Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Ann Neurol ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747498

OBJECTIVES: Due to increased gene dose for the amyloid precursor protein (APP), elderly adults with Down syndrome (DS) are at a markedly increased risk of Alzheimer's disease (AD), known as DS-AD. How the increased APP gene dose acts and which APP products are responsible for DS-AD is not well understood, thus limiting strategies to target pathogenesis. As one approach to address this question, we used a novel class of γ-secretase modulators that promote γ-site cleavages by the γ-secretase complex, resulting in lower levels of the Aß42 and Aß40 peptides. METHODS: Ts65Dn mice, which serve as a model of DS, were treated via oral gavage with 10 mg/kg/weekday of BPN15606 (a potent and novel pyridazine-containing γ-secretase modulators). Treatment started at 3 months-of-age and lasted for 4 months. RESULTS: Demonstrating successful target engagement, treatment with BPN15606 significantly decreased levels of Aß40 and Aß42 in the cortex and hippocampus; it had no effect on full-length APP or its C-terminal fragments in either 2 N or Ts65Dn mice. Importantly, the levels of total amyloid-ß were not impacted, pointing to BPN15606-mediated enhancement of processivity of γ-secretase. Additionally, BPN15606 rescued hyperactivation of Rab5, a protein responsible for regulating endosome function, and normalized neurotrophin signaling deficits. BPN15606 treatment also normalized the levels of synaptic proteins and tau phosphorylation, while reducing astrocytosis and microgliosis, and countering cognitive deficits. INTERPRETATION: Our findings point to the involvement of increased levels of Aß42 and/or Aß40 in contributing to several molecular and cognitive traits associated with DS-AD. They speak to increased dosage of the APP gene acting through heightened levels of Aß42 and/or Aß40 as supporting pathogenesis. These findings further the interest in the potential use of γ-secretase modulators for treating and possibly preventing AD in individuals with DS. ANN NEUROL 2024.

2.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38608784

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Brain-Derived Neurotrophic Factor , Cerebral Cortex , Disease Models, Animal , Huntington Disease , Neurons , Synapses , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Brain-Derived Neurotrophic Factor/metabolism , Synapses/metabolism , Synapses/drug effects , Synapses/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Mice , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Mice, Transgenic , Cells, Cultured , Synapsins/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Mice, Inbred C57BL
5.
Ann Neurol ; 94(2): 245-258, 2023 08.
Article En | MEDLINE | ID: mdl-37042072

OBJECTIVE: The retromer complex plays an essential role in intracellular endosomal sorting. Deficits in the retromer complex are linked to enhanced Aß production. The levels of the components of the retromer complex are reported to be downregulated in Alzheimer disease (AD). Down syndrome (DS) shares neuropathological features with AD. Recent evidence points to dysregulation of the retromer complex in DS. The mechanisms underlying retromer deficits in DS and AD are poorly understood. METHODS: We measured the levels of retromer components in the frontal cortex of cases of DS-AD (AD in DS) as well as DS; the frontal cortex of a person partially trisomic (PT-DS) for human chromosome 21 (HSA21), whose genome had only the normal 2 copies of the APP gene, was also examined. We also analyzed these proteins in the Dp16 mouse model of DS. To further explore the molecular mechanism for changes in the retromer complex, we treated Dp16 mice with a γ-secretase modulator (GSM; 776890), a treatment that reduces the levels of Aß42 and Aß40. RESULTS: We found VPS26A, VPS26B, and VPS29, but not VPS35, were significantly reduced in both DS and DS-AD, but not in PT-DS. Downregulation of VPS26A, VPS26B, and VPS29 was recapitulated in the brains of old Dp16 mice (at 16 months of age) and required increased App gene dose. Significantly, GSM treatment completely prevented reductions of the retromer complex. INTERPRETATION: Our studies point to increased APP gene dose as a compromising retromer function in DS and suggest a causal role for Aß42 and Aß40. ANN NEUROL 2023;94:245-258.


Alzheimer Disease , Down Syndrome , Animals , Humans , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases , Down Syndrome/drug therapy , Down Syndrome/metabolism , Endosomes/metabolism , Protein Transport , Vesicular Transport Proteins/genetics
6.
Alzheimers Dement ; 19(5): 2095-2116, 2023 05.
Article En | MEDLINE | ID: mdl-36370135

INTRODUCTION: Synaptic failure, a hallmark of Alzheimer's disease (AD), is correlated with reduced levels of synaptic proteins. Though people with Down syndrome (DS) are at markedly increased risk for AD (AD-DS), few studies have addressed synapse dysfunction. METHODS: Synaptic proteins were measured in the frontal cortex of DS, AD-DS, sporadic AD cases, and controls. The same proteins were examined in the Dp16 model of DS. RESULTS: A common subset of synaptic proteins were reduced in AD and AD-DS, but not in DS or a case of partial trisomy 21 lacking triplication of APP gene. Pointing to compromised synaptic function, the reductions in AD and AD-DS were correlated with reduced SNARE complexes. In Dp16 mice reductions in syntaxin 1A, SNAP25 and the SNARE complex recapitulated findings in AD-DS; reductions were impacted by both age and increased App gene dose. DISCUSSION: Synaptic phenotypes shared between AD-DS and AD point to shared pathogenetic mechanisms.


Alzheimer Disease , Down Syndrome , Mice , Animals , Down Syndrome/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , SNARE Proteins
7.
Pharmaceutics ; 13(12)2021 Dec 07.
Article En | MEDLINE | ID: mdl-34959389

Posiphen tartrate (Posiphen) is an orally available small molecule that targets a conserved regulatory element in the mRNAs of amyloid precursor protein (APP) and α-synuclein (αSYN) and inhibits their translation. APP and αSYN can cause neurodegeneration when their aggregates induce neurotoxicity. Therefore, Posiphen is a promising drug candidate for neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Posiphen's safety has been demonstrated in three independent phase I clinical trials. Moreover, in a proof of concept study, Posiphen lowered neurotoxic proteins and inflammatory markers in cerebrospinal fluid of mild cognitive impaired patients. Herein we investigated whether Posiphen reduced the expression of other proteins, as assessed by stable isotope labeling with amino acids in cell culture (SILAC) followed by mass spectrometry (MS)-based proteomics. Neuroblastoma SH-SY5Y cells, an in vitro model of neuronal function, were used for the SILAC protein profiling response. Proteins whose expression was altered by Posiphen treatment were characterized for biological functions, pathways and networks analysis. The most significantly affected pathway was the Huntington's disease signaling pathway, which, along with huntingtin (HTT) protein, was down-regulated by Posiphen in the SH-SY5Y cells. The downregulation of HTT protein by Posiphen was confirmed by quantitative Western blotting and immunofluorescence. Unchanged mRNA levels of HTT and a comparable decay rate of HTT proteins after Posiphen treatment supported the coclusion that Posiphen reduced HTT via downregulation of the translation of HTT mRNA. Meanwhile, the downregulation of APP and αSYN proteins by Posiphen was also confirmed. The mRNAs encoding HTT, APP and αSYN contain an atypical iron response element (IRE) in their 5'-untranslated regions (5'-UTRs) that bind iron regulatory protein 1 (IRP1), and Posiphen specifically bound this complex. Conversely, Posiphen did not bind the IRP1/IRE complex of mRNAs with canonical IREs, and the translation of these mRNAs was not affected by Posiphen. Taken together, Posiphen shows high affinity binding to the IRE/IRP1 complex of mRNAs with an atypical IRE stem loop, inducing their translation suppression, including the mRNAs of neurotoxic proteins APP, αSYN and HTT.

8.
Front Aging Neurosci ; 13: 700280, 2021.
Article En | MEDLINE | ID: mdl-34276349

Down syndrome (DS) is the most common genetic cause of Alzheimer's disease (AD) due to trisomy for all or part of human chromosome 21 (Hsa21). It is also associated with other phenotypes including distinctive facial features, cardiac defects, growth delay, intellectual disability, immune system abnormalities, and hearing loss. All adults with DS demonstrate AD-like brain pathology, including amyloid plaques and neurofibrillary tangles, by age 40 and dementia typically by age 60. There is compelling evidence that increased APP gene dose is necessary for AD in DS, and the mechanism for this effect has begun to emerge, implicating the C-terminal APP fragment of 99 amino acid (ß-CTF). The products of other triplicated genes on Hsa21 might act to modify the impact of APP triplication by altering the overall rate of biological aging. Another important age-related DS phenotype is hearing loss, and while its mechanism is unknown, we describe its characteristics here. Moreover, immune system abnormalities in DS, involving interferon pathway genes and aging, predispose to diverse infections and might modify the severity of COVID-19. All these considerations suggest human trisomy 21 impacts several diseases in an age-dependent manner. Thus, understanding the possible aging-related mechanisms associated with these clinical manifestations of DS will facilitate therapeutic interventions in mid-to-late adulthood, while at the same time shedding light on basic mechanisms of aging.

10.
Alzheimers Res Ther ; 13(1): 59, 2021 03 10.
Article En | MEDLINE | ID: mdl-33691783

BACKGROUND: Impaired axonal transport may contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD) and Down syndrome (DS). Axonal transport is a complex process in which specific motor proteins move cargoes to and from neuronal cell bodies and their processes. Inconsistent reports point to the changes in AD in the levels of the classical anterograde motor protein kinesin family member 5 (KIF5) and the primary neuronal KIF regulator kinesin light chain 1 (KLC1), raising the possibility that anterograde transport is compromised in AD. METHODS AND MATERIALS: To address inconsistencies and determine if the shared pathologies in AD and elderly DS subjects with dementia (AD in DS; AD-DS) extend to the changes in KIF5 and KLC1, we measured the levels of all the three KIF5 family members and KLC1 in the AD and AD-DS frontal cortex and AD temporal cortex and cerebellum in samples taken with a short postmortem interval. To support future studies to explore the cell biological basis for any changes detected, we also examined the levels of these proteins in the brains of young and aged adult mice in the Dp (16)1Yey/+ (Dp16) mouse model of DS and J20 mouse model of AD. RESULTS: There were no changes in comparison with controls in KIF5 family members in either the AD or AD-DS samples when normalized to either ß-actin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Interestingly, however, samples from control brains as well as from AD and AD-DS demonstrated strong positive correlations between the levels of KIF5 family members, suggesting positive co-regulated expression. Importantly, while earlier reports pointed to a negative correlation between the levels of the amyloid precursor protein (APP) and KIF5A levels, we found the opposite to be true in AD-DS; this was especially striking given triplication of the APP gene, with increased APP protein levels. AD and control samples showed positive correlations between fl-hAPP and KIF5 members, but they were less consistent. In contrast to the findings for KIF5, the levels of KLC1 were downregulated in the frontal cortex of both AD and AD-DS brains; interestingly, this change was not seen in the AD temporal cortex or cerebellum. As postmortem interval has a negative effect on the levels of KLC1, but not KIF5 members, we analyzed a subset of samples with a very short postmortem interval (PMI) (≤ 6 h), a PMI that was not significantly correlated with the levels of KLC1 in either AD or AD-DS samples; we confirmed the presence of a statistically significant reduction of KLC1 in AD and AD-DS brains as compared with control brains. Studies comparing Dp16 to its euploid control recapitulated human studies in demonstrating no change in KIF5 levels and a positive correlation between the levels of KIF5 family members. J20 mice also showed normal KIF5 levels. However, unlike the AD and AD-DS frontal cortex, KLC1 levels were not reduced in the brains of Dp16 or J20 mice. CONCLUSION: These data point to significant reductions in KLC1 in AD and AD-DS. In so doing, they raise the possibility of compromised KLC1-mediated axonal transport in these conditions, a posit that can now be pursued in model systems in which KLC1 expression is reduced.


Alzheimer Disease , Down Syndrome , Kinesins , Microtubule-Associated Proteins , Animals , Mice , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Kinesins/genetics , Kinesins/metabolism , Microtubule-Associated Proteins/metabolism
11.
Alzheimers Dement ; 17(2): 271-292, 2021 02.
Article En | MEDLINE | ID: mdl-32975365

OBJECTIVE: Recent clinical trials targeting amyloid beta (Aß) and tau in Alzheimer's disease (AD) have yet to demonstrate efficacy. Reviewing the hypotheses for AD pathogenesis and defining possible links between them may enhance insights into both upstream initiating events and downstream mechanisms, thereby promoting discovery of novel treatments. Evidence that in Down syndrome (DS), a population markedly predisposed to develop early onset AD, increased APP gene dose is necessary for both AD neuropathology and dementia points to normalization of the levels of the amyloid precursor protein (APP) and its products as a route to further define AD pathogenesis and discovering novel treatments. BACKGROUND: AD and DS share several characteristic manifestations. DS is caused by trisomy of whole or part of chromosome 21; this chromosome contains about 233 protein-coding genes, including APP. Recent evidence points to a defining role for increased expression of the gene for APP and for its 99 amino acid C-terminal fragment (C99, also known as ß-CTF) in dysregulating the endosomal/lysosomal system. The latter is critical for normal cellular function and in neurons for transmitting neurotrophic signals. NEW/UPDATED HYPOTHESIS: We hypothesize that the increase in APP gene dose in DS initiates a process in which increased levels of full-length APP (fl-APP) and its products, including ß-CTF and possibly Aß peptides (Aß42 and Aß40), drive AD pathogenesis through an endosome-dependent mechanism(s), which compromises transport of neurotrophic signals. To test this hypothesis, we carried out studies in the Ts65Dn mouse model of DS and examined the effects of Posiphen, an orally available small molecule shown in prior studies to reduce fl-APP. In vitro, Posiphen lowered fl-APP and its C-terminal fragments, reversed Rab5 hyperactivation and early endosome enlargement, and restored retrograde transport of neurotrophin signaling. In vivo, Posiphen treatment (50 mg/kg/d, 26 days, intraperitoneal [i.p.]) of Ts65Dn mice was well tolerated and demonstrated no adverse effects in behavior. Treatment resulted in normalization of the levels of fl-APP, C-terminal fragments and small reductions in Aß species, restoration to normal levels of Rab5 activity, reduced phosphorylated tau (p-tau), and reversed deficits in TrkB (tropomyosin receptor kinase B) activation and in the Akt (protein kinase B [PKB]), ERK (extracellular signal-regulated kinase), and CREB (cAMP response element-binding protein) signaling pathways. Remarkably, Posiphen treatment also restored the level of choline acetyltransferase protein to 2N levels. These findings support the APP gene dose hypothesis, point to the need for additional studies to explore the mechanisms by which increased APP gene expression acts to increase the risk for AD in DS, and to possible utility of treatments to normalize the levels of APP and its products for preventing AD in those with DS. MAJOR CHALLENGES FOR THE HYPOTHESIS: Important unanswered questions are: (1) When should one intervene in those with DS; (2) would an APP-based strategy have untoward consequences on possible adaptive changes induced by chronically increased APP gene dose; (3) do other genes present on chromosome 21, or on other chromosomes whose expression is dysregulated in DS, contribute to AD pathogenesis; and (4) can one model strategies that combine the use of an APP-based treatment with those directed at other AD phenotypes including p-tau and inflammation. LINKAGE TO OTHER MAJOR THEORIES: The APP gene dose hypothesis interfaces with the amyloid cascade hypothesis of AD as well as with the genetic and cell biological observations that support it. Moreover, upregulation of fl-APP protein and products may drive downstream events that dysregulate tau homeostasis and inflammatory responses that contribute to propagation of AD pathogenesis.


Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Cholinesterase Inhibitors/administration & dosage , Down Syndrome/genetics , Endosomes , Phenotype , Physostigmine/analogs & derivatives , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Down Syndrome/metabolism , Endosomes/metabolism , Endosomes/pathology , Humans , Mice , Neurons/metabolism , Phosphorylation , Physostigmine/administration & dosage
12.
Front Neurosci ; 13: 659, 2019.
Article En | MEDLINE | ID: mdl-31293377

Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary human and financial burdens. Studies of pathogenesis are essential for defining targets for discovering disease-modifying treatments. Past studies of AD neuropathology provided valuable, albeit limited, insights. Nevertheless, building on these findings, recent studies have provided an increasingly rich harvest of genetic, molecular and cellular data that are creating unprecedented opportunities to both understand and treat AD. Among the most significant are those documenting the presence within the AD brain of toxic oligomeric species of Aß and tau. Existing data support the view that such species can propagate and spread within neural circuits. To place these findings in context we first review the genetics and neuropathology of AD, including AD in Down syndrome (AD-DS). We detail studies that support the existence of toxic oligomeric species while noting the significant unanswered questions concerning their precise structures, the means by which they spread and undergo amplification and how they induce neuronal dysfunction and degeneration. We conclude by offering a speculative synthesis for how oligomers of Aß and tau initiate and drive pathogenesis. While 100 years after Alzheimer's first report there is much still to learn about pathogenesis and the discovery of disease-modifying treatments, the application of new concepts and sophisticated new tools are poised to deliver important advances for combatting AD.

13.
Front Neurosci ; 13: 446, 2019.
Article En | MEDLINE | ID: mdl-31133787

Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary financial and emotional burdens (Apostolova, 2016). Studies of pathogenesis are essential for defining critical molecular and cellular events and for discovering therapies to prevent or mitigate their effects. Through studies of neuropathology, genetic and cellular, and molecular biology recent decades have provided many important insights. Several hypotheses have been suggested. Documentation in the 1980s of selective loss of cholinergic neurons of the basal forebrain, followed by clinical improvement in those treated with inhibitors of acetylycholinesterase, supported the "cholinergic hypothesis of age-related cognitive dysfunction" (Bartus et al., 1982). A second hypothesis, prompted by the selective loss of cholinergic neurons and the discovery of central nervous system (CNS) neurotrophic factors, including nerve growth factor (NGF), prompted the "deficient neurotrophic hypothesis" (Chen et al., 2018). The most persuasive hypothesis, the amyloid cascade hypothesis first proposed more than 25 years ago (Selkoe and Hardy, 2016), is supported by a wealth of observations. Genetic studies were exceptionally important, pointing to increased dose of the gene for the amyloid precursor protein (APP) in Down syndrome (DS) and a familial AD (FAD) due to duplication of APP and to mutations in APP and in the genes for Presenilin 1 and 2 (PSEN1, 2), which encode the γ-secretase enzyme that processes APP (Dorszewska et al., 2016). The "tau hypothesis" noted the prominence of tau-related pathology and its correlation with dementia (Kametani and Hasegawa, 2018). Recent interest in induction of microglial activation in the AD brain, as well as other manifestations of inflammation, supports the "inflammatory hypothesis" (Mcgeer et al., 2016). We place these findings in the context of the selective, but by no means unique, involvement of BFCNs and their trophic dependence on NGF signaling and speculate as to how pathogenesis in these neurons is initiated, amplified and ultimately results in their dysfunction and death. In so doing we attempt to show how the different hypotheses for AD may interact and reinforce one another. Finally, we address current attempts to prevent and/or treat AD in light of advances in understanding pathogenetic mechanisms and suggest that studies in the DS population may provide unique insights into AD pathogenesis and treatment.

15.
Transl Oncol ; 12(3): 475-484, 2019 Mar.
Article En | MEDLINE | ID: mdl-30594036

Early detection of gastrointestinal tumors improves patient survival. However, patients with these tumors are typically diagnosed at an advanced stage and have poor prognosis. The incidence and mortality of gastrointestinal cancers, including esophageal, gastric, liver, colorectal, and pancreatic cancers, are increasing worldwide. Novel diagnostic and therapeutic agents are required to improve patient survival and quality of life. The tumor microenvironment, which contains nontumor cells, signaling molecules such as growth factors and cytokines, and extracellular matrix proteins, plays a critical role in cancer cell proliferation, invasion, and metastasis. Transforming growth factor beta (TGF-ß) signaling has dual roles in gastrointestinal tumor development and progression as both a tumor suppressor and tumor promoter. Here, we review the dynamic roles of TGF-ß and its receptors in gastrointestinal tumors and provide evidence that targeting TGF-ß signaling may be an effective therapeutic strategy.

16.
Traffic ; 19(11): 840-853, 2018 11.
Article En | MEDLINE | ID: mdl-30120810

The cytosolic chaperonin T-complex protein (TCP) 1-ring complex (TRiC) has been shown to exert neuroprotective effects on axonal transport through clearance of mutant Huntingtin (mHTT) in Huntington's disease. However, it is presently unknown if TRiC also has any effect on axonal transport in wild-type neurons. Here, we examined how TRiC impacted the retrograde axonal transport of brain-derived neurotrophic factor (BDNF). We found that expression of a single TRiC subunit significantly enhanced axonal transport of BDNF, leading to an increase in instantaneous velocity with a concomitant decrease in pauses for retrograde BDNF transport. The transport enhancing effect by TRiC was dependent on endogenous tau expression because no effect was seen in neurons from tau knockout mice. We showed that TRiC regulated the level of cyclin-dependent kinase 5 (CDK5)/p35 positively, contributing to TRiC-mediated tau phosphorylation (ptau). Expression of a single TRiC subunit increased the level of ptau while downregulation of the TRiC complex decreased ptau. We further demonstrated that TRiC-mediated increase in ptau induced detachment of tau from microtubules. Our study has thus revealed that TRiC-mediated increase in tau phosphorylation impacts retrograde axonal transport.


Axonal Transport , Chaperonin Containing TCP-1/metabolism , tau Proteins/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , CHO Cells , Cells, Cultured , Chaperonin Containing TCP-1/genetics , Cricetinae , Cricetulus , Cyclin-Dependent Kinase 5/metabolism , HEK293 Cells , Humans , Microtubules/metabolism , Phosphorylation , Rats
17.
Mol Pain ; 14: 1744806918769492, 2018.
Article En | MEDLINE | ID: mdl-29587571

Opioid receptors play an important role in mediating the spinal analgesia. The µ-opioid receptor is the major target of opioid drugs widely used in clinics. However, the regulatory mechanisms of analgesic effect and tolerance for clinical µ-opioid receptor-targeting opioids remain to be fully investigated. Previous studies showed the interaction of δ-opioid receptor with µ-opioid receptor to form the µ-opioid receptor/δ-opioid receptor heteromers that could be processed in the degradation pathway after δ-opioid receptor agonist treatment. Here, we showed that clinical µ-opioid receptor-targeting opioids, morphine, fentanyl, and methadone, but not tramadol, caused µ-opioid receptor co-internalization with δ-opioid receptors in both transfected human embryonic kidney 293 cells and primary sensory neurons. Prolonged treatment of morphine led to µ-opioid receptor co-degradation with δ-opioid receptors. Furthermore, fentanyl and methadone, but not tramadol, induced the drug tolerance similar to morphine. Thus, the clinical µ-opioid receptor-targeting opioids including morphine, fentanyl, and methadone induce µ-opioid receptor co-internalization with δ-opioid receptors, which may be involved in the analgesic tolerance of these opioids.


Analgesics, Opioid/pharmacology , Endocytosis , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/metabolism , Analgesics/pharmacology , Animals , Cells, Cultured , Drug Tolerance , HEK293 Cells , Humans , Mice , Morphine/pharmacology , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism
18.
Nat Commun ; 9(1): 1007, 2018 03 08.
Article En | MEDLINE | ID: mdl-29520015

Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants aberrantly interact with Nrp1, giving insight into the disease's specific effects on motor neurons, these cannot explain length-dependent axonal degeneration. Here, we report that GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice. These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations, indicating the existence of multiple and different mechanisms in CMT2D.


Axonal Transport/genetics , Axons/metabolism , Charcot-Marie-Tooth Disease/pathology , Glycine-tRNA Ligase/metabolism , Histone Deacetylase 6/metabolism , Motor Neurons/metabolism , Acetylation , Animals , Axonal Transport/drug effects , Charcot-Marie-Tooth Disease/genetics , Disease Models, Animal , Female , Glycine-tRNA Ligase/genetics , HEK293 Cells , Histone Deacetylase 6/antagonists & inhibitors , Humans , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Mutation , Nerve Tissue Proteins/metabolism , Neuropilin-1/metabolism , Peripheral Nerves/metabolism , Tubulin/metabolism
19.
Free Radic Biol Med ; 114: 52-61, 2018 01.
Article En | MEDLINE | ID: mdl-29031834

Neurotrophic factors, including the members of the neurotrophin family, play important roles in the development and maintenance of the nervous system. Trophic factor signals must be transmitted over long distances from axons and dendrites to the cell bodies of neurons. A mode of signaling well suited to the challenge of robust long distance signaling is the signaling endosome. We review the biology of signaling endosomes and the "signaling endosome hypothesis". Evidence for disruption of signaling endosome function in disorders of the nervous system is also reviewed. Changes in endosome structure in Alzheimer disease (AD) and Down syndrome (DS) are present early in these disorders. Data for the APP products responsible are reviewed and the consequent changes in signaling from endosomes discussed. We conclude by pointing to the need for additional studies to explore the biology of signaling endosomes in normal neurons and to elucidate their role in the pathogenesis of neurodegeneration.


Alzheimer Disease/pathology , Down Syndrome/pathology , Endosomes/pathology , Nerve Growth Factors/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Animals , Down Syndrome/complications , Down Syndrome/metabolism , Endosomes/metabolism , Humans
20.
Sci Rep ; 7(1): 3868, 2017 06 20.
Article En | MEDLINE | ID: mdl-28634349

Recent studies have demonstrated that hyperphosphorylation of tau protein plays a role in neuronal toxicities of α-synuclein (ASYN) in neurodegenerative disease such as familial Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease. Using a transgenic mouse model of Parkinson's disease (PD) that expresses GFP-ASYN driven by the PDGF-ß promoter, we investigated how accumulation of ASYN impacted axonal function. We found that retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF) in DIV7 cultures of E18 cortical neurons was markedly impaired at the embryonic stage, even though hyperphosphorylation of tau was not detectable in these neurons at this stage. Interestingly, we found that overexpressed ASYN interacted with dynein and induced a significant increase in the activated levels of small Rab GTPases such as Rab5 and Rab7, both key regulators of endocytic processes. Furthermore, expression of ASYN resulted in neuronal atrophy in DIV7 cortical cultures of either from E18 transgenic mouse model or from rat E18 embryos that were transiently transfected with ASYN-GFP for 72 hrs. Our studies suggest that excessive ASYN likely alters endocytic pathways leading to axonal dysfunction in embryonic cortical neurons in PD mouse models.


Brain-Derived Neurotrophic Factor/metabolism , Parkinson Disease/metabolism , Signal Transduction , Synucleins/metabolism , Animals , Axons/metabolism , Disease Models, Animal , Gene Expression , Genes, Reporter , Mice , Mice, Transgenic , Molecular Imaging , Neurons/metabolism , Parkinson Disease/genetics , Protein Transport , Synucleins/genetics , alpha-Synuclein/metabolism , rab5 GTP-Binding Proteins/metabolism
...