, K leaching, and utilization in paddy rice systems, especially under water stress. A 3-year field experiment was conducted with two irrigation regimes (continuously flooded irrigation, ICF and alternate wetting and drying irrigation, IAWD) as main plots and 0 (control), 20 t ha-1 biochar (B20), and 20 t ha-1 acid-modified biochar (B20A-M) as subplots. The results showed that IAWD significantly decreased water percolation by 9.26 %-14.74 % but increased K leaching by 10.84 %-15.66 %. Compared to B0, B20 and B20A-M significantly increased K leaching by 32.40 % and 30.42 % in 2019, while decreased it by 11.60 %-14.01 % in 2020 and 2021. Both B20 and B20A-M significantly improved aboveground K uptake by 3.45 %-6.71 % throughout the three years. B20 reduced grain yield in 2019 and increased it in 2020 and 2021, while B20A-M increased grain yield throughout the three years. Apparent K balance (AKB) from pre-transplanting to post-harvest over the three years suggested that IAWD significantly increased the risk of soil K depletion but B20 and B20A-M significantly increased AKB, thereby addressing the depletion of it. IAWDB20A-M have a comparable AKB with ICFB20A-M, but had up to 18.3 % and 21.61 % higher AKB than IAWDB20 and ICFB20. Therefore, the use of H2SO4 modified biochar could produce higher grain yield with lower K leaching for addition in IAWD paddy systems, which is beneficial to mitigate soil K depletion and ensure a sustainable agricultural production.


Asunto(s)
Ecosistema , Grano Comestible , Transporte Biológico , Suelo , Potasio
9.
Sci Total Environ ; 902: 165969, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37541494

RESUMEN

We used chemical extraction, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) to study the potassium (K) in biochar prepared from corn straw at different temperatures (300 °C, 500 °C, 700 °C and 900 °C). The characteristics of biochar were analyzed through Fourier transform infrared spectroscopy (FTIR) and specific surface area analysis. We found that the potassium in biochar can be divided into water soluble potassium, exchangeable potassium, non-exchangeable potassium, and insoluble potassium according to the availability of agricultural potassium. The fate of potassium in straw changed as follows: with increasing pyrolysis temperature, the proportion of the sum of exchangeable and non-exchangeable potassium decreased, and the proportions of insoluble and lost potassium increased. The total, water soluble and exchangeable potassium contents in biochar were highest at 700 °C. The non-exchangeable and insoluble potassium contents were highest at 300 °C and 900 °C, respectively. Kinetics experiments were conducted to determine the different fates of potassium released from biochar at different temperatures; pot experiments were also undertaken. The release of different forms of potassium in biochar at different temperatures is mainly dominated by heterogeneous diffusion. Biochar increased not only the content of different forms of potassium in soil but also the potassium content of soybean stems and leaves. We calculated the potassium supply capacity of biochar by two strategies, measurements of the potassium content in biochar and the conversion rate of potassium in straw during pyrolysis. The most active and efficient potassium supply capacities were 33.60 g·kg-1 and 9.53 g·kg-1 at 700 °C and 300 °C, respectively. Biochar provides readily available (water soluble and exchangeable) potassium and a long-term (non-exchangeable) potassium supply to soil.


Asunto(s)
Carbón Orgánico , Potasio , Carbón Orgánico/química , Suelo , Espectroscopía Infrarroja por Transformada de Fourier , Agricultura , Agua , Adsorción
10.
Plant Physiol ; 193(3): 2180-2196, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37471276

RESUMEN

Rice (Oryza sativa L.) is a cold-sensitive species that often faces cold stress, which adversely affects yield productivity and quality. However, the genetic basis for low-temperature adaptation in rice remains unclear. Here, we demonstrate that 2 functional polymorphisms in O. sativa SEC13 Homolog 1 (OsSEH1), encoding a WD40-repeat nucleoporin, between the 2 subspecies O. sativa japonica and O. sativa indica rice, may have facilitated cold adaptation in japonica rice. We show that OsSEH1 of the japonica variety expressed in OsSEH1MSD plants (transgenic line overexpressing the OsSEH1 allele from Mangshuidao [MSD], cold-tolerant landrace) has a higher affinity for O. sativa metallothionein 2b (OsMT2b) than that of OsSEH1 of indica. This high affinity of OsSEH1MSD for OsMT2b results in inhibition of OsMT2b degradation, with decreased accumulation of reactive oxygen species and increased cold tolerance. Transcriptome analysis indicates that OsSEH1 positively regulates the expression of the genes encoding dehydration-responsive element-binding transcription factors, i.e. OsDREB1 genes, and induces the expression of multiple cold-regulated genes to enhance cold tolerance. Our findings highlight a breeding resource for improving cold tolerance in rice.


Asunto(s)
Oryza , Oryza/metabolismo , Fitomejoramiento , Frío , Oxidación-Reducción , Homeostasis , Regulación de la Expresión Génica de las Plantas
11.
Front Plant Sci ; 14: 1131937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404536

RESUMEN

Introduction: Biochar has been shown to be an effective soil amendment for promoting plant growth and improving nitrogen (N) utilization. However, the physiological and molecular mechanisms behind such stimulation remain unclear. Methods: In this study, we investigated whether biochar-extracted liquor including 21 organic molecules enhance the nitrogen use efficiency (NUE) of rice plants using two N forms (NH4 +-N and NO3 --N). A hydroponic experiment was conducted, and biochar-extracted liquor (between 1 and 3% by weight) was applied to rice seedlings. Results: The results showed that biochar-extracted liquor significantly improved phenotypic and physiological traits of rice seedlings. Biochar-extracted liquor dramatically upregulated the expression of rice N metabolism-related genes such as OsAMT1.1, OsGS1.1, and OsGS2. Rice seedlings preferentially absorbed NH4 +-N than NO3 --N (p < 0.05), and the uptake of NH4 +-N by rice seedlings was significantly increased by 33.60% under the treatment of biochar-extracted liquor. The results from molecular docking showed that OsAMT1.1protein can theoretically interact with 2-Acetyl-5-methylfuran, trans-2,4-Dimethylthiane, S, S-dioxide, 2,2-Diethylacetamide, and 1,2-Dimethylaziridine in the biochar-extracted liquor. These four organic compounds have similar biological function as the OsAMT1.1 protein ligand in driving NH4 +-N uptakes by rice plants. Discussion: This study highlights the importance of biochar-extracted liquor in promoting plant growth and NUE. The use of low doses of biochar-extracted liquor could be an important way to reduce N input in order to achieve the purpose of reducing fertilizer use and increasing efficiency in agricultural production.

12.
J Hazard Mater ; 458: 132020, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429191

RESUMEN

Cell wall is essential for plant upright growth, biomass saccharification, and stress resistance. Although cell wall modification is suggested as an effective means to increase biomass saccharification, it is a challenge to maintain normal plant growth with improved mechanical strength and stress resistance. Here, we reported two independent fragile culm mutants, fc19-1 and fc19-2, resulting from novel mutations of OsIRX10, produced by the CRISPR/Cas9 system. Compared to wild-type, the two mutants exhibited reduced contents of xylose, hemicellulose, and cellulose, and increased arabinose and lignin without significant alteration in levels of pectin and uronic acids. Despite brittleness, the mutants displayed increased breaking force, leading to improved lodging resistance. Furthermore, the altered cell wall and increased biomass porosity in fc19 largely increased biomass saccharification. Notably, the mutants showed enhanced cadmium (Cd) resistance with lower Cd accumulation in roots and shoots. The FC19 mutation impacts transcriptional levels of key genes contributing to Cd uptake, sequestration, and translocation. Moreover, transcriptome analysis revealed that the FC19 mutation resulted in alterations of genes mainly involved in carbohydrate and phenylpropanoid metabolism. Therefore, a hypothetic model was proposed to elucidate that the FC19 mutation-mediated cell wall remodeling leads to improvements in lodging resistance, biomass saccharification, and Cd resistance.


Asunto(s)
Cadmio , Oryza , Cadmio/metabolismo , Oryza/metabolismo , Biomasa , Pared Celular/metabolismo , Mutación
13.
Heliyon ; 9(8): e18570, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37520942

RESUMEN

This study uses social network analysis and modified gravity model methods to empirically analyse the network spatial correlation structure and spatiotemporal development trend of 21 cities in Guangdong Province from 2000 to 2020 based on tourism economic development data. The findings show that, first, Zhuhai has the greatest potential for growth as the centre of the spatial and temporal evolution trend of the network structure of the tourism economy in Guangdong Province, ahead of Shenzhen, Huizhou, Zhaoqing, Zhongshan, Jiangmen and Dongguan. However, Guangzhou, the capital city of Guangdong Province, is experiencing a decline in such influence and development. Second, there is a counter-trend growth in the number of tourism-related economic links among the 21 cities. Although Guangdong's tourism economic network intensity is strong, there is still room for further optimisation. Third, the results of the overall network indicators show that there is a need for further improvement in network density, grade and efficiency to help reduce the relative development gap of the cities' tourism and effectively improve the overall development of Guangdong's tourism economy. Finally, based on the core-periphery structure, this study proposes relevant suggestions for the sustainable development of Guangdong's tourism industry.

14.
Environ Int ; 176: 107989, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37245444

RESUMEN

Sustainable management of ever-increasing organic biowaste and arable soil contamination by potentially toxic elements are of concern from both environmental and agricultural perspectives. To tackle the waste issue of crawfish shells and simultaneously minimize the threat of arsenic (As) and lead (Pb) to human health, a pot trial was conducted using chitin (CT), crawfish shell biochar (CSB), crawfish shell powder (CSP), and CT-CSB composite to compare their remediation efficiencies in As/Pb co-contaminated soil. Results demonstrated that addition of all amendments decreased Pb bioavailability, with the greatest effect observed for the CT-CSB treatment. Application of CSP and CSB increased the soil available As concentration, while significant decreases were observed in the CT and CT-CSB treatments. Meanwhile, CT addition was the most effective in enhancing the soil enzyme activities including acid phosphatase, α-glucosidase, N-acetyl-ß-glucosaminidase, and cellobiohydrolase, whereas CSB-containing treatments suppressed the activities of most enzymes. The amendments altered the bacterial abundance and composition in soil. For instance, compared to the control, all treatments increased Chitinophagaceae abundance by 2.6-4.7%. The relative abundance of Comamonadaceae decreased by 1.6% in the CSB treatment, while 2.1% increase of Comamonadaceae was noted in the CT-CSB treatment. Redundancy and correlation analyses (at the family level) indicated that the changes in bacterial community structure were linked to bulk density, water content, and As/Pb availability of soils. Partial least squares path modeling further indicated that soil chemical property (i.e., pH, dissolved organic carbon, and cation exchange capacity) was the strongest predictor of As/Pb availability in soils following amendment application. Overall, CT-CSB could be a potentially effective amendment for simultaneously immobilizing As and Pb and restoring soil ecological functions in contaminated arable soils.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Humanos , Arsénico/análisis , Plomo/análisis , Disponibilidad Biológica , Quitina , Rizosfera , Metales Pesados/análisis , Carbón Orgánico/química , Suelo/química , Bacterias , Contaminantes del Suelo/análisis , Cadmio/análisis
15.
J Environ Manage ; 338: 117757, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996567

RESUMEN

Nitrogen fractions in soil, like organic nitrogen, mineral nitrogen, and free amino acids, are sensitive pointers to the soil nitrogen pools involved in nutrient cycling. As a potential improvement measure, biochar might improve soil fertility and nutrient availability. However, few studies have focused on the long-term effects of biochar retention on the soil nitrogen supply capacity of bulk and rhizosphere soil in brown earth. Therefore, a six-year field experiment was conducted in 2013, concentrating on the impact of biochar retention on soil nitrogen fractions. Four biochar rates were tested: no biochar amendment (CK); 15.75 t ha-1 of biochar (BC1); 31.5 t ha-1 of biochar (BC2); 47.25 t ha-1 of biochar (BC3). Our results showed that the elevated application rates significantly enhanced soil organic matter (SOM), and total nitrogen (TN), and improved pH in both bulk and rhizosphere soils. Acid-hydrolyzable nitrogen (AHN) content in biochar treatments was higher than that of CK in bulk and rhizosphere soil. The content of non-hydrolyzable nitrogen (NHN) was increased in 47.25 t ha-1 of biochar retention. Ammonium nitrogen (AN) and amino sugar nitrogen (ASN) contents were higher in bulk soil than in rhizosphere soil. Neutral amino acid contents were the highest both in bulk and rhizosphere soil. Principal component analysis (PCA) showed that soil organic nitrogen was significantly influenced by BC3 treatment in bulk soil, and largely influenced by other treatments in rhizosphere soil. Partial least square path modeling (PLSPM) revealed that NH4+-N was mainly derived from amino acid nitrogen (AAN) and AN in bulk soil and AAN and ASN in rhizosphere soil. These results indicate that different biochar retention rates contributed to improve soil nutrients. Amino acid nitrogen was the prominent nitrogen source of NH4+-N in bulk and rhizosphere soils.


Asunto(s)
Rizosfera , Suelo , Suelo/química , Fertilizantes/análisis , Nitrógeno/análisis , Carbón Orgánico , Aminoácidos
16.
Plant Physiol ; 192(1): 205-221, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36756926

RESUMEN

Flowering time is one of the most important agronomic traits affecting the adaptation and yield of rice (Oryza sativa). Heading date 1 (Hd1) is a key factor in the photoperiodic control of flowering time. In this study, two basic helix-loop-helix (bHLH) transcription factors, Hd1 Binding Protein 1 (HBP1) and Partner of HBP1 (POH1) were identified as transcriptional regulators of Hd1. We generated knockout mutants of HBP1 and ectopically expressed transgenic lines of the two bHLH transcription factors and used these lines to investigate the roles of these two factors in regulating flowering time. HBP1 physically associated with POH1 forming homo- or heterodimers to perform their functions. Both HBP1 and POH1 bound directly to the cis-acting elements located in the promoter of Hd1 to activate its expression. CRISPR/Cas9-generated knockout mutations of HBP1, but not POH1 mutations, promoted earlier flowering time; conversely, HBP1 and POH1 overexpression delayed flowering time in rice under long-day and short-day conditions by activating the expression of Hd1 and suppressing the expression of Early heading date 1 (Ehd1), Heading date 3a (Hd3a), and Rice Flowering locus T 1 (RFT1), thus controlling flowering time in rice. Our findings revealed a mechanism for flowering time control through transcriptional regulation of Hd1 and laid theoretical and practical foundations for improving the growth period, adaptation, and yield of rice.


Asunto(s)
Flores , Oryza , Oryza/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fotoperiodo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
World J Microbiol Biotechnol ; 39(3): 87, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725731

RESUMEN

Low phosphorus utilization and phosphorus fertilizer pollution are serious issues primarily affecting soil health. To investigate the effects of biochar on the growth, phosphorus solubilization, and metabolites of phosphorus-solubilizing bacteria (PSB), rice husk biochar (RH) and rice straw biochar (RS) were incubated with Bacillus megatherium (BM1) and Bacillus mucilaginosus (BM2), respectively. The highest phosphorus solubilization was observed in BM2 following the addition of RS. The dissolved amount of phosphorus was 244.99 mg/L, which was 43.86% higher than that of the control group. Hence, biochar can improve the phosphorus solubilization capacity of PSB by affecting the organic acid and polysaccharide contents, and phosphatase activity secreted by the PSB, as the porous structure and surface characteristics of biochar ensured the adsorption of PSB. This study can help improve the functional activity of PSB and provide basis for improving the utilization of soil phosphorus, which in turn, aid in the development of biochar-based microbial fertilizers.


Asunto(s)
Bacillus megaterium , Fosfatos , Fosfatos/metabolismo , Fósforo/metabolismo , Bacillus megaterium/metabolismo , Suelo/química , Fertilizantes/análisis
18.
Plant Biotechnol J ; 21(1): 202-218, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36196761

RESUMEN

Temperate japonica/geng (GJ) rice yield has significantly improved due to intensive breeding efforts, dramatically enhancing global food security. However, little is known about the underlying genomic structural variations (SVs) responsible for this improvement. We compared 58 long-read assemblies comprising cultivated and wild rice species in the present study, revealing 156 319 SVs. The phylogenomic analysis based on the SV dataset detected the putatively selected region of GJ sub-populations. A significant portion of the detected SVs overlapped with genic regions were found to influence the expression of involved genes inside GJ assemblies. Integrating the SVs and causal genetic variants underlying agronomic traits into the analysis enables the precise identification of breeding signatures resulting from complex breeding histories aimed at stress tolerance, yield potential and quality improvement. Further, the results demonstrated genomic and genetic evidence that the SV in the promoter of LTG1 is accounting for chilling sensitivity, and the increased copy numbers of GNP1 were associated with positive effects on grain number. In summary, the current study provides genomic resources for retracing the properties of SVs-shaped agronomic traits during previous breeding procedures, which will assist future genetic, genomic and breeding research on rice.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Genómica/métodos , Fenotipo , Grano Comestible
19.
Sci Total Environ ; 855: 158818, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36122710

RESUMEN

Biochar, an environmentally friendly soil amendment, is created via a series of thermochemical processes from carbon-rich organic matter. The biochar addition enhances soil characteristics dramatically and increases crop growth and yields. However, the mechanism by which biochar improves plant lodging resistance, which is heavily influenced by cell walls, remains unknown. Three rice cultivars were grown in an experimental field provided with four concentrations of biochar (10, 20, 30, 40 t ha-1). The biochar application enhanced biomass production and lodging resistance in all three cultivars by up to 29 % and 22 %, respectively, with the largest improvement at a biochar application rate of 30 t ha-1. Biochar application significantly enhanced stem cell wall-related characteristics, with an increase in stem breaking force, wall thickness, and plumpness of 52 %, 32 %, and 21 %, respectively, which are suggested to be major contributors to enhanced lodging resistance and biomass yield. Notably, cell wall composition and silica content analysis indicated a significant increase in hemicellulose, lignin, and silica content in biochar-treated samples up to 36 %, 13 %, and 58 %, respectively, when compared to plants not treated with biochar. Integrative analysis suggested that silica, hemicellulose, and lignin were co-deposited in cell walls, which influenced biomass production and lodging resistance. Furthermore, the transcriptome profile revealed that biochar application increased the expression of genes involved in biomass production, cell wall formation, and silica deposition. This study suggests that biochar application might improve both biomass production and lodging resistance by promoting the co-deposition of silicon with hemicellulose and lignin in cell walls.


Asunto(s)
Lignina , Oryza , Lignina/metabolismo , Biomasa , Dióxido de Silicio , Carbón Orgánico/química , Suelo/química
20.
Environ Pollut ; 317: 120847, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36496064

RESUMEN

The combined effects of graphene and biochar for enhanced adsorption of organic pollutants have not been demonstrated yet. Therefore, the mechanisms of graphene-modified biochar synthesis and its application to adsorption of contaminants remain unclear. In this study, the effect of flake-size graphene on biochar modification and its bisphenol S (BPS) adsorption performance was explored for the first time. Three sizes of graphene oxide were used as the precursor to prepare graphene/biochar composites using pyrolysis. It was found that the graphene with a small flake size was interspersed in the macropores of biochar, while the biochar was completely or mostly wrapped by the large-sized graphene sheet, which effectively prevented the agglomeration and pore blockage of biochar. Large-flake graphene oxide modified biochar (LGB) showed the highest adsorption capacity towards BPS, exhibiting 2.8 times higher adsorption than pristine biochar. Density functional theory (DFT) calculation suggested that the maximum diffusion barrier of O atoms in graphene coated cellulose (most frequently used biochar representative) could be reduced significantly (∼46%) at pyrolysis temperature of 873 K. Taking the advantage of small amount of graphene and enhanced adsorption performance, LGB could be a promising adsorbent for the removal of certain organic pollutants from wastewater and is conducive for the development of high-valued biochar modification.


Asunto(s)
Contaminantes Ambientales , Grafito , Contaminantes Químicos del Agua , Adsorción , Agua , Carbón Orgánico , Contaminantes Químicos del Agua/análisis , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA