Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 11(35): 8519-8527, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37606203

RESUMEN

Survival and infection of pathogenic bacteria, such as Staphylococcus aureus (S. aureus), pose a serious threat to human health. Efficient methods for recognizing and quantifying low levels of bacteria are imperiously needed. Herein, we introduce a metal-organic framework (MOF)-based fluorescence resonance energy transfer (FRET) nanoprobe for ratiometric detection of S. aureus. The nanoprobe utilizes blue-emitting 7-hydroxycoumarin-4-acetic acid (HCAA) encapsulated inside zirconium (Zr)-based MOFs as the energy donor and green-emitting fluorescein isothiocyanate (FITC) as the energy acceptor. Especially, vancomycin (VAN) is employed as the recognition moiety to bind to the cell wall of S. aureus, leading to the disassembly of VAN-PEG-FITC from MOF HCAA@UiO-66. As the distance between the donor and acceptor increases, the donor signal correspondingly increases as the FRET signal decreases. By calculating the fluorescence intensity ratio, S. aureus can be quantified with a dynamic range of 1.05 × 103-1.05 × 107 CFU mL-1 and a detection limit of 12 CFU mL-1. Due to the unique high affinity of VAN to S. aureus, the nanoprobe shows high selectivity and sensitivity to S. aureus, even in real samples like lake water, orange juice, and saliva. The FRET-based ratiometric fluorescence bacterial detection method demonstrated in this work has a prospect in portable application and may reduce the potential threat of pathogens to human health.


Asunto(s)
Estructuras Metalorgánicas , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Transferencia Resonante de Energía de Fluorescencia , Fluoresceína-5-Isotiocianato , Infecciones Estafilocócicas/diagnóstico por imagen , Vancomicina , Fluoresceína
2.
ACS Omega ; 8(32): 29025-29032, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37599953

RESUMEN

Applying solar energy to generate drinking water is a clean and low-energy exhaust route to address the issue of water purification. The current challenge with solar vapor generation is constructing nano/micro-hierarchical structures that can convert solar irradiation into exploitable thermal energy with high efficiency. Although various structures and material designs have been reported in recent years, solar vapor conversion can be improved by integrating light harvesting, thermal concentration, and water diffusion. Because of the optimized solar harvesting, enhanced heat capacity, and specified diffusive path endowed by the hierarchical composite structure, amorphous tantalum oxide/carbon-based yolk-shell structures (α-Ta2O5/C YS) for highly efficient solar vapor generation under 1 sun illumination are applied in this study. As a result, the α-Ta2O5/C YS realized a water evaporation rate of 3.54 kg m-2 h-1 with a solar-thermal conversion efficiency of 91% under one sun irradiation (1 kW m-2) with excellent evaporation stability. The collected water from seawater meets the World Health Organization drinking water standard. Importantly, reactive oxygen species enabled by α-Ta2O5 could be produced for water sterilization, exhibiting a facile way for application in various scenarios to acquire drinkable water.

3.
Adv Mater ; 34(7): e2107400, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34713935

RESUMEN

Solar evaporation, which enables water purification without consuming fossil fuels, has been considered the most promising strategy to address global scarcity of drinkable water. However, the suboptimal structure and composition designs still result in a trade-off between photothermal conversion, water transport, and tolerance to harsh environments. Here, an ultrastable amorphous Ta2 O5 /C nanocomposite is designed with a hollow multishelled structure (HoMS) for solar evaporation. This HoMS results in highly efficient photoabsorption and photothermal conversion, as well as a decrease of the actual water evaporation enthalpy. A superfast evaporation speed of 4.02 kg m-2 h-1 is achieved. More importantly, a World Health Organization standard drinkable water can be achieved from seawater, heavy-metal- and bacteria-containing water, and even from extremely acidic/alkaline or radioactive water sources. Notably, the concentration of pseudovirus SC2-P can be decreased by 6 orders of magnitude after evaporation.

4.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(3): 340-345, 2018 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-29643042

RESUMEN

OBJECTIVE: To obtain stable primary cultures of human malignant meningioma cells and establish an intracranial in-situ tumor model in nude mice. METHODS: Ten surgical specimens of highly suspected malignant meningioma were obtained with postoperative pathological confirmation. Primary malignant meningioma cells were cultured from the tissues using a modified method and passaged. After identification with cell immunofluorescence, the cultured cells were inoculated into the right parietal lobe of 6 nude mice using stereotaxic apparatus and also transplanted subcutaneously in another 6 nude mice. The nude mice were executed after 6 weeks, and HE staining and immunohistochmistry were used to detect tumor growth and the invasion of the adjacent brain tissues. RESULTS: The primary malignant meningioma cells were cultured successfully, and postoperative pathology reported anaplastic malignant meningioma. Cell immunofluorescence revealed positivity for vimentin and EMA in the cells, which showed a S-shaped growth curve in culture. Flow cytometry revealed a cell percentage in the Q3 area of (95.99∓2.58)%. Six weeks after transplantation, tumor nodules occurred in the subcutaneous tumor group, and the nude mice bearing the in situ tumor showed obvious body weight loss. The xenografts in both groups contained a mean of (36∓5.35)% cells expressing Ki-67, and the intracranial in situ tumor showed obvious invasion of the adjacent peripheral brain tissues. CONCLUSION: We obtained stable primary cultures of malignant meningioma cells and successfully established a nude mouse model bearing in situ human malignant meningioma.


Asunto(s)
Neoplasias Meníngeas/patología , Meningioma/patología , Trasplante de Neoplasias , Animales , Humanos , Ratones , Ratones Desnudos , Células Tumorales Cultivadas
5.
Appl Opt ; 54(24): 7284-300, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26368764

RESUMEN

Extreme ultraviolet (EUV) lithography is the most promising successor of current deep ultraviolet (DUV) lithography. The very short wavelength, reflective optics, and nontelecentric structure of EUV lithography systems bring in different imaging phenomena into the lithographic image synthesis problem. This paper develops a gradient-based inverse algorithm for EUV lithography systems to effectively improve the image fidelity by comprehensively compensating the optical proximity effect, flare, photoresist, and mask shadowing effects. A block-based method is applied to iteratively optimize the main features and subresolution assist features (SRAFs) of mask patterns, while simultaneously preserving the mask manufacturability. The mask shadowing effect may be compensated by a retargeting method based on a calibrated shadowing model. Illustrative simulations at 22 and 16 nm technology nodes are presented to validate the effectiveness of the proposed methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA