Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 132: 1051-1056, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30922913

RESUMEN

The involvement of different parameters on Gibberella zeae lipase (GZEL) membrane binding were characterized by using monomolecular film technology and circular dichroism spectroscopy. Among four kinds of phospholipid monolayers, 1,2­dimyristoyl­sn­glycero­3­phosphoethanolamine have the highest maximum insertion pressure (MIP) value. Comparing the GZEL adsorption to phosphatidylcholine monolayers with different acyl chains in sn-1 and sn-2 positions, the higher MIP values were found for 1,2­dilauroyl­sn­glycero­3­phosphocholine. Significantly improvement between 1,2­dioleoyl­sn­glycero­3­phosphocholine and 1,2­distearoyl­sn­glycero­3­phosphocholine suggested that the presence of fatty acid unsaturation may affect protein adsorption by changing the chemical structure in each phospholipid. The MIP value was shown higher (48.6 mN m-1) at pH 5 and pH 6 (47.5 ±â€¯1.9 mN m-1) but decreased significantly (34.2 mN m-1) at pH 9. This may indicate that the proportion of helices in the protein decreases with the alteration of the catalytic center, thus affecting the binding of the protein to its substrate. The MIP values obviously decreased with increasing salt ion concentration, suggesting that excessive salt ion concentration may destabilize the secondary and tertiary structures of the protein, thereby affecting the characteristics of its adsorption at the interfaces. Present studies improve our understanding on the protein-membrane interaction of this enzyme.


Asunto(s)
Gibberella/enzimología , Lipasa/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Conformación Molecular , Unión Proteica/efectos de los fármacos , Cloruro de Sodio/farmacología
2.
Int J Mol Sci ; 19(8)2018 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-30126228

RESUMEN

The effects of N-terminal (1⁻34 amino acids) and C-terminal (434⁻487 amino acids) amino acid sequences on the interfacial binding properties of Phospholipase D from Vibrio parahaemolyticus (VpPLD) were characterized by using monomolecular film technology. Online tools allowed the prediction of the secondary structure of the target N- and C-terminal VpPLD sequences. Various truncated forms of VpPLD with different N- or C-terminal deletions were designed, based on their secondary structure, and their membrane binding properties were examined. The analysis of the maximum insertion pressure (MIP) and synergy factor "a" indicated that the loop structure (1⁻25 amino acids) in the N-terminal segment of VpPLD had a positive effect on the binding of VpPLD to phospholipid monolayers, especially to 1,2-dimyristoyl-sn-glycero-3-phosphoserine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The deletion affecting the N-terminus loop structure caused a significant decrease of the MIP and synergy factor a of the protein for these phospholipid monolayers. Conversely, the deletion of the helix structure (26⁻34 amino acids) basically had no influence on the binding of VpPLD to phospholipid monolayers. The deletion of the C-terminal amino acids 434⁻487 did not significantly change the binding selectivity of VpPLD for the various phospholipid monolayer tested here. However, a significant increase of the MIP value for all the phospholipid monolayers strongly indicated that the three-strand segment (434⁻469 amino acids) had a great negative effect on the interfacial binding to these phospholipid monolayers. The deletion of this peptide caused a significantly greater insertion of the protein into the phospholipid monolayers examined. The present study provides detailed information on the effect of the N- and C-terminal segments of VpPLD on the interfacial binding properties of the enzyme and improves our understanding of the interactions between this enzyme and cell membranes.


Asunto(s)
Fosfolipasa D/metabolismo , Fosfolípidos/metabolismo , Vibrio parahaemolyticus/enzimología , Secuencia de Aminoácidos , Humanos , Fosfolipasa D/química , Unión Proteica , Estructura Secundaria de Proteína , Vibriosis/microbiología , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1862(12): 2623-2631, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30025859

RESUMEN

BACKGROUND: The crystal structure of lipase from Gibberella zeae (GZEL) indicates that its C-terminal extension is composed of a loop and a α-helix. This structure is unique, possibly providing novel evidence on lipase mechanisms. METHODS: Two C-terminally truncated mutants (GZEL-Δ(α-helix) and GZEL-Δ(α-helix+loop)) were constructed. The role of these secondary structure segments on enzymatic activities and interfacial binding properties of GZEL was investigated by using conventional pH-stat method and monomolecular film techniques. In addition, inactive variants (Ser144Ala) of wild-type GZEL and two truncated mutants were constructed and produced specifically for interfacial binding experiments. RESULTS: Compared to the wild-type GZEL, lipase and phospholipase activities were significantly decreased in the two mutants. Deletion of the α-helix had great influence on the lipase activity of GZEL, resulting in residual 7.3% activity; the additional deletion of the loop led to 8.1% lipase activity. As for the phospholipase function, residual activities of 63.0% and 35.4% were maintained for GZEL-Δ(α-helix) and GZEL-Δ(α-helix+loop), respectively. Findings obtained with monomolecular film experiments further indicated that the reduction in phospholipase activity occurred with the anionic phospholipid as substrate, but was not seen with zwitterionic phospholipid. Results of the maximum insertion pressure, synergy factor and binding kinetic parameters documented that the α-helix structure of GZEL strongly influence the binding and insertion of enzyme to the phospholipid monolayer. Moreover, the interfacial binding function of α-helix was partly conformed by connecting to the C-terminal of Aspergillus oryzae lipase. GENERAL SIGNIFICANCE: Our results provide important information on the understanding of the structure-function relationship of GZEL.


Asunto(s)
Gibberella/enzimología , Lipasa/metabolismo , Péptidos/metabolismo , Adsorción , Lipasa/química , Fosfolípidos/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Fosfolipasas de Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...