Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
2.
Sci Rep ; 14(1): 6423, 2024 03 18.
Article En | MEDLINE | ID: mdl-38494504

Hepatic ischemia-reperfusion injury (HIRI) elicits an immune-inflammatory response that may result in hepatocyte necrosis and apoptosis, ultimately culminating in postoperative hepatic dysfunction and hepatic failure. The precise mechanisms governing the pathophysiology of HIRI remain incompletely understood, necessitating further investigation into key molecules and pathways implicated in disease progression to guide drug discovery and potential therapeutic interventions. Gene microarray data was downloaded from the GEO expression profile database. Integrated bioinformatic analyses were performed to identify HIRI signature genes, which were subsequently validated for expression levels and diagnostic efficacy. Finally, the gene expression was verified in an experimental HIRI model and the effect of anti-IL17A antibody intervention in three time points (including pre-ischemic, post-ischemic, and at 1 h of reperfusion) on HIRI and the expression of these genes was investigated. Bioinformatic analyses of the screened characterized genes revealed that inflammation, immune response, and cell death modulation were significantly associated with HIRI pathophysiology. CCL2, BTG2, GADD45A, FOS, CXCL10, TNFRSF12A, and IL-17 pathway were identified as key components involved in the HIRI. Serum and liver IL-17A expression were significantly upregulated during the initial phase of HIRI. Pretreatment with anti-IL-17A antibody effectively alleviated the damage of liver tissue, suppressed inflammatory factors, and serum transaminase levels, and downregulated the mRNA expression of CCL2, GADD45A, FOS, CXCL10, and TNFRSF12A. Injection of anti-IL17A antibody after ischemia and at 1 h of reperfusion failed to demonstrate anti-inflammatory and attenuating HIRI benefits relative to earlier intervention. Our study reveals that the IL-17 pathway and related genes may be involved in the proinflammatory mechanism of HIRI, which may provide a new perspective and theoretical basis for the prevention and treatment of HIRI.


Immediate-Early Proteins , Liver Diseases , Reperfusion Injury , Humans , Interleukin-17/metabolism , Liver/metabolism , Reperfusion Injury/metabolism , Liver Diseases/metabolism , Ischemia/metabolism , Inflammation/genetics , Inflammation/metabolism , Immediate-Early Proteins/metabolism , Tumor Suppressor Proteins/metabolism
3.
Cell Discov ; 10(1): 32, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38503731

Glioblastoma is one of the most lethal malignant cancers, displaying striking intratumor heterogeneity, with glioblastoma stem cells (GSCs) contributing to tumorigenesis and therapeutic resistance. Pharmacologic modulators of ubiquitin ligases and deubiquitinases are under development for cancer and other diseases. Here, we performed parallel in vitro and in vivo CRISPR/Cas9 knockout screens targeting human ubiquitin E3 ligases and deubiquitinases, revealing the E3 ligase RBBP6 as an essential factor for GSC maintenance. Targeting RBBP6 inhibited GSC proliferation and tumor initiation. Mechanistically, RBBP6 mediated K63-linked ubiquitination of Cleavage and Polyadenylation Specific Factor 3 (CPSF3), which stabilized CPSF3 to regulate alternative polyadenylation events. RBBP6 depletion induced shortening of the 3'UTRs of MYC competing-endogenous RNAs to release miR-590-3p from shortened UTRs, thereby decreasing MYC expression. Targeting CPSF3 with a small molecular inhibitor (JTE-607) reduces GSC viability and inhibits in vivo tumor growth. Collectively, RBBP6 maintains high MYC expression in GSCs through regulation of CPSF3-dependent alternative polyadenylation, providing a potential therapeutic paradigm for glioblastoma.

4.
Gen Comp Endocrinol ; 352: 114501, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38527592

Reproductive history is one of the strongest risk factors for breast cancer in women. Pregnancy can promote short-term breast cancer risk, but also reduce a woman's lifetime risk of breast cancer. Changes in hormone levels before and after pregnancy are one of the key factors in breast cancer risk. This article summarizes the changes in hormone levels before and after pregnancy, and the roles of hormones in mammary gland development and breast cancer progression. Other factors, such as changes in breast morphology and mammary gland differentiation, changes in the proportion of mammary stem cells (MaSCs), changes in the immune and inflammatory environment, and changes in lactation before and after pregnancy, also play key roles in the occurrence and development of breast cancer. This review discusses the dual effects and the potential mechanisms of pregnancy on breast cancer risk from the above aspects, which is helpful to understand the complexity of female breast cancer occurrence.


Breast Neoplasms , Female , Humans , Pregnancy , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Cell Differentiation , Hormones , Lactation , Mammary Glands, Animal , Risk Factors
5.
Immunology ; 172(1): 127-143, 2024 May.
Article En | MEDLINE | ID: mdl-38332630

Myeloid-derived suppressor cells (MDSCs) increase in number and gain immunosuppressive functions in tumours and many other pathological conditions. MDSCs are characterized by their strong T-cell immunosuppressive capacity. The effects that MDSCs may have on B cells, especially within the tumour microenvironment, are less well understood. Here, we report that either monocytic MDSCs or polymorphonuclear MDSCs can promote increases in interleukin (IL)-10-expressing CD19hiFcγRIIbhi regulatory B cells in vitro and in vivo. Splenic transitional-1, -2, and -3 cells and marginal zone B cells, but not follicular B cells, differentiate into IL-10-expressing CD19hiFcγRIIbhi regulatory B cells. The adoptive transfer of CD19hiFcγRIIbhi regulatory B cells via tail vein injection can promote subcutaneous 3LL tumour growth in mice. The expression of programmed death-ligand 1 on MDSCs was found to be strongly associated with CD19hiFcγRIIbhi regulatory B cell population expansion. Furthermore, the frequency of circulating CD19+FcγRIIhi regulatory B cells was significantly increased in advanced-stage lung cancer patients. Our results unveil a critical role of MDSCs in regulatory B-cell differentiation and population expansion in lung cancer patients.


B-Lymphocytes, Regulatory , Lung Neoplasms , Myeloid-Derived Suppressor Cells , Mice , Humans , Animals , B-Lymphocytes, Regulatory/metabolism , Myeloid-Derived Suppressor Cells/metabolism , B7-H1 Antigen/metabolism , Cell Differentiation , Mice, Inbred C57BL , Tumor Microenvironment
6.
Nat Commun ; 15(1): 1729, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38409266

Alternative polyadenylation plays an important role in cancer initiation and progression; however, current transcriptome-wide association studies mostly ignore alternative polyadenylation when identifying putative cancer susceptibility genes. Here, we perform a pan-cancer 3' untranslated region alternative polyadenylation transcriptome-wide association analysis by integrating 55 well-powered (n > 50,000) genome-wide association studies datasets across 22 major cancer types with alternative polyadenylation quantification from 23,955 RNA sequencing samples across 7,574 individuals. We find that genetic variants associated with alternative polyadenylation are co-localized with 28.57% of cancer loci and contribute a significant portion of cancer heritability. We further identify 642 significant cancer susceptibility genes predicted to modulate cancer risk via alternative polyadenylation, 62.46% of which have been overlooked by traditional expression- and splicing- studies. As proof of principle validation, we show that alternative alleles facilitate 3' untranslated region lengthening of CRLS1 gene leading to increased protein abundance and promoted proliferation of breast cancer cells. Together, our study highlights the significant role of alternative polyadenylation in discovering new cancer susceptibility genes and provides a strong foundational framework for enhancing our understanding of the etiology underlying human cancers.


Neoplasms , Transcriptome , Humans , Polyadenylation/genetics , Genome-Wide Association Study , 3' Untranslated Regions/genetics , Gene Expression Profiling , Neoplasms/genetics
7.
Front Neurol ; 15: 1343726, 2024.
Article En | MEDLINE | ID: mdl-38379709

Background: Delirium seriously affects the prognosis of patients and greatly reduces the ability to work and live. Peripheral inflammatory events may contribute to the development of delirium, the mechanism of which is still unclear. There is a lack of effective diagnostic and treatments for delirium in clinical practice. The study aims to investigate alterations in peripheral immune cell subsets under inflammatory stress and to explore causal associations with delirium. Methods: Single-cell transcriptional sequencing data of human peripheral blood mononuclear cells (PBMC) before and after lipopolysaccharide (LPS) intervention were processed by the Seurat package in R software. PBMC subsets and cellular markers were defined after downscaling and clustering by the Harmony algorithm to identify characteristic subsets in the context of inflammatory stress. Subsequently, a two-sample Mendelian randomization (MR) study was used to explore the causal associations of these inflammation-related PBMC subsets and their molecular phenotypes with delirium. Based on publicly available genetic data, the study incorporated 70 PBMC-associated immune traits, including 8 types of circulating immune cells, 33 B cell subsets and molecular phenotypes, 13 T cell subsets, and 16 B cell-associated cytokines. The results were also validated for robustness, heterogeneity, and horizontal pleiotropy. Results: Under LPS-induced inflammatory stress, B cells, T cells, monocytes, and dendritic cells in human PBMC showed significant activation and quantitative changes. Of these, only lymphocyte and B cell counts were causally associated with delirium risk. This risk link is also seen in the TNF pathway. Further studies of B cells and their subsets revealed that this association may be related to unswitched memory B cells and CD27 expressed on memory B cells. Annotation of the screened SNPs revealed significant polymorphisms in CD27 and CD40 annotated by rs25680 and rs9883798, respectively. The functions of the key annotated genes may be related to the regulation of immune responses, cell differentiation, proliferation, and intercellular interactions. Conclusion: The present study revealed the potential possibility that B cell, memory B cell subset, and TNF-related molecules may be involved in the development of delirium due to peripheral inflammation, which can provide clues for further investigation of delirium prevention and treatment strategies.

8.
J Cell Biochem ; 125(2): e30519, 2024 Feb.
Article En | MEDLINE | ID: mdl-38224137

Acute lung injury (ALI) is a severe condition that can progress to acute respiratory distress syndrome (ARDS), with a high mortality rate. Currently, no specific and compelling drug treatment plan exists. Mesenchymal stem cells (MSCs) have shown promising results in preclinical and clinical studies as a potential treatment for ALI and other lung-related conditions due to their immunomodulatory properties and ability to regenerate various cell types. The present study focuses on analyzing the role of umbilical cord MSC (UC-MSC))-derived exosomes in reducing lipopolysaccharide-induced ALI and investigating the mechanism involved. The study demonstrates that UC-MSC-derived exosomes effectively improved the metabolic function of alveolar macrophages and promoted their shift to an anti-inflammatory phenotype, leading to a reduction in ALI. The findings also suggest that creating three-dimensional microspheres from the MSCs first can enhance the effectiveness of the exosomes. Further research is needed to fully understand the mechanism of action and optimize the therapeutic potential of MSCs and their secretome in ALI and other lung-related conditions.


Acute Lung Injury , Exosomes , Mesenchymal Stem Cell Transplantation , Humans , Lipopolysaccharides/adverse effects , Exosomes/metabolism , Macrophages, Alveolar/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Umbilical Cord/metabolism
9.
Melanoma Res ; 34(1): 22-30, 2024 02 01.
Article En | MEDLINE | ID: mdl-37939058

One of the most aggressive tumors arising from the skin, mucosa, and uvea is malignant melanoma, which easily metastasizes. Bone tissue is one of the most typical locations for distant metastasis, and around 5%-20% of patients eventually acquired skeletal metastases. For decades, the incidence of bone metastases was higher, bringing greater burden on the family, society, and healthcare system owing to the progress of targeted therapy and immunotherapy, which prolonging the survival time substantially. Moreover, bone metastases result in skeletal-related events, which influence the quality of life, obviously. Appropriate intervention is therefore crucial. To obtain the optimum cost-effectiveness, existing treatment algorithm must be integrated, which is still controversial. We have aimed to throw light on current views concerning the formation, biological and clinical features, and treatment protocol of melanoma bone metastases to guide the decision-making process.


Bone Neoplasms , Melanoma , Skin Neoplasms , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Quality of Life , Bone Neoplasms/secondary , Skin/pathology
10.
J Agric Food Chem ; 71(51): 20826-20837, 2023 Dec 27.
Article En | MEDLINE | ID: mdl-38096130

Extracellular vesicles (EVs) are membrane-bound vesicles released by living cells. As vesicles for macromolecule transmission and intercellular communication, EVs are broadly applied in clinical diagnosis and biomimetic drug delivery. Milk-derived EVs (MEVs) are an ideal choice for scale-up applications because they exhibit biocompatibility and are easily obtained. Herein, intact glycopeptides in MEVs from bovines, caprines, porcines, and humans were comprehensively analyzed by high-resolution mass spectrometry using the sceHCD, followed by the EThcD fragment method, revealing that protein glycosylation is abundant and heterogeneous in MEVs. The dominant glycans in all MEVs were sialic acid-modified N-linked glycans (over 50%). A couple of species-specific glycans were also characterized, which are potentially markers of different original EVs. Interestingly, the Neu5Gc-modified glycans were enriched in caprine milk-derived EVs (58 ± 2%). Heterogeneity of MEV protein glycosylation was observed for glycosites and glycan compositions, and the structural heterogeneity of protein glycosylation was also identified and validated. The glycosignatures of EV biogenesis- and endocytosis-related proteins (CD63 and MFGE8) were significantly different in these four species. Overall, we comprehensively characterized the glycosylation signature of MEVs from four different species and provided insight into protein glycosylation related to drug target delivery.


Extracellular Vesicles , Milk, Human , Humans , Animals , Cattle , Swine , Glycosylation , Milk, Human/metabolism , Goats/metabolism , Extracellular Vesicles/metabolism , Polysaccharides/metabolism
11.
Front Aging Neurosci ; 15: 1305790, 2023.
Article En | MEDLINE | ID: mdl-38094503

Cognitive impairments, such as learning and memory deficits, may occur in susceptible populations including the elderly and patients who are chronically ill or have experienced stressful events, including surgery, infection, and trauma. Accumulating lines of evidence suggested that peripheral inflammation featured by the recruitment of peripheral immune cells and the release of pro-inflammatory cytokines may be activated during aging and these conditions, participating in peripheral immune system-brain communication. Lots of progress has been achieved in deciphering the core bridging mechanism connecting peripheral inflammation and cognitive impairments, which may be helpful in developing early diagnosis, prognosis evaluation, and prevention methods based on peripheral blood circulation system sampling and intervention. In this review, we summarized the evolving evidence on the prevalence of peripheral inflammation-associated neurocognitive impairments and discussed the research advances in the underlying mechanisms. We also highlighted the prevention and treatment strategies against peripheral inflammation-associated cognitive dysfunction.

12.
Nat Commun ; 14(1): 8314, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38097605

The role of pyrotinib in the treatment of HER2-positive metastatic breast cancer (MBC) has been well-established. This multicenter, single-arm phase II trial (NCT03876587) aimed to assess the benefit of pyrotinib plus docetaxel as a first-line treatment for HER2-positive MBC. Women with HER2-positive MBC who had not undergone HER2 blockade or chemotherapy for metastatic disease were enrolled in the study and received daily oral pyrotinib 400 mg plus intravenous docetaxel 75 mg/m2 every 3 weeks. The primary endpoint was the objective response rate (ORR), secondary endpoints included progression-free survival (PFS), duration of response (DoR), clinical benefit rate (CBR), overall survival (OS) and safety. From June 2019 to June 2021, 79 patients were enrolled. The confirmed ORR was 79.7% (95% confidence interval [CI], 70.8-88.6), and the CBR was 87.3% (95%CI, 80.0-94.6) in the intention-to-treat population. The pre-specified primary endpoint was met. The median DoR was 15.9 months (interquartile range, 8.3-19.5); the median PFS was 16.0 months (95% CI, 11.2-20.8), and the median OS was not reached. The most common grade ≥3 treatment-related adverse events observed were leukopenia (29.1%), neutropenia (27.8%), and diarrhea (21.5%). This study demonstrates that pyrotinib plus docetaxel show an acceptable safety profile and promising antitumor activity as a first-line treatment option for patients with HER2-positive MBC.


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Docetaxel/therapeutic use , Trastuzumab/therapeutic use , Receptor, ErbB-2/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects
13.
Nat Commun ; 14(1): 8347, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38102153

Genome-wide association studies (GWASs) have identified thousands of non-coding variants that are associated with human complex traits and diseases. The analysis of such GWAS variants in different contexts and physiological states is essential for deciphering the regulatory mechanisms underlying human disease. Alternative polyadenylation (APA) is a key post-transcriptional modification for most human genes that substantially impacts upon cell behavior. Here, we mapped 9,493 3'-untranslated region APA quantitative trait loci in 18 human immune baseline cell types and 8 stimulation conditions (immune 3'aQTLs). Through the comparison between baseline and stimulation data, we observed the high responsiveness of 3'aQTLs to immune stimulation (response 3'aQTLs). Co-localization and mendelian randomization analyses of immune 3'aQTLs identified 678 genes where 3'aQTL are associated with variation in complex traits, 27.3% of which were derived from response 3'aQTLs. Overall, these analyses reveal the role of immune 3'aQTLs in the determination of complex traits, providing new insights into the regulatory mechanisms underlying disease etiologies.


Polyadenylation , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Polyadenylation/genetics , 3' Untranslated Regions/genetics , Genome-Wide Association Study , Multifactorial Inheritance
14.
Environ Sci Pollut Res Int ; 30(59): 124416-124424, 2023 Dec.
Article En | MEDLINE | ID: mdl-37996575

Chemical composition of the essential oil from Kochia scoparia (L.) Schrad. (syn. Bassia scoparia (L.) A. J. Scott) was analyzed in quality and quantity by GC-MS and GC-FID. Repellent activities of the essential oil from K. scoparia (KSEO) were evaluated against two common species of stored-product insects Tribolium castaneum Herbst and Liposcelis bostrychophila Badonnel. Results indicated that KSEO mainly consisted of eugenol, ß-caryophyllene, and α-humulene, accounting for 75.6%, 8.2%, and 1.4% of the total oil, respectively. KSEO and the three major components were repellent to T. castaneum and L. bostrychophila adults. Notably, KSEO exerted significant effects, comparable to the positive control DEET at 2 and 4 h post-exposure. Eugenol at 63.17-2.53 nL/cm2 exhibited high percentage repellency ranging from 96 to 70% against L. bostrychophila during 4-h exposure. To gain further insights into the repellent activity, molecular docking simulation was performed with eugenol as the ligand and an odorant binding protein TcOBPC12 (gene: TcOBP10B) from the model insect T. castaneum as the receptor. Docking calculation results revealed that TcOBPC12 had binding affinity to eugenol (△G = - 4.52 kcal/mol) along with a hydrogen bond of 0.18 nm (1.8 Å) long forming between them, which could be an important target protein associated with identifying volatile repellent molecules. This work highlights the promising potential of KSEO as a botanical repellent for controlling stored-product insects.


Bassia scoparia , Insect Repellents , Insecticides , Oils, Volatile , Tribolium , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Eugenol/pharmacology , Molecular Docking Simulation , Insecta , Insect Repellents/pharmacology , Insect Repellents/chemistry , Insecticides/chemistry
15.
Front Microbiol ; 14: 1243102, 2023.
Article En | MEDLINE | ID: mdl-37840733

Introduction: Acute lung injury (ALI) is a severe respiratory tract disorder facilitated by dysregulated inflammation, oxidative stress and intestinal ecosystem. Fecal microbiota transplantation (FMT) is a rapid method for gut microbiota (GM) reconstruction. Furthermore, our previous studies have confirmed that human umbilical cord mesenchymal stromal cells (HUC-MSCs) can alleviate ALI by improving GM composition. Therefore, we aimed to explore the efficacy and mechanism of FMT from HUC-MSCs-treated mice on ALI. Methods: In brief, fresh feces from HUC-MSCs-treated mice were collected for FMT, and the mice were randomly assigned into NC, FMT, LPS, ABX-LPS, and ABX-LPS-FMT groups (n = 12/group). Subsequently, the mice were administrated with antibiotic mixtures to deplete GM, and given lipopolysaccharide and FMT to induce ALI and rebuild GM. Next, the therapeutic effect was evaluated by bronchoalveolar lavage fluid (BALF) and histopathology. Immune cells in peripheral blood and apoptosis in lung tissues were measured. Furthermore, oxidative stress- and inflammation-related parameter levels were tested in BALF, serum, lung and ileal tissues. The expressions of apoptosis-associated, TLR4/NF-κB pathway-associated, Nrf2/HO-1 pathway related and tightly linked proteins in the lung and ileal tissues were assessed. Moreover, 16S rRNA was conducted to assess GM composition and distribution. Results: Our results revealed that FMT obviously improved the pathological damage of lung and ileum, recovered the immune system of peripheral blood, decreased the cell apoptosis of lung, and inhibited inflammation and oxidative stress in BALF, serum, lung and ileum tissues. Moreover, FMT also elevated ZO-1, claudin-1, and occludin protein expressions, activating the Nrf2/HO-1 pathway but hindering the TLR4/NF-κB pathway. Of note, the relative abundances of Bacteroides, Christensenella, Coprococcus, and Roseburia were decreased, while the relative abundances of Xenorhabdus, Sutterella, and Acinetobacter were increased in the ABX-LPS-FMT group. Conclusion: FMT from HUC-MSCs-treated mice may alleviate ALI by inhibiting inflammation and reconstructing GM, additionally, we also found that the TLR4/NF-κB and Nrf2/HO-1 pathways may involve in the improvement of FMT on ALI, which offers novel insights for the functions and mechanisms of FMT from HUC-MSCs-treated mice on ALI.

16.
World J Stem Cells ; 15(9): 908-930, 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37900940

BACKGROUND: Acute lung injury (ALI) and its final severe stage, acute respiratory distress syndrome, are associated with high morbidity and mortality rates in patients due to the lack of effective specific treatments. Gut microbiota homeostasis, including that in ALI, is important for human health. Evidence suggests that the gut microbiota improves lung injury through the lung-gut axis. Human umbilical cord mesenchymal cells (HUC-MSCs) have attractive prospects for ALI treatment. This study hypothesized that HUC-MSCs improve ALI via the lung-gut microflora. AIM: To explore the effects of HUC-MSCs on lipopolysaccharide (LPS)-induced ALI in mice and the involvement of the lung-gut axis in this process. METHODS: C57BL/6 mice were randomly divided into four groups (18 rats per group): Sham, sham + HUC-MSCs, LPS, and LPS + HUC-MSCs. ALI was induced in mice by intraperitoneal injections of LPS (10 mg/kg). After 6 h, mice were intervened with 0.5 mL phosphate buffered saline (PBS) containing 1 × 106 HUC-MSCs by intraperitoneal injections. For the negative control, 100 mL 0.9% NaCl and 0.5 mL PBS were used. Bronchoalveolar lavage fluid (BALF) was obtained from anesthetized mice, and their blood, lungs, ileum, and feces were obtained by an aseptic technique following CO2 euthanasia. Wright's staining, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, Evans blue dye leakage assay, immunohistochemistry, fluorescence in situ hybridization, western blot, 16S rDNA sequencing, and non-targeted metabolomics were used to observe the effect of HUC-MSCs on ALI mice, and the involvement of the lung-gut axis in this process was explored. One-way analysis of variance with post-hoc Tukey's test, independent-sample Student's t-test, Wilcoxon rank-sum test, and Pearson correlation analysis were used for statistical analyses. RESULTS: HUC-MSCs were observed to improve pulmonary edema and lung and ileal injury, and decrease mononuclear cell and neutrophil counts, protein concentrations in BALF and inflammatory cytokine levels in the serum, lung, and ileum of ALI mice. Especially, HUC-MSCs decreased Evans blue concentration and Toll-like receptor 4, myeloid differentiation factor 88, p-nuclear factor kappa-B (NF-κB)/NF-κB, and p-inhibitor α of NF-κB (p-IκBα)/IκBα expression levels in the lung, and raised the pulmonary vascular endothelial-cadherin, zonula occludens-1 (ZO-1), and occludin levels and ileal ZO-1, claudin-1, and occludin expression levels. HUC-MSCs improved gut and BALF microbial homeostases. The number of pathogenic bacteria decreased in the BALF of ALI mice treated with HUC-MSCs. Concurrently, the abundances of Oscillospira and Coprococcus in the feces of HUS-MSC-treated ALI mice were significantly increased. In addition, Lactobacillus, Bacteroides, and unidentified_Rikenellaceae genera appeared in both feces and BALF. Moreover, this study performed metabolomic analysis on the lung tissue and identified five upregulated metabolites and 11 downregulated metabolites in the LPS + MSC group compared to the LPS group, which were related to the purine metabolism and the taste transduction signaling pathways. Therefore, an intrinsic link between lung metabolite levels and BALF flora homeostasis was established. CONCLUSION: This study suggests that HUM-MSCs attenuate ALI by redefining the gut and lung microbiota.

17.
Clin Lab ; 69(10)2023 Oct 01.
Article En | MEDLINE | ID: mdl-37844050

BACKGROUND: Staphylococcus aureus is the most common pathogen in suppurative infection, which can cause local suppurative infection, pneumonia, etc. A case of double renal calculi complicated with chronic renal insufficiency and mucinous Staphylococcus aureus infection was analyzed and discussed. METHODS: Bacterial culture, identification, and next-generation sequencing. RESULTS: The mucous colony was identified as Staphylococcus aureus, and the condition improved after symptomatic treatment. CONCLUSIONS: Mucinous Staphylococcus is a rare clinical microorganism, which needs to be verified by experiments to avoid false negative results. Genetic sequencing is used to identify strains if necessary.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Microbial Sensitivity Tests , Methicillin-Resistant Staphylococcus aureus/genetics
18.
Front Vet Sci ; 10: 1248584, 2023.
Article En | MEDLINE | ID: mdl-37720478

The study explored the biofilm (BF) formation capacity, BF-related gene profiles, and the trends in antimicrobial resistance (AMR) of Salmonella pullorum (SP) strains over several years. A total of 627 SP strains were isolated from 4,540 samples collected from chicken farms in Guangxi, China during 2018-2022. The BF-forming capacity of these isolates was assessed using crystal violet staining, and the presence of eight BF-related genes (csgA, csgB, csgD, ompR, bapA, pfs, luxS, and rpoS) in BF formation-positive strains was determined through Polymerase Chain Reaction (PCR) analysis. Antimicrobial susceptibility test was conducted to investigate the AMR of the isolates. Minimum Inhibitory Concentration (MIC) and Minimal Biofilm Eradication Concentration (MBEC) of nine SP-BF strains were determined using the broth microdilution method to assess the impact of BF formation on AMR. Additionally, the Optimal Biofilm Formation Conditions (OBFC) were investigated. The results indicated that 36.8% (231/627) of the strains exhibited a positive BF-formation capacity. Among these, 24.7% (57/231) were strong BF producers, 23.4% (54/231) were moderate BF producers, and 51.9% (120/231) were weak BF producers. Analysis of the eight BF-related genes in SP-BF strains revealed that over 90% of them were positive for all the genes. Antimicrobial susceptibility test conducted on the isolates showed that 100% (231/231) of them exhibited resistance to at least one antibiotic, with 98.3% (227/231) demonstrating multidrug resistance (MDR). Both MIC and MBEC measurements indicated varying degrees of increased AMR after BF formation of the bacteria. The optimal conditions for BF formation were observed at 37°C after 48 h of incubation, with an initial bacterial concentration of 1.2 × 106 CFU/mL. Notably, NaCl had a significant inhibitory effect on BF formation, while glucose and Trypticase Soy Broth (TSB) positively influenced BF formation. The results of the study emphasized the need for effective preventive and control strategies to address the challenges posed by the BF formation and MDR of SP in the field.

19.
J Cell Biochem ; 124(9): 1241-1248, 2023 09.
Article En | MEDLINE | ID: mdl-37668145

Acute lung injury (ALI) is a severe medical condition that causes inflammation and fluid buildup in the lung, resulting in respiratory distress. Moreover, ALI often occurs as a complication of other medical conditions or injuries, including the coronavirus disease of 2019. Mesenchymal stem/stromal cells (MSCs) are being studied extensively for their therapeutic potential in various diseases, including ALI. The results of recent studies suggest that the beneficial effects of MSCs may not be primarily due to the replacement of damaged cells but rather the release of extracellular vesicles (EVs) and other soluble factors through a paracrine mechanism. Furthermore, EVs derived from MSCs preserve the therapeutic action of the parent MSCs and this approach avoids the safety issues associated with live cell therapy. Thus, MSC-based cell-free therapy may be the focus of future clinical treatments.


Acute Lung Injury , Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Acute Lung Injury/therapy , Cell- and Tissue-Based Therapy , Inflammation
...