Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 798
1.
ACS Omega ; 9(20): 22003-22015, 2024 May 21.
Article En | MEDLINE | ID: mdl-38799373

Ice accumulation on cold surfaces is a common and serious phenomenon that exists in numerous industrial fields, such as power transmission, wind turbines, and aircraft. Despite recent efforts in mitigating ice accumulation on the cold surface, it remains a challenge to achieve robust anti-icing on the cold surface in terms of nanofluid droplet. Here, we report a rigid superhydrophobic Cu surface and an elastic polydimethylsiloxane (PDMS) superhydrophobic surface to enhance water-repellency performance, characterized by a significant reduction in contact time and a decrease in the spreading ratio. As for the rigid superhydrophobic Cu surface, the underlying mechanism is ascribed to the existence of stable air cushions between the micropillar array, which reduce the contact area and further suppress the heat conduction. As for the elastic PDMS superhydrophobic surface, the rapid detachment of the nanofluid droplet relies on superior surface elasticity, which can further suppress the nanofluid droplet splashing at a high impacting velocity. We believe that this work can provide a new view for the improvement of water-repellency for a wide range of applications.

2.
J Clin Immunol ; 44(5): 124, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758476

PURPOSES: STAT1 is a transduction and transcriptional regulator that functions within the classical JAK/STAT pathway. In addition to chronic mucocutaneous candidiasis, bacterial infections are a common occurrence in patients with STAT1 gain-of-function (GOF) mutations. These patients often exhibit skewing of B cell subsets; however, the impact of STAT1-GOF mutations on B cell-mediated humoral immunity remains largely unexplored. It is also unclear whether these patients with IgG within normal range require regular intravenous immunoglobulin (IVIG) therapy. METHODS: Eleven patients (harboring nine different STAT1-GOF mutations) were enrolled. Reporter assays and immunoblot analyses were performed to confirm STAT1 mutations. Flow cytometry, deep sequencing, ELISA, and ELISpot were conducted to assess the impact of STAT1-GOF on humoral immunity. RESULTS: All patients exhibited increased levels of phospho-STAT1 and total STAT1 protein, with two patients carrying novel mutations. In vitro assays showed that these two novel mutations were GOF mutations. Three patients with normal total IgG levels received regular IVIG infusions, resulting in effective control of bacterial infections. Four cases showed impaired affinity and specificity of pertussis toxin-specific antibodies, accompanied by reduced generation of class-switched memory B cells. Patients also had a disrupted immunoglobulin heavy chain (IGH) repertoire, coupled with a marked reduction in the somatic hypermutation frequency of switched Ig transcripts. CONCLUSION: STAT1-GOF mutations disrupt B cell compartments and skew IGH characteristics, resulting in impaired affinity and antigen-specificity of antibodies and recurrent bacterial infections. Regular IVIG therapy can control these infections in patients, even those with normal total IgG levels.


B-Lymphocytes , Bacterial Infections , Gain of Function Mutation , Immunoglobulins, Intravenous , STAT1 Transcription Factor , Humans , STAT1 Transcription Factor/genetics , Bacterial Infections/immunology , Bacterial Infections/genetics , Female , Male , Child , Immunoglobulins, Intravenous/therapeutic use , B-Lymphocytes/immunology , Adult , Immunoglobulin G/immunology , Immunoglobulin G/blood , Child, Preschool , Adolescent , Young Adult , Immunity, Humoral
3.
Article En, Zh | MEDLINE | ID: mdl-38763769

OBJECTIVES: To investigate the effect of subacute exposure of Di (2-ethylhexyl) phthalate (DEHP) on endometrial decidualization in mice. METHODS: CD1 mice were orally administrated with 300 mg·kg-1·d-1 (low-dose group), 1000 mg·kg-1·d-1 (medium-dose group), or 3000 mg·kg-1·d-1 DEHP (1/10 LD50, high-dose group) for 28 days, respectively. The early natural pregnancy model and artificially induced decidualization model were established, and the uterine tissues were collected on D7 of natural pregnancy and D8 of artificially induced decidualization, respectively. The effects of subacute exposure to DEHP on the decidualization of mice were detected by HE staining, Masson staining, TUNEL staining, and Western blotting, respectively. A model of spontaneous abortion was constructed in mice after subacute exposure to 300 mg·kg-1·d-1 DEHP, and the effect of impaired decidualization on pregnancy was investigated by observing the pregnancy outcome on the 10th day of gestation. RESULTS: Compared with the control group, the conception rate was significantly lower in the high-dose DEHP subacute exposure group. HE staining showed that, compared with the control group, the decidual stromal cells in the low- and medium-dose exposure groups were disorganized, the nuclei of the cells were irregular, the cytoplasmic staining was uneven, and the number of polymorphonuclear cells was significantly reduced. Masson staining showed that compared with the control group, the collagen fibers in the decidua region of the DEHP low-dose group and the medium-dose group were more distributed, more abundant and more disorderly. TUNEL staining showed increased apoptosis in the decidua area compared to the control group. Western blotting showed that the expression of BMP2, a marker molecule for endometrial decidualization, was significantly reduced. The abortion rate and embryo resorption rate were significantly higher, and the number of embryos, uterine wet weight, uterine area and placenta wet weight were significantly lower in mice exposed to 300 mg·kg-1·d-1 DEHP than in control mice stimulated by mifepristone abortifacient drug. CONCLUSIONS: Subacute exposure to DEHP leads to impaired endometrial decidualization during early pregnancy and exacerbates the risk of adverse pregnant outcomes in mice.

5.
Environ Res ; 252(Pt 1): 118865, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38583661

Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.

6.
Open Med (Wars) ; 19(1): 20240918, 2024.
Article En | MEDLINE | ID: mdl-38584832

Background: Lipid metabolism disorders lead to lipotoxicity. The hyperlipidemia-induced early stage of renal injury mainly manifests as podocyte damage. CD36 mediates fatty acid uptake and the subsequent accumulation of toxic lipid metabolites, resulting in podocyte lipotoxicity. Methods: Male Sprague-Dawley rats were divided into two groups: the normal control group and the high-fat diet group (HFD). Podocytes were cultured and treated with palmitic acid (PA) and sulfo-N-succinimidyl oleate (SSO). Protein expression was measured by immunofluorescence and western blot analysis. Boron-dipyrromethene staining and Oil Red O staining was used to analyze fatty acid accumulation. Results: Podocyte foot process (FP) effacement and marked proteinuria occurred in the HFD group. CD36 protein expression was upregulated in the HFD group and in PA-treated podocytes. PA-treated podocytes showed increased fatty acid accumulation, reactive oxygen species (ROS) production, and actin cytoskeleton rearrangement. However, pretreatment with the CD36 inhibitor SSO decreased lipid accumulation and ROS production and alleviated actin cytoskeleton rearrangement in podocytes. The antioxidant N-acetylcysteine suppressed PA-induced podocyte FP effacement and ROS generation. Conclusions: CD36 participated in fatty acid-induced FP effacement in podocytes via oxidative stress, and CD36 inhibitors may be helpful for early treatment of kidney injury.

7.
Plant Cell ; 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38581433

The style and stigma at the apical gynoecium are crucial for flowering plant reproduction. However, the mechanisms underlying specification of the apical gynoecium remain unclear. Here, we demonstrate that Class II TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors are critical for apical gynoecium specification in Arabidopsis (Arabidopsis thaliana). The septuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 (tcpSEP) and duodecuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 tcp24 tcp1 tcp12 tcp18 tcp16 (tcpDUO) mutants produce narrower and longer styles, while disruption of TCPs and CRABS CLAW (CRC) or NGATHAs (NGAs) in tcpDUO crc or tcpDUO nga1 nga2 nga4 causes the apical gynoecium to be replaced by lamellar structures with indeterminate growth. TCPs are predominantly expressed in the apex of the gynoecium. TCP4 interacts with CRC to synergistically up-regulate the expression level of NGAs, and NGAs further form high-order complexes to control the expression of auxin-related genes in the apical gynoecium by directly interacting with TCP4. Our findings demonstrate that TCP4 physically associates with CRC and NGAs to control auxin biosynthesis in forming fine structures of the apical gynoecium.

8.
Biomol Biomed ; 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38581716

The application of immune checkpoint inhibitors has proven to be an effective treatment for cancer. Immune checkpoints such as programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T-cell immunoglobulin-3 (TIM-3), T-cell immunoglobulin and ITIM domain (TIGIT), and lymphocyte activation gene-3 (LAG-3) have received extensive attention, and the efficacy of antibodies or inhibitors against these checkpoints (either alone or in combination) has been evaluated in many tumors. This paper provides a brief overview of the PD-1 and LAG-3 checkpoints, and then shifts focus to the combined use of PD-1 and LAG-3 antibodies in both in vivo and in vitro experiments. In the in vitro experiments, we examined the correlation between the expression and activation of these inhibitors on T cells, and also assessed toxicity in animals in preparation for in vivo experiments. The effects of the combined use of PD-1 and LAG-3 antibodies were then summarized in animal models of melanoma, MC38 carcinoma, and other tumors. In clinical studies, the combined application of these antibodies was assessed in patients with melanoma, colorectal, breast, and renal cell cancers, as well as other solid tumors. In general, the combination of PD-1 and LAG-3 antibodies has shown promising results in both in vivo and in vitro studies.

9.
iScience ; 27(5): 109668, 2024 May 17.
Article En | MEDLINE | ID: mdl-38655196

Exhausted CD8+ T cells (Texs) are characterized by the expression of various inhibitory receptors (IRs), whereas the functional attributes of these co-expressed IRs remain limited. Here, we systematically characterized the diversity of IR co-expression patterns in Texs from both human oropharyngeal squamous cell carcinoma (OPSCC) tissues and syngeneic OPSCC model. Nearly 60% of the Texs population co-expressed two or more IRs, and the number of co-expressed IRs was positively associated with superior exhaustion and cytotoxicity phenotypes. In OPSCC patients, programmed cell death-1 (PD-1) blockade significantly enhanced PDCD1-based co-expression with other IR genes, whereas dual blockades of PD-1 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) significantly upregulated CTLA4-based co-expression with other IR genes. Collectively, our findings demonstrate that highly diverse IR co-expression is a leading feature of Texs and represents their functional states, which might provide essential clues for the rational selection of immune checkpoint inhibitors in treating OPSCC.

10.
Plant Dis ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687570

Casuarina equisetifolia is crucial in protecting coastal regions of China against typhoon attacks, but has faced a substantial challenge due to wilt disease caused by pathogens of the Ralstonia solanacearum species complex (RSSC). Although the initial outbreak of Casuarina wilt in 1970s was effectively controlled by disease-resistant C. equisetifolia varieties, the disease has recently re-emerged in coastal regions of Guangdong. In this study, we report the isolation, characterization, and comparative genomic analysis of 11 RSSC strains from diseased C. equisetifolia at various locations along the coast of Guangdong. Phylogenomic analysis showed that the strains were closely related and clustered with phylotype I strains previously isolated from peanuts. Single-gene based analysis further suggested these strains could be derived from strains present in Guangdong since the 1980s, indicating a historical context to their current pathogenicity. Casuarina-isolated strains exhibited notably higher virulence against C. equisetifolia and peanuts than representative RSSC strains GMI1000 and EP1, suggesting host-specific adaptations which possibly contributed to the recent outbreak. Comparative genomic analysis among RSSC strains revealed a largely conserved genome structure and high levels of conservation in gene clusters encoding extracellular polysaccharides biosynthesis, secretion systems, and quorum sensing regulatory systems. However, we also found a number of unique genes in the Casuarina-isolated strains that were absent in GMI1000 and EP1, and vice versa, pointing to potential genetic factors underpinning their differential virulence. These unique genes offer promising targets for future functional studies. Overall, our findings provide crucial insights into the RSSC pathogens causing Casuarina wilt in Guangdong, guiding future efforts in disease control and prevention.

11.
Clin Transl Allergy ; 14(5): e12356, 2024 May.
Article En | MEDLINE | ID: mdl-38687096

BACKGROUND: Gut microbiota are closely related to the development and regulation of the host immune system by regulating the maturation of immune cells and the resistance to pathogens, which affects the host immunity. Early use of antibiotics disrupts the homeostasis of gut microbiota and increases the risk of asthma. Gut microbiota actively interact with the host immune system via the gut-lung axis, a bidirectional communication pathway between the gut and lung. The manipulation of gut microbiota through probiotics, helminth therapy, and fecal microbiota transplantation (FMT) to combat asthma has become a hot research topic. BODY: This review mainly describes the current immune pathogenesis of asthma, gut microbiota and the role of the gut-lung axis in asthma. Moreover, the potential of manipulating the gut microbiota and its metabolites as a treatment strategy for asthma has been discussed. CONCLUSION: The gut-lung axis has a bidirectional effect on asthma. Gut microecology imbalance contributes to asthma through bacterial structural components and metabolites. Asthma, in turn, can also cause intestinal damage through inflammation throughout the body. The manipulation of gut microbiota through probiotics, helminth therapy, and FMT can inform the treatment strategies for asthma by regulating the maturation of immune cells and the resistance to pathogens.

12.
J Food Sci ; 89(5): 2611-2628, 2024 May.
Article En | MEDLINE | ID: mdl-38571450

Fructus Aurantii (FA) is an edible and medicinal functional food used worldwide that enhances digestion. Since raw FA (RFA) possesses certain side effects for some patients, processed FA (PFA) is commonly used in clinical practice. This study aimed to establish an objective and comprehensive quality evaluation of the PFA that employed the technique of steaming and fermentation. Combined with the volatile and non-volatile components, as well as the regulation of gut microbiota, the differentiation between RFA and PFA was analyzed. The results showed that the PFA considerably reduced the contents of flavonoid glycosides while increasing hesperidin-7-O-glucoside and flavonoid aglycones. The electronic nose and GC-MS (Gas chromatography/mass spectrometry) effectively detected the variation in flavor between RFA and PFA. Correlation analysis revealed that eight volatile components (relative odor activity value [ROAV] ≥ 0.1) played a key role in inducing odor modifications. The original floral and woody notes were subdued due to decreased levels of linalool, sabinene, α-terpineol, and terpinen-4-ol. After processing, more delightful flavors such as lemon and fruity aromas were acquired. Furthermore, gut microbiota analysis indicated a significant increase in beneficial microbial taxa. Particularly, Lactobacillus, Akkermansia, and Blautia exhibited higher abundance following PFA treatment. Conversely, a lower presence of pathogenic bacteria, including Proteobacteria, Flexispira, and Clostridium. This strategy contributes to a comprehensive analysis technique for the quality assessment of FA, providing scientific justifications for processing FA into high-value products with enhanced health benefits. PRACTICAL APPLICATION: This study provided an efficient approach to Fructus Aurantii quality evaluation. The methods of fermentation and steaming showed improved quality and safety.


Fermentation , Fruit , Gas Chromatography-Mass Spectrometry , Gastrointestinal Microbiome , Odorants , Taste , Volatile Organic Compounds , Fruit/chemistry , Fruit/microbiology , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Citrus/chemistry , Humans , Flavoring Agents/analysis , Bacteria/classification , Food Handling/methods , Quality Control , Flavonoids/analysis
13.
Toxicology ; 504: 153796, 2024 May.
Article En | MEDLINE | ID: mdl-38582279

As a broad-spectrum and efficient insecticide, beta-Cypermethrin (ß-CYP) poses a health risk to pregnancy. It matters the mechanisms of maternal exposure to ß-CYP for impacting reproductive health. The placenta, a transient organ pivotal for maternal-fetal communication during pregnancy, plays a crucial role in embryonic development. The effect of ß-CYP exposure on the placenta and its underlying molecular mechanisms remain obscure. The objective of this study was to investigate the effect of ß-CYP exposure on placental development and the function of trophoblast, as well as the underlying mechanisms through CD-1 mouse model (1, 10, 20 mg/kg.bw) and in vitro HTR-8/SVneo cell model (12.5, 25, 50, 100 µM). We found slower weight gain and reduced uterine wet weight in pregnant mice with maternal exposure to ß-CYP during pregnancy, as well as adverse pregnancy outcomes such as uterine bleeding and embryo resorption. The abnormal placental development in response to ß-CYP was noticed, including imbalanced placental structure and disrupted labyrinthine vascular development. Trophoblasts, pivotal in placental development and vascular remodeling, displayed abnormal differentiation under ß-CYP exposure. This aberration was characterized by thickened trophoblast layers in the labyrinthine zone, accompanied by mitochondrial and endoplasmic reticulum swelling within trophoblasts. Further researches on human chorionic trophoblast cell lines revealed that ß-CYP exposure induced apoptosis in HTR-8/SVneo cells. This induction resulted in a notable decrease in migration and invasion abilities, coupled with oxidative stress and the inhibition of the Notch signaling pathway. N-acetylcysteine (an antioxidant) partially restored the impaired Notch signaling pathway in HTR-8/SVneo cells, and mitigated cellular functional damage attributed to ß-CYP exposure. Collectively, exposure to ß-CYP induced oxidative stress and then led to inhibition of the Notch signaling pathway and dysfunction of trophoblast cells, ultimately resulted in abnormal placenta and pregnancy. These findings indicate Reactive Oxygen Species as potential intervention targets to mitigate ß-CYP toxicity. The comprehensive elucidation contributes to our understanding of ß-CYP biosafety and offers an experimental basis for preventing and managing its reproductive toxicity.


Insecticides , Oxidative Stress , Pyrethrins , Trophoblasts , Pyrethrins/toxicity , Female , Pregnancy , Trophoblasts/drug effects , Trophoblasts/pathology , Trophoblasts/metabolism , Oxidative Stress/drug effects , Animals , Mice , Insecticides/toxicity , Humans , Maternal Exposure/adverse effects , Placentation/drug effects , Cell Line , Placenta/drug effects , Placenta/pathology , Placenta/metabolism , Apoptosis/drug effects
14.
Nat Commun ; 15(1): 2261, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480720

The occurrence of NAD+ as a non-canonical RNA cap has been demonstrated in diverse organisms. TIR domain-containing proteins present in all kingdoms of life act in defense responses and can have NADase activity that hydrolyzes NAD+. Here, we show that TIR domain-containing proteins from several bacterial and one archaeal species can remove the NAM moiety from NAD-capped RNAs (NAD-RNAs). We demonstrate that the deNAMing activity of AbTir (from Acinetobacter baumannii) on NAD-RNA specifically produces a cyclic ADPR-RNA, which can be further decapped in vitro by known decapping enzymes. Heterologous expression of the wild-type but not a catalytic mutant AbTir in E. coli suppressed cell propagation and reduced the levels of NAD-RNAs from a subset of genes before cellular NAD+ levels are impacted. Collectively, the in vitro and in vivo analyses demonstrate that TIR domain-containing proteins can function as a deNAMing enzyme of NAD-RNAs, raising the possibility of TIR domain proteins acting in gene expression regulation.


Escherichia coli , NAD , NAD/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Bacteria/genetics , RNA Caps/metabolism , Receptors, Interleukin-1
16.
Food Chem Toxicol ; 187: 114604, 2024 May.
Article En | MEDLINE | ID: mdl-38508570

Adverse environmental factors during maternal gestation pose a threat to pregnancy. Environmental factors, particularly nanoparticles, can impact pregnancy by causing damage to the placenta. Compared to early gestation, foetuses in late gestation are more robustly developed and at lower risk of adverse effects from environmental factors. Delivery systems for targeted therapy during pregnancy is predominantly focused on their application in late gestation. Zeolitic imidazolate framework-8 (ZIF-8) holds great potential for targeted drug therapy. To evaluate the value of ZIF-8 in targeted treatment of disorders associated with late gestation, it is crucial to investigate the biological effects of ZIF-8 exposure during late gestation. Here, a mouse model exposed to ZIF-8 particles at different doses (5, 10, and 15 mg/kg) during late gestation was constructed. We found that ZIF-8 particles were deposited in the uterus of pregnant mice. ZIF-8 could trigger placental neutrophil aggregation and induce inflammation, which led to trophoblast pyroptosis and impair placental function, adversely affecting the foetus. Neutrophil depletion alleviated placental and foetal damage induced by ZIF-8. This study provides a novel mechanistic view of the reproductive toxicity induced by ZIF-8 and may offer clues to reduce the latent harm of adverse environmental factors to pregnancy.


Maternal Exposure , Placenta , Humans , Pregnancy , Female , Animals , Mice , Maternal Exposure/adverse effects , Pyroptosis , Neutrophils , Trophoblasts
17.
Sci Total Environ ; 925: 171790, 2024 May 15.
Article En | MEDLINE | ID: mdl-38508253

Fenvalerate (FEN), a type II pyrethroid pesticide, finds extensive application in agriculture, graziery and public spaces for pest control, resulting in severe environmental pollution. As an environmental endocrine disruptor with estrogen-like activity, exposure to FEN exhibited adverse effects on ovarian functions. Additionally, the presence of the metabolite of FEN in women's urine shows a positive association with the risk of primary ovarian insufficiency (POI). In mammals, the primordial follicle pool established during the early life serves as a reservoir for storing all available oocytes throughout the female reproductive life. The initial size of the primordial follicle pool and the rate of its depletion affect the occurrence of POI. Nevertheless, there is very limited research about the impact of FEN exposure on primordial folliculogenesis. In this study, pregnant mice were orally administrated with 0.2, 2.0 and 20.0 mg/kg FEN from 16.5 to 18.5 days post-coitus (dpc). Ovaries exposed to FEN exhibited the presence of large germ-cell cysts that persist on 1 days post-parturition (1 dpp), followed by a significant reduction in the total number of oocytes in pups on 5 dpp. Moreover, the levels of m6A-RNA and its associated proteins METTL3 and YTHDF2 were significantly increased in the ovaries exposed to FEN. The increased YTHDF2 promoted the assembly of the cytoplasmic processing bodies (P-body) in the oocytes, accompanied with altered expression of transcripts. Additionally, when YTHDF2 was knocked-down in fetal ovary cultures, the primordial folliculogenesis disrupted by FEN exposure was effectively restored. Further, the female offspring exposed to FEN displayed ovarian dysfunctions reminiscent of POI in early adulthood, characterized by decreases in ovarian coefficient and female hormone levels. Therefore, the present study revealed that exposure to FEN during late pregnancy disrupted primordial folliculogenesis by YTHDF2-mediated P-body assembly, causing enduring adverse effects on female fertility.


Nitriles , Ovarian Reserve , Pyrethrins , Humans , Pregnancy , Animals , Female , Mice , Adult , Animals, Newborn , Processing Bodies , Oocytes/metabolism , Pyrethrins/toxicity , Pyrethrins/metabolism , Mammals/metabolism , Methyltransferases , RNA-Binding Proteins
18.
Comput Biol Med ; 173: 108366, 2024 May.
Article En | MEDLINE | ID: mdl-38554661

BACKGROUND: Gender carries important information related to male and female characteristics, and a large number of studies have attempted to use physiological measurement methods for gender classification. Although previous studies have shown that there exist statistical differences in some Electroencephalographic (EEG) microstate parameters between males and females, it is still unknown that whether these microstate parameters can be used as potential biomarkers for gender classification based on machine learning. METHODS: We used two independent resting-state EEG datasets: the first dataset included 74 females and matched 74 males, and the second one included 42 males and matched 42 females. EEG microstate analysis based on modified k-means clustering method was applied, and temporal parameter and nonlinear characteristics (sample entropy and Lempel-Ziv complexity) of EEG microstate sequences were extracted to compare between males and females. More importantly, these microstate temporal parameters and complexity were tried to train six machine learning methods for gender classification. RESULTS: We obtained five common microstates for each dataset and each group. Compared with the male group, the female group has significantly higher temporal parameters of microstate B, C, E and lower temporal parameters of microstate A and D, and higher complexity of microstate sequence. When using combination of microstate temporal parameters and complexity or only microstate temporal parameters as classification features in an independent test set (the second dataset), we achieved 95.2% classification accuracy. CONCLUSION: Our research findings indicate that the dynamics of microstate have considerable Gender-specific alteration. EEG microstates can be used as neurophysiological biomarkers for gender classification.


Brain Mapping , Brain , Male , Humans , Female , Brain/physiology , Brain Mapping/methods , Electroencephalography/methods , Cluster Analysis , Biomarkers
19.
Ren Fail ; 46(1): 2329257, 2024 Dec.
Article En | MEDLINE | ID: mdl-38482596

End-stage renal disease is a worldwide health burden, but the pathogenesis of uremia-associated cognitive impairment (CI) is poorly recognized. We hypothesized that uremia brings about deficiency of thiamin and folic acid and causes CI by inducing oxidative stress. Therefore, 24 Sprague-Dawley rats were randomly divided into two groups: a 5/6 nephrectomy group (n = 12) and a sham-operated group (n = 12). The Morris water maze was used to assess the cognitive function eight weeks post-surgery, and serum levels of thiamin, folic acid and homocysteine were detected subsequently. Brain and kidney tissues were collected for pathological examination and 8-Hydroxy-2'-deoxyguanosine (8-OHdG) immunochemistry staining. Results showed that the escape latency on training days 1-2 was longer, and the time in quadrant IV on experimental day 6 was significantly shorter in 5/6 nephrectomy group. Meanwhile, the uremic rats showed decreased thiamin, folic acid and increased homocysteine. We also found the time in quadrant IV was positively correlated with thiamin and folic acid level, while negatively correlated with the blood urea nitrogen and 8-OHdG positive cell proportion. Furthermore, in 5/6 nephrectomy group, the hippocampal neuron count was significantly reduced, and a greater proportion of 8-OHdG positive cells were detected. Pretreating LPS-stimulated rat microglial cells with thiamin or folic acid in vitro alleviated the inflammatory impairment in terms of cell viability and oxidative stress. In summary, we applied a uremic rat model and proved that uremia causes serum thiamin and folic acid deficiency, homocysteine elevation, along with neuron reduction and severe oxidative stress in hippocampus, finally leading to CI.


Renal Insufficiency , Uremia , Rats , Animals , Folic Acid , Thiamine , Rats, Sprague-Dawley , Uremia/complications , Cognition , Homocysteine
20.
Heliyon ; 10(6): e27572, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38509970

It is well known that colorectal cancer (CRC) has a high morbidity rate, a poor prognosis when metastasized, and a greatly shortened 5-year survival rate. Therefore, understanding the mechanism of tumor metastasis is still important. Based on the "seed and soil" theory, the concept of " premetastatic niche (PMN)" was introduced by Kaplan et al. The complex interaction between primary tumors and the metastatic organ provides a beneficial microenvironment for tumor cells to colonize at a distance. With further exploration of the PMN, exosomes have gradually attracted interest from researchers. Exosomes are extracellular vesicles secreted from cells that include various biological information and are involved in communication between cells. As a key molecule in the PMN, exosomes are closely related to tumor metastasis. In this article, we obtained information by conducting a comprehensive search across academic databases including PubMed and Web of Science using relevant keywords. Only recent, peer-reviewed articles published in the English language were considered for inclusion. This study aims to explore in depth how exosomes promote the formation of pre-metastatic microenvironment (PMN) in colorectal cancer and its related mechanisms.

...