Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 96
1.
Nano Lett ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38775803

Orbital angular momentum (OAM) multiplexed holograms have attracted a great deal of attention recently due to their physically unbounded set of orthogonal helical modes. However, preserving the OAM property in each pixel hinders fine sampling of the target image in principle and requires a fundamental filtering aperture array in the detector plane. Here, we demonstrate the concept of metasurface-based vectorial holography with cylindrical vector beams (CVBs), whose unlimited polarization orders and unique polarization distributions can be used to boost information storage capacity. Although CVBs are composed of OAM modes, the holographic images do not preserve the OAM modes in our design, enabling fine sampling of the target image in a quasi-continuous way like traditional computer-generated holograms. Moreover, the images can be directly observed by passing them through a polarizer without the need for a fundamental mode filter array. We anticipate that our method may pave the way for high-capacity holographic devices.

2.
Biochem Biophys Res Commun ; 712-713: 149942, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38642492

Metabolic engineering reconfigures cellular networks to produce value-added compounds from renewable substrates efficiently. However, identifying strains with desired phenotypes from large libraries through rational or random mutagenesis remains challenging. To overcome this bottleneck, an effective high-throughput screening (HTS) method must be developed to detect and analyze target candidates rapidly. Salidroside is an aromatic compound with broad applications in food, healthcare, medicine, and daily chemicals. However, there currently needs to be HTS methods available to monitor salidroside levels or to screen enzyme variants and strains for high-yield salidroside biosynthesis, which severely limits the development of microbial cell factories capable of efficiently producing salidroside on an industrial scale. This study developed a gene-encoded whole-cell biosensor that is specifically responsive to salidroside. The biosensor was created by screening a site-saturated mutagenic library of uric acid response regulatory protein binding bags. This work demonstrates the feasibility of monitoring metabolic flux with whole-cell biosensors for critical metabolites. It provides a promising tool for building salidroside high-yielding strains for high-throughput screening and metabolic regulation to meet industrial needs.


Biosensing Techniques , Glucosides , High-Throughput Screening Assays , Metabolic Engineering , Phenols , Phenols/metabolism , Biosensing Techniques/methods , Glucosides/metabolism , High-Throughput Screening Assays/methods , Metabolic Engineering/methods , Escherichia coli/genetics , Escherichia coli/metabolism
3.
Biochem Biophys Res Commun ; 710: 149876, 2024 May 28.
Article En | MEDLINE | ID: mdl-38579537

1,2,4-Butanetriol serves as a precursor in the manufacture of diverse pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. The study involved further modifications to an engineered Candida tropicalis strain, aimed at improving the production efficiency of 1,2,4-butanetriol. Faced with the issue of xylonate accumulation due to the low activity of heterologous xylonate dehydratase, we modulated iron metabolism at the transcriptional level to boost intracellular iron ion availability, thus enhancing the enzyme activity by 2.2-fold. Addressing the NADPH shortfall encountered during 1,2,4-butanetriol biosynthesis, we overexpressed pivotal genes in the NADPH regeneration pathway, achieving a 1,2,4-butanetriol yield of 3.2 g/L. The introduction of calcium carbonate to maintain pH balance led to an increased yield of 4 g/L, marking a 111% improvement over the baseline strain. Finally, the use of corncob hydrolysate as a substrate culminated in 1,2,4-butanetriol production of 3.42 g/L, thereby identifying a novel host for the conversion of corncob hydrolysate to 1,2,4-butanetriol.


Butanols , Candida tropicalis , Escherichia coli , Escherichia coli/metabolism , Candida tropicalis/genetics , Candida tropicalis/metabolism , Metabolic Engineering , Iron/metabolism , Xylose/metabolism
4.
J Chromatogr A ; 1720: 464814, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38490140

A magnetic polyimide (PI) nanocomposite has been synthesized by phase inversion of PI and simultaneous encapsulation of Fe3O4 nanoparticles. The Fe3O4/PI nanocomposite was characterized by a variety of characterization techniques, including infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, and vibrating sample magnetometry. The results showed that the prepared nanocomposite had a homogeneous structure, adequate specific surface area (76.1 m2/g) and high saturation magnetization (42.9 emu/g). Using parabens as model analytes, the performance of the Fe3O4/PI nanocomposite as an adsorbent for magnetic solid-phase extraction (MSPE) was evaluated. The extracted parabens were desorbed and determined by gas chromatography-mass spectrometry (GC-MS). The parameters affecting the extraction and desorption efficiency of parabens were optimized. Under the optimal conditions, the developed MSPE/GC-MS method was successfully applied to the determination of parabens in cooking wine. The MSPE/GC-MS method exhibited broad linearity (0.2-100 µg/L), low detection limits (0.04-0.05 µg/L), and satisfactory extraction recoveries (79.2 %-113.3 %) with relative standard deviations (RSDs) ranging from 0.7 % to 10.4 %. For real cooking wine samples, the spiked recoveries ranged from 91.7 % to 118.7 % with RSDs of 1.0 %-11.2 %. The results demonstrated that the Fe3O4/PI nanocomposite was an effective adsorbent, and this work provides a novel reference for the easy preparation of magnetic adsorbent materials.


Nanocomposites , Wine , Gas Chromatography-Mass Spectrometry , Parabens , Adsorption , Magnetic Phenomena , Solid Phase Extraction/methods , Nanocomposites/chemistry , Limit of Detection , Chromatography, High Pressure Liquid/methods
5.
Bioresour Technol ; 399: 130596, 2024 May.
Article En | MEDLINE | ID: mdl-38493939

Cembratriene-ol (CBT-ol), a plant-derived macrocyclic diterpene with notable insecticidal activity, has attracted considerable attention with respect to the development of sustainable and green biopesticides. Currently, CBT-ol production is limited by an inefficient and costly plant extraction strategy. Herein, CBT-ol production was enhanced by redesigning the CBT-ol biosynthetic pathway in Candida tropicalis, with subsequent truncation of CBT-ol synthase further increasing CBT-ol production. Moreover, bottlenecks in the CBT-ol biosynthetic pathway were eliminated by adjusting the gene dosage of the rate-limiting enzymes. Ultimately, the resulting strain C. tropicalis CPPt-03D produced 129.17 mg/L CBT-ol in shaking flasks (a 144-fold increase relative to that of the initial strain C01-CD) with CBT-ol production reaching 1,425.76 mg/L in a 5-L bioreactor, representing the highest CBT-ol titer reported to date. These findings provide a green process and promising platform for the industrial production of CBT-ol and lays the foundation for organic farming.


Biosynthetic Pathways , Diterpenes , Biosynthetic Pathways/genetics , Metabolic Engineering/methods , Diterpenes/metabolism , Plants/metabolism
6.
Adv Mater ; 36(21): e2312853, 2024 May.
Article En | MEDLINE | ID: mdl-38353164

Ince-Gaussian beams (IGBs) are the third complete family of exact and orthogonal solutions of the paraxial wave equation and have been applied in many fields ranging from particle trapping to quantum optics. IGBs play a very important role in optics as they represent the exact and continuous transition modes connecting Laguerre-Gaussian and Hermite-Gaussian beams. The method currently in use suffers from the high cost, complexity, and large volume of the optical system. The superposition of IGBs can generate complicated structured beams with multiple phase and polarization singularities. A metasurface approach is proposed to realizing various superpositions of IGBs without relying on a complicated optical setup. By superimposing IGBs with even and odd modes, multiple phase, and polarization singularities are observed in the resultant beams. The phase and polarization singularities are modulated by setting the initial phase in the design and controlling the incident linear polarization. The compactness of the developed metasurface devices and the unique properties of the generated beams have the potential to impact many practical applications such as particle manipulation, orbital angular momentum spectrum manipulation, and optical communications.

7.
Nano Lett ; 24(2): 708-714, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38165767

Angle-dependent next-generation displays have potential applications in 3D stereoscopic and head-mounted displays, image combiners, and encryption for augmented reality (AR) and security. Metasurfaces enable such exceptional functionalities with groundbreaking achievements in efficient displays over the past decades. However, limitations in angular dispersion control make them unfit for numerous nanophotonic applications. Here, we propose a spin-selective angle-dependent all-dielectric metasurface with a unique design strategy to manifest distinct phase information at different incident angles of light. As a proof of concept, the phase masks of two images are encoded into the metasurface and projected at the desired focal plane under different angles of left circularly polarized (LCP) light. Specifically, the proposed multifunctional metasurface generates two distinct holographic images under LCP illumination at angles of +35 and -35°. The presented holographic displays may provide a feasible route toward multifunctional meta-devices for potential AR displays, encrypted imaging, and information storage applications.

8.
Biotechnol J ; 19(1): e2300324, 2024 Jan.
Article En | MEDLINE | ID: mdl-37804156

Cembratriene-ol is a good biodegradable biopesticide ingredient with future potential applications in the field of sustainable agriculture. Cembratriene-ol is a monocyclic diterpenoid compound that is synthesized only in the trichome gland of Nicotiana plants. In this study, geranylgeranyl diphosphate synthase gene ggpps from Taxus canadensis and cbts*Δp were heterologously expressed in Saccharomyces cerevisiae W303-1A to successfully synthesize cembratriene-ol. The titer of cembratriene-ol was increased by 1.84-fold compared to the control by overexpressing the S. cerevisiae bifunctional (2E,6E)-farnesyl diphosphate synthase genes ERG20 and cbts*Δp under one promoter PGAP . The titer of cembratriene-ol in the engineered S. cerevisiae BY4741 was increased by 1.39-fold compared to the engineered S. cerevisiae W303-1A. The titer of cembratriene-ol in the engineered S. cerevisiae BY4741 was increased by 2.22-fold compared to the control by overexpressing ERG20 and cbts*Δp, respectively, using two promoters PGAP . Cembratriene-ol was found to be successfully synthesized via the integrated expression of cbts*Δp, ggpps and ERG20 on the genome of S. cerevisiae BY4741. The titer of cembratriene-ol in S. cerevisiae S25 was further increased by 1.80-fold compared to the control via dynamic control of the squalene synthase gene ERG9. Overexpression of the genes cbts*Δp and ggpps using pY26-GPD-TEF in S. cerevisiae S25 with their integration expression increased the titer of cembratriene-ol by 26.1-fold compared to S. cerevisiae S25. The titer of cembratriene-ol was significantly enhanced by mitochondrial compartmentalized expression of cbts*Δp and ggpps, which was 76.3-fold higher than that of the initial strain constructed. It was indicated that the systematic optimization has great potential in facilitating high-level production of cembratriene-ol production in S. cerevisiae.


Diterpenes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Diterpenes/metabolism , Plants/genetics , Metabolic Engineering
9.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4647-4662, 2023 Nov 25.
Article Zh | MEDLINE | ID: mdl-38013190

Limonene and its derivative perillic acid are widely used in food, cosmetics, health products, medicine and other industries as important bioactive natural products. However, inefficient plant extraction and high energy-consuming chemical synthesis hamper the industrial production of limonene and perillic acid. In this study, limonene synthase from Mentha spicata was expressed in Saccharomyces cerevisiae by peroxisome compartmentalization, and the yield of limonene was 0.038 mg/L. The genes involved in limonene synthesis, ERG10, ERG13, tHMGR, ERG12, ERG8, IDI1, MVD1, ERG20ww and tLS, were step-wise expressed via modular engineering to study their effects on limonene yield. The yield of limonene increased to 1.14 mg/L by increasing the precursor module. Using the plasmid with high copy number to express the above key genes, the yield of limonene significantly increased up to 86.74 mg/L, which was 4 337 times higher than that of the original strain. Using the limonene-producing strain as the starting strain, the production of perillic acid was successfully achieved by expressing cytochrome P450 enzyme gene from Salvia miltiorrhiza, and the yield reached 4.42 mg/L. The results may facilitate the construction of cell factory with high yield of monoterpene products by S. cerevisiae.


Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Limonene/metabolism , Monoterpenes/metabolism
10.
Sci Adv ; 9(47): eadj6675, 2023 Nov 24.
Article En | MEDLINE | ID: mdl-37992179

Generation and manipulation of three-dimensional (3D) optical polarization structures have received considerable interest because of their distinctive optical features and potential applications. However, the realization of multiple 3D polarization structures in a queue along the light propagation direction has not yet been reported. We propose and experimentally demonstrate a metalens to create longitudinally variable 3D polarization knots. A single metalens can simultaneously generate three distinct 3D polarization knots, which are indirectly validated with a rotating polarizer. The 3D polarization profiles are dynamically modulated by manipulating the linear polarization direction of the incident light. We further showcase the 3D image steganography with the generated 3D polarization structures. The ultrathin nature of metasurfaces and unique properties of the developed metalenses hold promise for lightweight polarization systems applicable to areas such as 3D image steganography and virtual reality.

11.
Int J Biol Macromol ; 253(Pt 7): 127385, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37848109

Tyrosol (2-(4-hydroxyphenyl) ethanol) is extensively used in the pharmaceutical industry as an important natural product from plants. In previous research, we constructed a recombinant Escherichia coli strain capable of de novo synthesis of tyrosol by integrating the phenylpyruvate decarboxylase ARO10 derived from Saccharomyces cerevisiae. Nevertheless, the insufficient catalytic efficiency of ARO10 required the insertion of multiple gene copies into the genome to attain enhanced tyrosol production. In this study, we constructed a mutation library of ARO10 based on a computer-aided semi-rational design strategy and developed a high-throughput screening method for selecting high-yield tyrosol mutants by introducing the heterologous hydroxylase complex HpaBC. Through multiple rounds of screening and site-saturation mutagenesis, we ultimately identified the two optimal ARO10 mutants, ARO10D331V and ARO10D331C, which respectively achieved a tyrosol titer of 2.02 g/L and 2.04 g/L in shake flasks, both representing more than 50 % improvement compared to the wild-type. Our study demonstrates the great potential of computer-based semi-rational enzyme design strategy in metabolic engineering. The high-throughput screening method for target compound derivative possesses a certain level of generality. Ultimately, we obtained promising mutants capable of achieving industrial-scale production of tyrosol, which also lays a solid foundation for the efficient synthesis of tyrosol derivatives.


Carboxy-Lyases , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Saccharomyces cerevisiae , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Metabolic Engineering
12.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article En | MEDLINE | ID: mdl-37894990

The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (CRISPR-Cas) system has undergone substantial and transformative progress. Simultaneously, a spectrum of derivative technologies has emerged, spanning both conventional and non-conventional yeast strains. Non-conventional yeasts, distinguished by their robust metabolic pathways, formidable resilience against diverse stressors, and distinctive regulatory mechanisms, have emerged as a highly promising alternative for diverse industrial applications. This comprehensive review serves to encapsulate the prevailing gene editing methodologies and their associated applications within the traditional industrial microorganism, Saccharomyces cerevisiae. Additionally, it delineates the current panorama of non-conventional yeast strains, accentuating their latent potential in the realm of industrial and biotechnological utilization. Within this discourse, we also contemplate the potential value these tools offer alongside the attendant challenges they pose.


CRISPR-Cas Systems , Saccharomyces cerevisiae , CRISPR-Cas Systems/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Editing/methods , Biotechnology , Bioengineering
13.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4258-4274, 2023 Oct 25.
Article Zh | MEDLINE | ID: mdl-37877404

Anti-reflective nanocoatings that mimic the eyes of fruit flies are biodegradable materials with great market potential for a variety of optical devices that require anti-reflective properties. Microbial expression of retinin provides a new idea for the preparation of nanocoatings under mild conditions compared to physicochemical methods. However, the current expression level of retinin, the key to anti-reflective coating, is low and difficult to meet mass production. In this study, we analyzed and screened the best expression hosts for Drosophila-derived retinin protein, and optimized its expression. Chinese hamster ovary (CHO) cells were identified as the efficient expression host of retinin, and purified retinin protein was obtained. At the same time, the preparation method of lanolin nanoemulsion was explored, and the best anti-reflective ability of the nano-coating was determined when the ratio of specific concentration of retinin protein and wax emulsion was 16:4, the pH of the nano-coating formation system was 7.0, and the temperature was 30 ℃. The enhanced antireflective ability and reduced production cost of artificial antireflective nanocoatings by determining the composition of nanocoatings and optimizing the concentration, pH and temperature of system components may facilitate future application of artificial green degradable antireflective coatings.


Drosophila Proteins , Drosophila , Animals , Cricetinae , CHO Cells , Emulsions , Cricetulus , Eye Proteins
14.
Int J Mol Sci ; 24(15)2023 Aug 03.
Article En | MEDLINE | ID: mdl-37569764

Cyanobacterial harmful algal blooms (CyanoHABs) pose significant threats to human health and natural ecosystems worldwide, primarily caused by water eutrophication, increased surface water temperature, and co-occurring microorganisms. Urgent action is needed to develop an eco-friendly solution to effectively curb the proliferation of CyanoHABs. Sophorolipids (SLs) are fully biodegradable biosurfactants synthesized by Starmerella bombicola. They can be classified into lactone and acid types. The lactone type displays strong antimicrobial activity, while the acid type exhibits good solubility, which make them ideal agents for mitigating CyanoHABs. Nevertheless, the broad utilization of SLs are hindered by their expensive production costs and the absence of effective genetic editing tools in the native host. In this study, we constructed recombinant strains capable of producing either acidic or lactonic SLs using the CRISPR-Cas9 gene editing system. The yields of acidic and lactonic SLs reached 53.64 g/L and 45.32 g/L in a shaking flask, respectively. In a 5 L fermenter, acidic SLs reached 129.7 g/L using low-cost glucose and rapeseed oil as substrates. The addition of 5 mg/L lactonic SLs effectively degraded cyanobacteria within 30 min, and a ratio of 8.25:1.75 of lactonic to acidic SLs showed the highest degradation efficiency. This study offers a safe and promising solution for CyanoHABs treatment.


Cyanobacteria , Harmful Algal Bloom , Humans , Ecosystem , Cyanobacteria/genetics , Lactones
15.
Phys Chem Chem Phys ; 25(33): 22319-22324, 2023 Aug 23.
Article En | MEDLINE | ID: mdl-37578284

The combination of a flexible device and novel electromagnetic resonances offers new dimensions to manipulate electromagnetic waves and promises new device functionalities. In this study, we experimentally demonstrate a flexible metasurface that can support the bound state in the continuum (BIC) in the terahertz regime. The metasurface consists of toroidal dipole resonant units on top of the flexible polyimide substrate, which can support a terahertz Friedrich-Wintgen BIC resonance, and the resonance characteristics can be tuned by changing the parameters of the coupling unit among two resonant modes. The BIC resonances under different bending conditions are analyzed and compared, showing decent mechanical robustness. The sensing application is demonstrated by combining Fetal Bovine Serum with the flexible BIC metasurface. The measured minimum detectable concentration is 0.007 mg mL-1. Benefiting from the mechanical flexibility and BIC resonance characteristics, our approach can effectively manipulate terahertz waves and have potential applications in the realization of multifunctional and flexible photonic devices.

16.
Nat Commun ; 14(1): 3915, 2023 Jul 03.
Article En | MEDLINE | ID: mdl-37400452

Perfect vector vortex beams (PVVBs) have attracted considerable interest due to their peculiar optical features. PVVBs are typically generated through the superposition of perfect vortex beams, which suffer from the limited number of topological charges (TCs). Furthermore, dynamic control of PVVBs is desirable and has not been reported. We propose and experimentally demonstrate hybrid grafted perfect vector vortex beams (GPVVBs) and their dynamic control. Hybrid GPVVBs are generated through the superposition of grafted perfect vortex beams with a multifunctional metasurface. The generated hybrid GPVVBs possess spatially variant rates of polarization change due to the involvement of more TCs. Each hybrid GPVVB includes different GPVVBs in the same beam, adding more design flexibility. Moreover, these beams are dynamically controlled with a rotating half waveplate. The generated dynamic GPVVBs may find applications in the fields where dynamic control is in high demand, including optical encryption, dense data communication, and multiple particle manipulation.

17.
Appl Microbiol Biotechnol ; 107(17): 5317-5328, 2023 Sep.
Article En | MEDLINE | ID: mdl-37428188

Glucoside compounds are widely found in nature and have garnered significant attention in the medical, cosmetics, and food industries due to their diverse pharmaceutical properties, biological activities, and stable application characteristics. Glycosides are mainly obtained by direct extraction from plants, chemical synthesis, and enzymatic synthesis. Given the challenges associated with plant extraction, such as low conversion rates and the potential for environmental pollution with chemical synthesis, our review focuses on enzymatic synthesis. Here, we reviewed the enzymatic synthesis methods of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), 2-O-α-D-glucosyl glycerol (α-GG), arbutin and α-glucosyl hesperidin (Hsp-G), and other glucoside compounds. The types of enzymes selected in the synthesis process are comprehensively analyzed and summarized, as well as a series of enzyme transformation strategies adopted to improve the synthetic yield. KEY POINTS: • Glycosyl compounds have applications in the biomedical and food industries. • Enzymatic synthesis converts substrates into products using enzymes as catalysts. • Substrate bias and specificity are key to improving substrate conversion.


Ascorbic Acid , Glucosides , Arbutin
18.
Light Sci Appl ; 12(1): 103, 2023 May 04.
Article En | MEDLINE | ID: mdl-37142575

A lightweight and portable spectrometer is desirable for miniaturization and integration. The unprecedented capability of optical metasurfaces has shown much promise to perform such a task. We propose and experimentally demonstrate a compact high-resolution spectrometer with a multi-foci metalens. The novel metalens is designed based on wavelength and phase multiplexing, which can accurately map the wavelength information into its focal points located on the same plane. The measured wavelengths in the light spectra agree with simulation results upon the illumination of various incident light spectra. The uniqueness of this technique lies in the novel metalens that can simultaneously realize wavelength splitting and light focusing. The compactness and ultrathin nature of the metalens spectrometer render this technology have potential applications in on-chip integrated photonics where spectral analysis and information processing can be performed in a compact platform.

19.
Biochem Biophys Res Commun ; 663: 16-24, 2023 06 30.
Article En | MEDLINE | ID: mdl-37116393

Hydroxytyrosol (HT) is an olive-derived phenolic phytochemical that has gained increasing commercial interest due to its natural antioxidant properties. It is widely used in the field of food supplement and medicine. It is reported that 4-hydroxyphenylacetate 3-hydroxylase (EcHpaB) and flavin reductase (EcHpaC) from E. coli BL21(DE3) can successfully express and catalyze the production of HT from tyrosol. In this study, the tyrosol production strain YMG5∗R as chassis cells, and a random mutant library of EcHpaB was established using error-prone PCR to improve the ability of EcHpaB to convert tyrosol to HT. Finally, a highly efficient HT synthetic mutant strainYMG5∗R-HpaBTLEHC with high transformation efficiency was screened by directed evolution. The YMG5∗R-HpaBTLEHC strain efficiently converted 50 mM tyrosol, with a yield of hydroxytyrosol reaching 48.2 mM (7.43 g/L) and a space-time yield reached 0.62 g/L·h. Overall, our study demonstrates the successful development of a highly efficient synthetic enzyme mutant for the production of HT, which has the potential to significantly improve the commercial viability of this natural antioxidant.


Escherichia coli , Phenylethyl Alcohol , Antioxidants , Mixed Function Oxygenases
20.
Adv Mater ; 35(30): e2208884, 2023 Jul.
Article En | MEDLINE | ID: mdl-37055931

Recent rapid progress in metasurfaces is underpinned by the physics of local and nonlocal resonances and the modes coupling among them, leading to tremendous applications such as optical switching, information transmission, and sensing. In this review paper, an overview of the recent advances in a broad range of dimensional optical field manipulation based on metasurfaces categorized into different classes based on design strategies is provided. This review starts from the near-field optical resonances of artificial nanostructures and discusses the far-field optical wave manipulation based on fundamental mechanisms such as mode generation and mode coupling. The recent advances in optical field manipulation based on metasurfaces in different optical dimensions such as phase and polarization are summarized, and newly-developed dimensions such as the orbital angular momentum and the coherence dimensions resulting from phase modulation are discussed. Then, the recent achievements of multiplexing and multifunctional metasurfaces empowered by multidimensional optical field manipulation for optical information transmission and integrated applications are reviewed. Finally, the paper concludes with a few perspectives on emerging trends, possible directions, and existing challenges in this fast-developing field.

...