Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 499
1.
Front Pediatr ; 12: 1332020, 2024.
Article En | MEDLINE | ID: mdl-38813546

Objective: The study aims to analyze the clinical characteristics of acute phase of SARS-CoV-2 infection in children aged 0-17 years with the Omicron variant, and summarize the persistent symptoms or new-onset clinical manifestations from 4 to 12 weeks after acute COVID. Explore the association between the vaccination status and SARS-CoV-2 neutralizing antibody levels post infection among preschool-aged children. The comprehensive study systematically describes the clinical characteristics of children infected with SARS-CoV-2, providing a foundation for diagnosis and evaluating long-term COVID in pediatric populations. Methods: The study enrolled children who were referred to the Children's Hospital, Capital Institute of Pediatrics, (Beijing, China) from January 10, 2023 to March 31, 2023. Participants were classified as infant and toddlers, preschool, school-age, and adolescent groups. Children or their legal guardians completed survey questionnaires to provide information of previous SARS-CoV-2 infection history, as well as clinical presentation during the acute phase and long-term symptoms from 4 to 12 weeks following infection. Furthermore, serum samples were collected from children with confirmed history of SARS-CoV-2 infection for serological testing of neutralizing antibodies. Results: The study recruited a total of 2,001 children aged 0-17 years who had previously tested positive for SARS-CoV-2 through nucleic acid or antigen testing. Fever emerged as the predominant clinical manifestation in 1,902 (95.1%) individuals with body temperature ranging from 37.3 to 40.0°C. Respiratory symptoms were identified as secondary clinical manifestations, with cough being the most common symptom in 777 (38.8%) children, followed by sore throat (22.1%), nasal congestion (17.8%), and runnning nose (17.2%). Fatigue (21.6%), headache (19.8%) and muscle-joint pain (13.5%) were frequently reported systemic symptoms in children. The proportion of children with symptoms of SARS-CoV-2 infection varied across age groups. 1,100 (55.0%) children experienced persistent symptoms from 4 to 12 weeks post the acute phase of infection. Trouble concentrating (22.1%), cough (22.1%), and fatigue (12.1%) were frequently reported across age groups in the extended period. A limited number of children exhibited cardiovascular symptoms with chest tightness, tachycardia, and chest pain reported by 3.5%, 2.5%, and 1.8% of children, respectively. Among 472 children aged 3-5 years, 208 children had received two doses of SARS-CoV-2 vaccine at least 6 months prior to infection, and no association was found between the incidence of long-term COVID and pre-infection vaccination statuses among the 3-5 years age groups (χ2 = 1.136, P = 0.286). Conclusions: In children aged 0-17 years infected with SARS-CoV-2 Omicron variant, fever was the primary clinical manifestation in the acute phase, followed by respiratory symptoms, systemic non-specific and digestive presentations. In particular, respiratory and digestive system symptoms were more frequent in children aged above 6 years. Regarding the long-term symptoms from 4 to 12 weeks post-infection, the most common presentations were concentrating difficulty, cough, and fatigue. The incidence of persistent symptoms of SARS-CoV-2 did not exhibit a significant correlation with vaccination status, which was attributed to the waning efficacy of the vaccine-induced humoral immune response after 6 months.

2.
Adv Mater ; : e2403549, 2024 May 09.
Article En | MEDLINE | ID: mdl-38723270

It is a pressing need to develop new energy materials to address the existing energy crisis. However, screening optimal targets out of thousands of materials candidates remains a great challenge. Herein, we propose and validate an alternative concept for highly effective materials screening based on dual-atom salphen catalysis units. Such an approach simplifies the design of catalytic materials and reforms the trial-and-error experimental model into a building-blocks-assembly like process. Firstly, density functional theory (DFT) calculations were performed on a series of potential catalysis units which were possible to synthesize. Then, machine learning (ML) was employed to define the structure-performance relationship and acquire chemical insights. Afterwards, the projected catalysis units were integrated into covalent organic frameworks (COFs) to validate the concept Electrochemical tests confirm that Ni-SalphenCOF and Co-SalphenCOF are promising conductive agent-free oxygen evolution reaction (OER) catalysts. This work provides a fast-tracked strategy for design and development of functional materials, which serves as a potentially workable framework for seamlessly integrating DFT calculations, ML, and experimental approaches. This article is protected by copyright. All rights reserved.

3.
PLoS One ; 19(5): e0303171, 2024.
Article En | MEDLINE | ID: mdl-38768113

Tumor microenvironment (TME) is a complex dynamic system with many tumor-interacting components including tumor-infiltrating leukocytes (TILs), cancer associated fibroblasts, blood vessels, and other stromal constituents. It intrinsically affects tumor development and pharmacology of oncology therapeutics, particularly immune-oncology (IO) treatments. Accurate measurement of TME is therefore of great importance for understanding the tumor immunity, identifying IO treatment mechanisms, developing predictive biomarkers, and ultimately, improving the treatment of cancer. Here, we introduce a mouse-IO NGS-based (NGSmIO) assay for accurately detecting and quantifying the mRNA expression of 1080 TME related genes in mouse tumor models. The NGSmIO panel was shown to be superior to the commonly used microarray approach by hosting 300 more relevant genes to better characterize various lineage of immune cells, exhibits improved mRNA and protein expression correlation to flow cytometry, shows stronger correlation with mRNA expression than RNAseq with 10x higher sequencing depth, and demonstrates higher sensitivity in measuring low-expressed genes. We describe two studies; firstly, detecting the pharmacodynamic change of interferon-γ expression levels upon anti-PD-1: anti-CD4 combination treatment in MC38 and Hepa 1-6 tumors; and secondly, benchmarking baseline TILs in 14 syngeneic tumors using transcript level expression of lineage specific genes, which demonstrate effective and robust applications of the NGSmIO panel.


High-Throughput Nucleotide Sequencing , Tumor Microenvironment , Animals , Mice , Tumor Microenvironment/immunology , High-Throughput Nucleotide Sequencing/methods , Interferon-gamma/genetics , Interferon-gamma/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Disease Models, Animal , Mice, Inbred C57BL , RNA, Messenger/genetics , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Neoplasms/genetics , Neoplasms/immunology , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Gene Expression Profiling/methods
4.
Med Sci Monit ; 30: e942773, 2024 May 01.
Article En | MEDLINE | ID: mdl-38689479

BACKGROUND While many studies have been conducted on sugammadex sodium and neostigmine in patients undergoing general anesthesia, few have explored their effects in patients with interstitial lung diseases (ILDs). MATERIAL AND METHODS Sixty-three patients who underwent transbronchial cryobiopsy under general anesthesia were enrolled in a prospective randomized study. The patients were randomly divided into 2 groups: neostigmine combined with atropine group (group C, n=32) and sugammadex group (group S, n=31). Induction and maintenance of anesthesia were the same in both groups. Patients received rocuronium during anesthesia. At the end of the procedure, when the T2 of the train-of-four stimulation technique (TOF) monitoring appeared, neostigmine 0.04 mg/kg combined with atropine 0.02 mg/kg was injected intravenously in group C, and sodium sugammadex 2 mg/kg was injected intravenously in group S. Time from administration of muscle relaxant antagonist to recovery of TOF ratio (TOFr) to 0.9 and extubation time were recorded. The residual rate of neuromuscular blockade at 1, 3, 5, 7, and 10 min after extubation was calculated. RESULTS Compared to group C, group S had a significantly shorter recovery time of TOFr to 0.9 (4.0[2.0] min vs 14.0[11.0] min, P<0.001) and extubation time (4.0[3.0] min vs 11.0[7.0] min, P<0.001). The residual rate of neuromuscular blockade was remarkably lower in group S than in group C at 3, 5, and 7 min after extubation (3.2% vs 31%, 0% vs 25%, 0% vs 6%, P<0.05). CONCLUSIONS Sugammadex is more effective than neostigmine in reversing the muscle-relaxant effect of rocuronium bromide in patients with ILDs.


Lung Diseases, Interstitial , Neostigmine , Neuromuscular Blockade , Sugammadex , Adult , Aged , Female , Humans , Male , Middle Aged , Anesthesia Recovery Period , Biopsy/methods , Bronchoscopy/methods , Lung Diseases, Interstitial/drug therapy , Neostigmine/therapeutic use , Neuromuscular Blockade/methods , Postoperative Period , Prospective Studies , Rocuronium , Sugammadex/therapeutic use
6.
Article En | MEDLINE | ID: mdl-38690940

PURPOSE: The femoral trochlea axial orientation has been shown to be a better predictor of patellar dislocation than the femoral anteversion angle. However, no study has investigated the importance of the femoral trochlea axial orientation in the surgical treatment of patellar dislocation. It is aimed to explore the pathological threshold of the femoral trochlea axial orientation and its guiding implications for surgical interventions in the study. METHODS: Sixty-four patients with patellar dislocation and 64 controls were included for measurement of the femoral trochlea axial orientation. The ability to predict the patellar dislocation and the pathologic threshold of the femoral trochlea axial orientation were evaluated using the receiver operating characteristic curve. One hundred patients with medial patellofemoral ligament reconstruction and 25 patients with derotational distal femur osteotomy were divided into two groups based on the femoral trochlea axial orientation cut-off value and their postoperative knee functions, and patellar tilt angles were compared. RESULTS: There were significant differences in the femoral trochlea axial orientation (60.8 ± 7.9 vs. 67.8 ± 4.6, p < 0.05) between patients with patellar dislocation and the normal population. The sensitivity and specificity of the femoral trochlea axial orientation were 0.641 and 0.813, respectively, at the femoral trochlea axial orientation smaller than 63.8°. Amongst patients having had isolated medial patellofemoral ligament reconstruction with decreased femoral trochlea axial orientation, knee function was poorer after surgery. The prognosis of patients with the femoral trochlea axial orientation correction in derotational distal femur osteotomy was better than that for patients without correction. CONCLUSIONS: The femoral trochlea axial orientation had good predictive efficiency for patellar dislocation. Isolated medial patellofemoral ligament reconstruction is not sufficiently effective for patients with patellar dislocation and decreased femoral trochlea axial orientation. Patients with a decreased femoral trochlea axial orientation can have better surgical outcomes after correction by derotational distal femur osteotomy. LEVEL OF EVIDENCE: Level III.

7.
Materials (Basel) ; 17(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38793403

The reduction of friction-induced noise is a crucial research area for enhancing vehicle comfort, and this paper proposes a method based on circular pit texture to achieve this goal. We conducted a long-term sliding friction test using a pin-on-disc friction and a wear test bench to verify the validity of this method. To compare the friction noise of different surfaces, texture units with varying line densities were machined on the surface of friction disk samples. The resulting friction-wear and noise characteristics of the samples were analyzed in conjunction with the microscopic morphology of the worn surfaces. The results indicate that surfaces with textures can delay the onset of squeal noise, and the pattern of its development differs from that of smooth surfaces. The noise reduction effect is most evident due to the proper distribution of textures that can form furrow-like wear marks at the wear interface. The finite element results demonstrate that this morphology can improve pressure distribution at the leading point and reduce the tendency of system instability.

8.
Dent Mater ; 2024 May 27.
Article En | MEDLINE | ID: mdl-38806383

OBJECTIVE: This study aimed to evaluate the long-term clinical performance of Giomer and a self-etch adhesive system compared with a nanofilled resin composite and etch-and-rinse adhesive system in Class I and Class II restorations. METHOD: The study was designed to be double-blinded with intra-individual control. 48 patients with 54 pairs of cavities (class I or class II) were recruited. Each pair of restorations was placed with either BEAUTIFIL II (BF) and FL-BOND II (FL) or Filtek Z350 (Z350) and Scotchbond Multi-Purpose (SMP). Clinical evaluation was performed at baseline, 6-month, 18-month, 4-year and 8-year after placement according to modified USPHS criteria. Kaplan-Meier survival analysis and log rank tests were performed (SPSS 20.0, IBM Corporation, US) to compare the survival probability of different restorations.A generalized linear mixed model (GLMM) was adopted to assess the performance of the materials. The McNemar test was used to show significant changes for all the evaluation criteria and difference between them. RESULTS: At the eight-year recall, 32 patients with 67 restorations were present. There were twelve restorations in total recorded as failure due to loss of retention, restoration fracture, secondary caries, tooth fracture or endodontic treatment due to pulp necrosis. The survival probabilities and calculated annual failure rate(AFR) of BF and Z350 restorations at 8-year were 87.2 % vs 87.8 % and 1.6 % vs 1.5 % respectively with no significant difference (p > 0.05)between the two materials. Over the recall time range of eight years, decreased possibility of alpha rating was observed for retention, marginal adaptation, marginal staining and surface roughness for both materials (p < 0.05). Decreased possibility of alpha rating was observed for surface staining and secondary caries for Z350 (p < 0.05) and restoration fracture for BF (p < 0.05), respectively. Comparing the two restorative systems over eight years, no significant difference was seen for linear decline of the possibility of alpha rating for any of the criteria evaluated (p > 0.05). CONCLUSION: Giomer material and the self-etch adhesive system had comparable clinical performance with nanofilled resin composite and etch-and-rinse adhesive system over the observation period of eight years.

9.
PeerJ ; 12: e17078, 2024.
Article En | MEDLINE | ID: mdl-38618569

Dynamic functional connectivity, derived from resting-state functional magnetic resonance imaging (rs-fMRI), has emerged as a crucial instrument for investigating and supporting the diagnosis of neurological disorders. However, prevalent features of dynamic functional connectivity predominantly capture either temporal or spatial properties, such as mean and global efficiency, neglecting the significant information embedded in the fusion of spatial and temporal attributes. In addition, dynamic functional connectivity suffers from the problem of temporal mismatch, i.e., the functional connectivity of different subjects at the same time point cannot be matched. To address these problems, this article introduces a novel feature extraction framework grounded in two-directional two-dimensional principal component analysis. This framework is designed to extract features that integrate both spatial and temporal properties of dynamic functional connectivity. Additionally, we propose to use Fourier transform to extract temporal-invariance properties contained in dynamic functional connectivity. Experimental findings underscore the superior performance of features extracted by this framework in classification experiments compared to features capturing individual properties.


Principal Component Analysis , Humans
10.
Nano Lett ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38620050

Understanding the structure-performance relationships of a frustrated Lewis pair (FLP) at the atomic level is key to yielding high efficiency in activating chemically "inert" molecules into value-added products. A sound strategy was developed herein through incorporating oxygen defects into a Zr-based metal-organic layer (Zr-MOL-D) and employing Lewis basic proximal surface hydroxyls for the in situ formation of solid heterogeneous FLP (Zr4-δ-VO-Zr-OH). Zr-MOL-D exhibits a superior CO2 to CO conversion rate of 49.4 µmol g-1 h-1 in water vapor without any sacrificing agent or photosensitizer, which is about 12 times higher than that of pure MOL (Zr-MOL-P), with extreme stability even after being placed for half a year. Theoretical and experimental results reveal that the introduction of FLP converts the process of the crucial intermediate COOH* from an endothermic reaction to an exothermic spontaneous reaction. This work is expected to provide new prospects for developing efficient MOL-based photocatalysts in FLP chemistry through a sound defect-engineering strategy.

11.
Molecules ; 29(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38675633

Surface charges of catalysts have important influences on the thermodynamics and kinetics of electrochemical reactions. Herein, we develop a modified version of the grand-canonical potential kinetics (GCP-K) method based on density functional theory (DFT) calculations to explore the effect of surface charges on reaction thermodynamics and kinetics. Using the hydrogen evolution reaction (HER) on the Pt(111) surface as an example, we show how to track the change of surface charge in a reaction and how to analyze its influence on the kinetics. Grand-canonical calculations demonstrate that the optimum hydrogen adsorption energy on Pt under the standard hydrogen electrode condition (SHE) is around -0.2 eV, rather than 0 eV established under the canonical ensemble, due to the high density of surface negative charges. By separating the surface charges that can freely exchange with the external electron reservoir, we obtain a Tafel barrier that is in good agreement with the experimental result. During the Tafel reaction, the net electron inflow into the catalyst leads to a stabilization of canonical energy and a destabilization of the charge-dependent grand-canonical component. This study provides a practical method for obtaining accurate grand-canonical reaction energetics and analyzing the surface charge induced changes.

12.
Sensors (Basel) ; 24(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38676176

In the field of robotic automation, achieving high position accuracy in robotic vision systems (RVSs) is a pivotal challenge that directly impacts the efficiency and effectiveness of industrial applications. This study introduces a comprehensive modeling approach that integrates kinematic and joint compliance factors to significantly enhance the position accuracy of a system. In the first place, we develop a unified kinematic model that effectively reduces the complexity and error accumulation associated with the calibration of robotic systems. At the heart of our approach is the formulation of a joint compliance model that meticulously accounts for the intricacies of the joint connector, the external load, and the self-weight of robotic links. By employing a novel 3D rotary laser sensor for precise error measurement and model calibration, our method offers a streamlined and efficient solution for the accurate integration of vision systems into robotic operations. The efficacy of our proposed models is validated through experiments conducted on a FANUC LR Mate 200iD robot, showcasing notable improvements in the position accuracy of robotic vision system. Our findings contribute a framework for the calibration and error compensation of RVS, holding significant potential for advancements in automated tasks requiring high precision.

13.
Front Public Health ; 12: 1226884, 2024.
Article En | MEDLINE | ID: mdl-38651130

Background: With the rapid aging of the population, the health needs of the older adult have increased significantly, resulting in the frequent occurrence of the "social hospitalization" problem, which has led to a rapid increase in hospitalization costs. This study investigates whether the "social hospitalization problem" arising from the long-term care needs can be solved through the implementation of long-term care insurance, thereby improving the overall health of the older adults and controlling the unreasonable increase in hospitalization costs. Methods: The entropy theory was used as a conceptual model, based on data from the China Health and Retirement Longitudinal Study (CHARLS) in 2015 and 2018. The least-squares method was used to examine the relationship between long-term care needs and hospitalization costs, and the role that long-term care insurance implementation plays in its path of influence. Results: The results of this study indicated that long-term care needs would increase hospitalization cost, which remained stable after a series of tests, such as replacing the core explanatory variables and introducing fixed effects. Through the intermediary effect test and mediated adjustment effect test, we found the action path of long-term care needs on hospitalization costs. Long-term care needs increases hospitalization costs through more hospitalizations. Long-term care insurance reduces hospitalization costs. Its specific action path makes long-term care insurance reduce hospitalization costs through a negative adjustment of the number of hospitalizations. Conclusion: To achieve fair and sustainable development of long-term care insurance, the following points should be achieved: First, long-term care insurance should consider the prevention in advance and expand the scope of participation and coverage; Second, long-term care insurance should consider the control in the event and set moderate levels of treatment payments; Third, long-term care insurance should consider post-supervision and explore appropriate payment methods.


Hospitalization , Insurance, Long-Term Care , Long-Term Care , Humans , Insurance, Long-Term Care/economics , Insurance, Long-Term Care/statistics & numerical data , Hospitalization/economics , Hospitalization/statistics & numerical data , Aged , Female , Male , Long-Term Care/economics , Long-Term Care/statistics & numerical data , Longitudinal Studies , China , Middle Aged , Cross-Sectional Studies , Aged, 80 and over , Hospital Costs/statistics & numerical data , Health Services Needs and Demand/economics
14.
Int J Surg ; 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38498392

BACKGROUND: Microsatellite instability (MSI) is associated with treatment response and prognosis in patients with rectal cancer (RC). However, intratumoral heterogeneity limits MSI testing in patients with RC. We developed a subregion radiomics model based on multiparametric magnetic resonance imaging (MRI) to preoperatively assess high-risk subregions with MSI and predict the MSI status of patients with RC. METHODS: This retrospective study included 475 patients (training cohort, 382; external test cohort, 93) with RC from two participating hospitals between April 2017 and June 2023. In the training cohort, subregion radiomic features were extracted from multiparametric MRI, which included T2-weighted, T1-weighted, diffusion-weighted, and contrast-enhanced T1-weighted imaging. MSI-related subregion radiomic features, classical radiomic features, and clinicoradiological variables were gathered to build five predictive models using logistic regression. Kaplan-Meier survival analysis was conducted to explore the prognostic information. RESULTS: Among the 475 patients (median age, 64 years [interquartile range, IQR: 55-70 years];304 men and 171 women), the prevalence of MSI was 11.16% (53/475). The subregion radiomics model outperformed the classical radiomics and clinicoradiological models in both training (area under the curve [AUC]=0.86, 0.72, and 0.59, respectively) and external test cohorts (AUC=0.83, 0.73, and 0.62, respectively). The subregion-clinicoradiological model combining clinicoradiological variables and subregion radiomic features performed the optimal, with AUCs of 0.87 and 0.85 in the training and external test cohorts, respectively. The 3-year disease-free survival rate of MSI groups predicted based on the model was higher than that of the predicted microsatellite stability (MSS) groups in both patient cohorts (training, P=0.032; external test, P=0.046). CONCLUSIONS: We developed and validated a model based on subregion radiomic features of multiparametric MRI to evaluate high-risk subregions with MSI and predict the MSI status of RC preoperatively, which may assist in individualized treatment decisions and positioning for biopsy.

15.
J Gastrointest Oncol ; 15(1): 125-133, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38482219

Background: Some patients with high-risk gastrointestinal stromal tumor (GIST) experience disease progression after complete resection and adjuvant therapy. It is of great significance to distinguish these patients among those with high-risk GIST. Radiomics has been demonstrated as a promising tool to predict various tumors prognosis. Methods: From January 2006 to December 2018, a total of 100 high-risk GIST patients (training cohort: 60; validation cohort: 40) from Guangdong Provincial People's Hospital with preoperative enhanced computed tomography (CT) images were enrolled. The radiomics features were extracted and a risk score was built using least absolute shrinkage and selection operator-Cox model. The clinicopathological factors were analyzed and a nomogram was established with and without radiomics risk score. The concordance index (C-index), calibration plot, and decision curve analysis (DCA) were used to evaluate the performance of the radiomics nomograms. Results: We selected 11 radiomics features associated with recurrence or metastasis. The risk score was calculated and significantly associated with disease-free survival (DFS) in both the training and validation group. Cox regression analysis showed that Ki67 was an independent risk factor for DFS [P=0.004, hazard ratio 4.615, 95% confidence interval (CI): 1.624-13.114]. The combined radiomics nomogram, which integrated the radiomics risk score and significant clinicopathological factors, showed good performance in predicting DFS, with a C-index of 0.832 (95% CI: 0.761-0.903), which was better than the clinical nomogram (C-index 0.769, 95% CI: 0.679-0.859) in training cohort. The calibration curves and the DCA plot suggested satisfying accuracy and clinical utility of the model. Conclusions: The CT-based radiomics nomogram, combined with the clinicopathological factors and risk score, has good potential to assess the recurrence or metastasis of patients with high-risk GIST.

16.
Ecotoxicol Environ Saf ; 273: 116163, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38442473

BACKGROUNDS: Short-term exposure to air pollutants increases the risk of migraine, but the long-term impacts of exposure to multiple pollutants on migraine have not been established. The aim of this large prospective cohort study was to explore these links. METHODS: A total of 458,664 participants who were free of migraine at baseline from the UK Biobank were studied. Cox proportional hazards models were used to estimate the risk of new-onset migraine from combined long-term exposure to four pollutants, quantified as an air pollution score using principal component analysis. RESULTS: During a median (IQR) follow-up of 12.5 (11.8, 13.2) years, a total of 5417 new-onset migraine cases were documented. Long-term exposure to multiple air pollutants was associated with an increased risk of new-onset migraine, as indicated by an increased in the SDs of PM2.5 (hazard ratio (HR): 1.04, 95% CI: 1.01-1.06, P = 0.009), PM10 (HR: 1.07, 95% CI: 1.04-1.10, P < 0.001), NO2 (HR: 1.10, 95% CI: 1.07-1.13, P < 0.001) and NOx (HR: 1.04, 95% CI: 1.01-1.07, P = 0.005) in the main model. The air pollution score showed a doseresponse association with an increased risk of new-onset migraine. Similarly, compared with those of the lowest tertile, the HRs (95% CI) of new-onset migraine were 1.11 (95% CI: 1.04-1.19, P = 0.002) and 1.17 (95% CI: 1.09-1.26, P < 0.001) in tertiles 2 and 3, respectively, according to the main model (P trend < 0.001). CONCLUSION: Long-term individual and joint exposure to multiple air pollutants is associated with an increased risk of new-onset migraine.


Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Particulate Matter/toxicity , Prospective Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Nitrogen Dioxide
17.
Sci Rep ; 14(1): 6910, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519568

Feature selection is a critical component of machine learning and data mining to remove redundant and irrelevant features from a dataset. The Chimp Optimization Algorithm (CHoA) is widely applicable to various optimization problems due to its low number of parameters and fast convergence rate. However, CHoA has a weak exploration capability and tends to fall into local optimal solutions in solving the feature selection process, leading to ineffective removal of irrelevant and redundant features. To solve this problem, this paper proposes the Enhanced Chimp Hierarchy Optimization Algorithm for adaptive lens imaging (ALI-CHoASH) for searching the optimal classification problems for the optimal subset of features. Specifically, to enhance the exploration and exploitation capability of CHoA, we designed a chimp social hierarchy. We employed a novel social class factor to label the class situation of each chimp, enabling effective modelling and optimization of the relationships among chimp individuals. Then, to parse chimps' social and collaborative behaviours with different social classes, we introduce other attacking prey and autonomous search strategies to help chimp individuals approach the optimal solution faster. In addition, considering the poor diversity of chimp groups in the late iteration, we propose an adaptive lens imaging back-learning strategy to avoid the algorithm falling into a local optimum. Finally, we validate the improvement of ALI-CHoASH in exploration and exploitation capabilities using several high-dimensional datasets. We also compare ALI-CHoASH with eight state-of-the-art methods in classification accuracy, feature subset size, and computation time to demonstrate its superiority.

18.
J Am Chem Soc ; 146(12): 8598-8606, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38465613

This study outlines the preparation and characterization of a unique superlattice composed of indium oxide (In2O3) vertex-truncated nano-octahedra, along with an exploration of its response to high-pressure conditions. Transmission electron microscopy and scanning transmission electron microscopy were employed to determine the average circumradius (15.2 nm) of these vertex-truncated building blocks and their planar superstructure. The resilience and response of the superlattice to pressure variations, peaking at 18.01 GPa, were examined using synchrotron-based wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) techniques. The WAXS data revealed no phase transitions, reinforcing the stability of the 2D superlattice composed of random layers in alignment with a p31m planar symmetry as discerned by SAXS. Notably, the SAXS data also unveiled a pressure-induced, irreversible translation of octahedra and ligand interaction occurring within the random layer. Through our examination of these pressure-sensitive behaviors, we identified a distinctive translation model inherent to octahedra and observed modulation of the superlattice cell parameter induced by pressure. This research signifies a noteworthy advancement in deciphering the intricate behaviors of 2D superlattices under a high pressure.

19.
Precis Chem ; 2(3): 103-111, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38550915

Electrochemical glycerol oxidation (EGO) emerges as a promising route to valorize glycerol, an underutilized byproduct from biodiesel production, into value-added chemicals. This study employed three types of gold (Au) nanocrystals with controlled shapes to elucidate the facet-dependent electrocatalytic behavior in EGO. Octahedral, rhombic dodecahedral, and cubic Au nanocrystals with {111}, {110}, and {100} facets, respectively, were precisely synthesized with uniform size and shape. Rhombic dodecahedra exhibited the lowest onset potential for EGO due to facile AuOH formation, while octahedra showed enhanced electrochemical activity for glycerol oxidation and resistance to poisoning. In-situ FTIR analysis revealed that Au {111} surfaces selectively favored C2 products, whereas Au {100} surfaces promoted C3 product formation, highlighting the significant effect of facet orientation on EGO performance and informing catalyst design.

20.
ACS Appl Mater Interfaces ; 16(11): 13729-13744, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38457643

Current electrocatalysts for oxygen evolution reaction (OER) are either expensive (such as IrO2, RuO2) or/and exhibit high overpotential as well as sluggish kinetics. This article reports mesoporous earth-abundant iron (Fe)-nitrogen (N) doped carbon electrocatalysts with iron clusters and closely surrounding Fe-N4 active sites. Unique to this work is that the mechanically stable mesoporous carbon-matrix structure (79 nm in pore size) with well-dispersed nitrogen-coordinated Fe single atom-cluster is synthesized via rapid thermal annealing (RTA) within only minutes using a self-assembled bottlebrush block copolymer (BBCP) melamine-formaldehyde resin composite template. The resulting porous structure and domain size can be tuned with the degree of polymerization of the BBCP backbone, which increases the electrochemically active surface area and improves electron transfer and mass transport for an effective OER process. The optimized electrocatalyst shows a required potential of 1.48 V (versus RHE) to obtain the current density of 10 mA/cm2 in 1 M KOH aqueous electrolyte and a small Tafel slope of 55 mV/decade at a given overpotential of 250 mV, which is significantly lower than recently reported earth-abundant electrocatalysts. Importantly, the Fe single-atom nitrogen coordination environment facilitates the surface reconstruction into a highly active oxyhydroxide under OER conditions, as revealed by X-ray photoelectron spectroscopy and in situ Raman spectroscopy, while the atomic clusters boost the single atoms reactive sites to prevent demetalation during the OER process. Density functional theory (DFT) calculations support that the iron nitrogen environment and reconstructed oxyhydroxides are electrocatalytically active sites as the kinetics barrier is largely reduced. This work has opened a new avenue for simple, rapid synthesis of inexpensive, earth-abundant, tailorable, mechanically stable, mesoporous carbon-coordinated single-atom electrocatalysts that can be used for renewable energy production.

...