Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 473
1.
Eur J Med Chem ; 271: 116462, 2024 May 05.
Article En | MEDLINE | ID: mdl-38691888

The G protein-coupled bile acid receptor 1 (GPBAR1) or TGR5 is widely distributed across organs, including the small intestine, stomach, liver, spleen, and gallbladder. Many studies have established strong correlations between TGR5 and glucose homeostasis, energy metabolism, immune-inflammatory responses, and gastrointestinal functions. These results indicate that TGR5 has a significant impact on the progression of tumor development and metabolic disorders such as diabetes mellitus and obesity. Targeting TGR5 represents an encouraging therapeutic approach for treating associated human ailments. Notably, the GLP-1 receptor has shown exceptional efficacy in clinical settings for diabetes management and weight loss promotion. Currently, numerous TGR5 agonists have been identified through natural product-based approaches and virtual screening methods, with some successfully progressing to clinical trials. This review summarizes the intricate relationships between TGR5 and various diseases emphasizing recent advancements in research on TGR5 agonists, including their structural characteristics, design tactics, and biological activities. We anticipate that this meticulous review could facilitate the expedited discovery and optimization of novel TGR5 agonists.


Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Molecular Structure , Drug Development , Obesity/drug therapy , Animals , Diabetes Mellitus/drug therapy , Neoplasms/drug therapy
2.
JCI Insight ; 9(10)2024 May 22.
Article En | MEDLINE | ID: mdl-38775156

Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single-B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.


Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , Humans , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Animals , Mice , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cryoelectron Microscopy , Epitopes/immunology , Broadly Neutralizing Antibodies/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Female
3.
Eur J Med Chem ; 272: 116494, 2024 May 10.
Article En | MEDLINE | ID: mdl-38749268

Epigenetic alterations promote cancer development by regulating the expression of various oncogenes and anti-oncogenes. Histone methylation modification represents a pivotal area in epigenetic research and numerous publications have demonstrated that aberrant histone methylation is highly correlated with tumorigenesis and development. As a key histone demethylase, lysine-specific demethylase 5B (KDM5B) demethylates lysine 4 of histone 3 (H3K4) and serves as a transcriptional repressor of certain tumor suppressor genes. Meanwhile, KDM5B inhibits STING-induced intrinsic immune response of tumor cells or recruits SETDB1 through non-enzymatic function to silence reverse transcription elements to promote immune escape. The conventional small molecule inhibitors can only inhibit the enzymatic function of KDM5B with no effect on the non-enzymatic function. In the article, we present the development of the first series of KDM5B degraders based on CPI-455 to inhibit the non-enzymatic function. Among them, GT-653 showed optimal KDM5B degradation efficiency in a ubiquitin proteasome-dependent manner. GT-653 efficiently reduced KDM5B protein levels without affecting KDM5B transcription. Interestingly, GT-653 increased H3K4me3 levels and activated the type-I interferon signaling pathway in 22RV1 cells without significant phenotypic response on cell proliferation.

4.
ACS Cent Sci ; 10(3): 579-594, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38559310

Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Unfortunately, targeting STAT3 with small molecules has proven to be very challenging, and for full activation of STAT3, the cooperative phosphorylation of both tyrosine 705 (Tyr705) and serine 727 (Ser727) is needed. Further, a selective inhibitor of STAT3 dual phosphorylation has not been developed. Here, we identified a low nanomolar potency and highly selective small-molecule STAT3 inhibitor that simultaneously inhibits both STAT3 Tyr705 and Ser727 phosphorylation. YY002 potently inhibited STAT3-dependent tumor cell growth in vitro and achieved potent suppression of tumor growth and metastasis in vivo. More importantly, YY002 exhibited favorable pharmacokinetics, an acceptable safety profile, and superior antitumor efficacy compared to BBI608 (STAT3 inhibitor that has advanced into phase III trials). For the mechanism, YY002 is selectively bound to the STAT3 Src Homology 2 (SH2) domain over other STAT members, which strongly suppressed STAT3 nuclear and mitochondrial functions in STAT3-dependent cells. Collectively, this study suggests the potential of small-molecule STAT3 inhibitors as possible anticancer therapeutic agents.

5.
Methods Mol Biol ; 2794: 341-351, 2024.
Article En | MEDLINE | ID: mdl-38630243

Single-cell RNA sequencing (scRNA-seq) has been widely applied in neuroscience research, enabling the investigation of cellular heterogeneity at the transcriptional level, the characterization of rare cell types, and the detailed analysis of the stochastic nature of gene expression. Isolation of single nerve cells in good health, especially from the adult rodent brain, is the most difficult and critical process for scRNA-seq. Here, we describe methods to optimize protease digestion of brain slices, which enable yield of millions of cells in good health from the adult brain.


Astrocytes , Neurons , Animals , Mice , RNA-Seq , Brain , Endopeptidases , Suspensions
6.
Biol Psychiatry ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38679359

Neuronal activity is the basis of information encoding and processing in the brain. During neuronal activation, intracellular ATP is generated to meet the high-energy demands. Meantime, ATP is secreted, increasing the extracellular ATP concentration and acting as a homeostatic messenger that mediates cell‒cell communication to prevent aberrant hyperexcitability of the nervous system. In addition to the confined release and fast synaptic signaling of classic neurotransmitters within synaptic clefts, ATP can be released by all brain cells, diffuses widely and targets different types of purinergic receptors on neurons and glial cells, making it possible to orchestrate brain neuronal activity and participate in various physiological aspects, such as sleep and wakefulness, learning and memory, and feeding. Dysregulation of extracellular ATP leads to a "destabilizing" effect on the neural network, as found in the etiopathology of many psychiatric diseases, including depression, anxiety, schizophrenia, and autism spectrum disorder. This review summarizes advances in the understanding of the mechanisms by which extracellular ATP serves as an intercellular signaling molecule to regulate neural activity, with a focus on how it maintains the homeostasis of neural networks. In particular, we also focus on neural activity issues resulting from dysregulation of extracellular ATP and propose that aberrant levels of extracellular ATP may play a role in the etiopathology of some psychiatric diseases, highlighting the potential therapeutic targets of ATP signaling in the treatment of these psychiatric diseases. Finally, we suggest potential avenues to further elucidate the role of extracellular ATP in intercellular communication and psychiatric diseases.

7.
J Gerontol Soc Work ; : 1-19, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600761

Older adults are at a digital disadvantage because of social stereotypes and a lack of social support; however, smartphones have become a necessary technology to cope with crises and daily life in China, especially during the pandemic. This study aimed to help marginalized older adults take on new tasks by developing digital technology education that used a framework of social cognitive theory in social work. The study followed a quasi-experimental design in which 153 elderly people were recruited from three community service centers; 90 of the participants received 6-weekly intervention. Intent-to-treat analysis, effect size calculations, and sensitivity analysis were conducted. The findings show that digital education significantly enhanced two domains of digital life adaptation abilities: general digital life adaptation abilities [g = .50, 95% CI (.70, 2.69)] and pandemic digital life adaptation abilities [g = .89, 95% CI (.96, 2.07)]. The intervention also improved three domains of digital self-efficacy: sharing and communication [g = .55, 95% CI (.04, .48)], verification [g = .34, 95% CI (.01, .59)], and influencing others [g = .53, 95% CI (.13, .77)]. The study showed that the new intervention approach reduced the harm to vulnerable older adults in the digital wave, especially during the pandemic.

8.
Water Res ; 254: 121421, 2024 May 01.
Article En | MEDLINE | ID: mdl-38461601

Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant posing a risk in environmental persistence, bioaccumulation and biotoxicity. This study was to reach a comprehensive and deeper understanding of PFOS elimination in a UV254 photolytic treatment with the co-presence of Fe2+ and nitrilotriacetic acid trisodium salt (NTA). PFOS defluorination was noticeably enhanced in the UV/Fe2+-NTA treatment compared with UV/NTA, UV/Fe2+ and our previously studied UV/Fe3+ treatments. UV-vis, FTIR, and UPLC/MS-MS results indicated the formation of PFOS-Fe2+-NTA complex in PFOS, Fe2+ and NTA mixture. The transition energy gap of PFOS-Fe2+-NTA decreased below the excitation energy supplied by UV254 irradiation, corresponding with red shift appearing in UV-vis scanning spectrum. This favored intramolecular electron transfer from Fe2+-NTA to PFOS under UV254 irradiation to form electron-accepting PFOS. Molecular electrostatic potential and atom charge distribution analyses suggested electron density rearrangement and perturbation in the perfluorinated carbon chain of electron-accepting PFOS, leading to the decrease in bond dissociation energies. Intermediate products detection suggested the parallel defluorination pathways of PFOS desulfonation, middle carbon chain scission and direct C-F cleavage. NTA exhibited crucial functions in the UV/Fe2+-NTA treatment by holding Fe2+/Fe3+ in soluble form as a chelant and favoring water activation to generate hydrated electrons (eaq-) under UV irradiation as a photosensitizer. Fe2+ acting as the conduit for electron transfer and the bridge of PFOS anion and NTA was thought functioning best at 200 µM in this study. The degree of UV/Fe2+-NTA -synergized PFOS defluorination also depended on eaq- yield and UV254 photon flux. The structure dependence on the electron transfer process of PFOS and PFOA was explored incorporating molecular structure descriptors. Because of possessing greater potential to acquire electrons or less likeliness to donate its electrons than PFOA, PFOS exhibited faster defluorination kinetics in the published "reduction treatments" than "oxidation" ones. Whereas, PFOA defluorination kinetics were at similar level in both "reduction" and "oxidation" treatments.


Alkanesulfonic Acids , Fluorocarbons , Electrons , Nitrilotriacetic Acid , Photolysis , Fluorocarbons/chemistry , Sodium Chloride , Alkanesulfonic Acids/chemistry , Carbon , Caprylates
9.
Appl Microbiol Biotechnol ; 108(1): 267, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38498053

ADP-activated ß-D-manno-heptoses (ADP-ß-D-manno-heptoses) are precursors for the biosynthesis of the inner core of lipopolysaccharide in Gram-negative bacteria. Recently, ADP-D-glycero-ß-D-manno-heptose (ADP-D,D-manno-heptose) and its C-6'' epimer, ADP-L-glycero-ß-D-manno-heptose (ADP-L,D-manno-heptose), were identified as potent pathogen-associated molecular patterns (PAMPs) that can trigger robust innate immune responses. Although the production of ADP-D,D-manno-heptose has been studied in several different pathogenic Gram-negative bacteria, current knowledge of ADP-ß-D-manno-heptose biosynthesis in Vibrio strains remains limited. Here, we characterized the biosynthetic enzymes of ADP-D,D-manno-heptose and the epimerase that converts it to ADP-L,D-manno-heptose from Vibrio cholerae (the causative agent of pandemic cholera) and Vibrio parahaemolyticus (non-cholera pathogen causing vibriosis with clinical manifestations of gastroenteritis and wound infections) in comparison with their isozymes from Escherichia coli. Moreover, we discovered that ß-D-mannose 1-phosphate, but not α-D-mannose 1-phosphate, could be activated to its ADP form by the nucleotidyltransferase domains of bifunctional kinase/nucleotidyltransferases HldEVC (from V. cholerae) and HldEVP (from V. parahaemolyticus). Kinetic analyses of the nucleotidyltransferase domains of HldEVC and HldEVP together with the E. coli-derived HldEEC were thus carried out using ß-D-mannose 1-phosphate as a mimic sugar substrate. Overall, our works suggest that V. cholerae and V. parahaemolyticus are capable of synthesizing ADP-ß-D-manno-heptoses and lay a foundation for further physiological function explorations on manno-heptose metabolism in Vibrio strains. KEY POINTS: • Vibrio strains adopt the same biosynthetic pathway as E. coli in synthesizing ADP-ß-D-manno-heptoses. • HldEs from two Vibrio strains and E. coli could activate ß-D-mannose 1-phosphate to ADP-ß-D-mannose. • Comparable nucleotidyltransfer efficiencies were observed in the kinetic studies of HldEs.


Escherichia coli , Vibrio , Escherichia coli/genetics , Kinetics , Vibrio/genetics , Immunity, Innate , Nucleotidyltransferases
10.
J Affect Disord ; 354: 544-552, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38479500

BACKGROUND: Although miscarriage and termination of pregnancy affect maternal mental illnesses on subsequent pregnancies, their effects on the positive mental health (e.g., eudaimonia) of both first-time and multi-time parents have received minimal attention, especially for fathers. This longitudinal study examines the effects of experiences of miscarriage and termination on parental well-being in subsequent pregnancies from prenatal to postpartum years, while simultaneously considering parity. METHODS: Pregnant women and their partners were recruited during early prenatal visits in Taiwan from 2011 to 2022 and were followed up from mid-pregnancy to 1 year postpartum. Six waves of self-reported assessments were employed. RESULTS: Of 1813 women, 11.3 % and 14.7 % had experiences of miscarriage and termination, respectively. Compared with the group without experiences of miscarriage or termination, experiences of miscarriage were associated with increased risks of paternal depression (adjusted odds ratio = 1.6, 95 % confidence interval [CI] = 1.13-2.27), higher levels of anxiety (adjusted ß = 1.83, 95 % CI = 0.21-3.46), and lower eudaimonia scores (adjusted ß = -1.09, 95 % CI = -1.99 to -0.19) from the prenatal to postpartum years, particularly among multiparous individuals. Additionally, experiences of termination were associated with increased risks of depression in their partner. LIMITATIONS: The experiences of miscarriage and TOP were self-reported and limited in acquiring more detailed information through questioning. CONCLUSIONS: These findings highlight the decreased well-being of men whose partners have undergone termination of pregnancy or experienced miscarriage, and stress the importance of interventions aimed at preventing adverse consequences among these individuals.


Abortion, Spontaneous , Male , Female , Pregnancy , Humans , Abortion, Spontaneous/epidemiology , Depression/epidemiology , Longitudinal Studies , Anxiety/epidemiology , Fathers/psychology
11.
Eur J Haematol ; 112(6): 964-974, 2024 Jun.
Article En | MEDLINE | ID: mdl-38388794

OBJECTIVES: This study assesses the clinical significance of additional cytogenetic abnormalities (ACAs) and/or the deletion of 3'CBFB (3'CBFBdel) resulting in unbalanced CBFB::MYH11 fusion in acute myeloid leukemia (AML) with inv (16)/t(16;16)/CBFB::MYH11. METHODS: We retrospectively evaluated the clinicopathologic features of 47 adult de novo AML with inv (16)/t(16;16)/CBFB::MYH11 fusion. There were 44 balanced and 3 unbalanced CBFB::MYH11 fusions. Given the low frequency of unbalanced cases, the latter group was combined with 19 published cases (N = 22) for statistic and meta-analysis. RESULTS: Both balanced and unbalanced cases were characterized by frequent ACAs (56.5% and 72.7%, respectively), with +8, +22, and del(7q) as the most frequent abnormalities. The unbalanced group tends to be younger individuals (p = .04) and is associated with a lower remission rate (p = .02), although the median overall survival (OS) was not statistically different (p = .2868). In the balanced group, "ACA" subgroup had higher mortality (p = .013) and shorter OS (p = .011), and patients with relapsed disease had a significantly shorter OS (p = .0011). Cox multivariate regression analysis confirmed that ACAs and history of disease relapse are independent risk factors, irrespective of disease relapse status. In the combined cohort, cases with ACAs had shorter OS than those with "Sole" abnormality (p = .0109). CONCLUSIONS: ACAs are independent high-risk factors in adult AML with inv (16)/t(16;16)/CBFB::MYH11 fusion and should be integrated for risk stratification in this disease. Larger studies are needed to assess the clinical significance of the unbalanced CBFB::MYH11 fusion resulting from the 3'CBFBdel.


Chromosome Aberrations , Chromosome Inversion , Chromosomes, Human, Pair 16 , Leukemia, Myeloid, Acute , Oncogene Proteins, Fusion , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/diagnosis , Adult , Female , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Aged , Chromosomes, Human, Pair 16/genetics , Prognosis , Retrospective Studies , Young Adult , Core Binding Factor beta Subunit/genetics , Adolescent , Aged, 80 and over , Translocation, Genetic , Myosin Heavy Chains/genetics
12.
PLoS One ; 19(2): e0297379, 2024.
Article En | MEDLINE | ID: mdl-38354159

Emoji are an important substitute for non-verbal cues (such as facial expressions) in online written communication. So far, however, little is known about individual differences regarding how they are perceived. In the current study, we examined the influence of gender, age, and culture on emoji comprehension. Specifically, a sample of 523 participants across the UK and China completed an emoji classification task. In this task, they were presented with a series of emoji, each representing one of six facial emotional expressions, across four commonly used platforms (Apple, Android, WeChat, and Windows). Their task was to choose from one of six labels (happy, sad, angry, surprised, fearful, disgusted) which emotion was represented by each emoji. Results showed that all factors (age, gender, and culture) had a significant impact on how emojis were classified by participants. This has important implications when considering emoji use, for example, conversation with partners from different cultures.


Comprehension , Individuality , Humans , Emotions , Facial Expression , Anger
13.
Front Microbiol ; 15: 1354447, 2024.
Article En | MEDLINE | ID: mdl-38384263

Akkermansia muciniphila is a gram-negative bacterium that colonizes the human gut, making up 3-5% of the human microbiome. A. muciniphila is a promising next-generation probiotic with clinical application prospects. Emerging studies have reported various beneficial effects of A. muciniphila including anti-cancer, delaying aging, reducing inflammation, improving immune function, regulating nervous system function, whereas knowledge on its roles and mechanism in infectious disease is currently unclear. In this review, we summarized the basic characteristics, genome and phenotype diversity, the influence of A. muciniphila and its derived components on infectious diseases, such as sepsis, virus infection, enteric infection, periodontitis and foodborne pathogen induced infections. We also provided updates on mechanisms how A. muciniphila protects intestinal barrier integrity and modulate host immune response. In summary, we believe that A. muciniphila is a promising therapeutic probiotic that may be applied for the treatment of a variety of infectious diseases.

14.
Cancer Med ; 13(2): e7008, 2024 Jan.
Article En | MEDLINE | ID: mdl-38334504

BACKGROUND: Studies on the correlation between high body mass index (BMI) and extended survival among patients receiving immune checkpoint inhibitors (ICIs) have been made, although findings have shown variability. Our research explored the phenomenon of the "obesity paradox" in patients with metastatic urothelial carcinoma (mUC) undergoing treatment with ICIs. MATERIALS AND METHODS: We conducted a retrospective analysis of patients diagnosed with mUC who received a minimum of one cycle of ICI treatment at two medical centers in Taiwan from September 2015 to January 2023. Features of patients' clinicopathologic factors, including age, sex, primary or metastatic location, treatment line, and BMI were examined. The primary outcome were overall survival (OS) and progression-free survival (PFS), which were assessed utilizing the Kaplan-Meier method. We employed the Cox-regression model to adjust for multiple covariates. RESULTS: A total of 215 patients were included, with 128 (59.5%) being male, and the median age was 70 years. In the obese group (BMI ≥25 kg/m2 ), patients demonstrated significantly better median OS compared to the non-obese group (BMI <25 kg/m2 ) (21.9 vs. 8.3 months; p = 0.021). However, there was no significant difference in median PFS between the high and low BMI groups (4.7 vs. 2.8 months; p = 0.16). Post-hoc subgroup revealed a survival benefit from ICI treatment in male patients within the BMI ≥25 kg/m2 group (HR 0.49, 95% CI 0.30-0.81, p = 0.005). CONCLUSION: Based on real-world data from the Asia-Pacific region, there appears to be a correlation between obesity and prolonged OS in patients receiving ICI treatment for mUC.


Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Male , Aged , Female , Body Mass Index , Immune Checkpoint Inhibitors/adverse effects , Retrospective Studies , Obesity/complications , Obesity/epidemiology
15.
Nat Commun ; 15(1): 1300, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38346942

Osteoclasts are over-activated as we age, which results in bone loss. Src deficiency in mice leads to severe osteopetrosis due to a functional defect in osteoclasts, indicating that Src function is essential in osteoclasts. G-protein-coupled receptors (GPCRs) are the targets for ∼35% of approved drugs but it is still unclear how GPCRs regulate Src kinase activity. Here, we reveal that GPR54 activation by its natural ligand Kisspeptin-10 (Kp-10) causes Dusp18 to dephosphorylate Src at Tyr 416. Mechanistically, Gpr54 recruits both active Src and the Dusp18 phosphatase at its proline/arginine-rich motif in its C terminus. We show that Kp-10 binding to Gpr54 leads to the up-regulation of Dusp18. Kiss1, Gpr54 and Dusp18 knockout mice all exhibit osteoclast hyperactivation and bone loss, and Kp-10 abrogated bone loss by suppressing osteoclast activity in vivo. Therefore, Kp-10/Gpr54 is a promising therapeutic target to abrogate bone resorption by Dusp18-mediated Src dephosphorylation.


Bone Resorption , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Receptors, G-Protein-Coupled/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism , Mice, Knockout , Bone Resorption/genetics , Receptors, Kisspeptin-1
16.
Int J Biol Sci ; 20(2): 486-501, 2024.
Article En | MEDLINE | ID: mdl-38169532

Ovarian cancer is one of the tumors with the highest fatality rate among gynecological tumors. The current 5-year survival rate of ovarian cancer is <35%. Therefore, more novel alternative strategies and drugs are needed to treat ovarian cancer. The transcription factor B-cell lymphoma 6 (BCL6) is critically associated with poor prognosis and cisplatin resistance in ovarian cancer treatment. Therefore, BCL6 may be an attractive therapeutic target for ovarian cancer. However, the role of targeting BCL6 in ovarian cancer remains elusive. Here, we developed a novel BCL6 small molecule inhibitor, WK369, which exhibits excellent anti-ovarian cancer bioactivity, induces cell cycle arrest and causes apoptosis. WK369 effectively inhibits the growth and metastasis of ovarian cancer without obvious toxicity in vitro and in vivo. meanwhile, WK369 can prolong the survival of ovarian cancer-bearing mice. It is worth noting that WK369 also has significant anti-tumor effects on cisplatin-resistant ovarian cancer cell lines. Mechanistic studies have shown that WK369 can directly bind to the BCL6-BTB domain and block the interaction between BCL6 and SMRT, leading to the reactivation of p53, ATR and CDKN1A. BCL6-AKT, BCL6-MEK/ERK crosstalk is suppressed. As a first attempt, our study demonstrates that targeting BCL6 may be an effective approach to treat ovarian cancer and that WK369 has the potential to be used as a candidate therapeutic agent for ovarian cancer.


Cisplatin , Ovarian Neoplasms , Humans , Female , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Transcription Factors , Cell Line, Tumor
17.
Adv Mater ; 36(18): e2309844, 2024 May.
Article En | MEDLINE | ID: mdl-38227203

Metal halide perovskite solar cells (PSCs) have garnered much attention in recent years. Despite the remarkable advancements in PSCs utilizing traditional metal electrodes, challenges such as stability concerns and elevated costs have necessitated the exploration of innovative electrode designs to facilitate industrial commercialization. Herein, a physically and chemically stable molybdenum (Mo) electrode is developed to fundamentally tackle the instability factors introduced by electrodes. The combined spatially resolved element analyses and theoretical study demonstrate the high diffusion barrier of Mo ions within the device. Structural and morphology characterization also reveals the negligible plastic deformation and halide-metal reaction during aging when Mo is in contact with perovskite (PVSK). The electrode/underlayer junction is further stabilized by a thin seed layer of titanium (Ti) to improve Mo film's uniformity and adhesion. Based on a corresponding p-i-n PSCs (ITO/PTAA/PVSK/C60/SnO2/ITO/Ti/Mo), the champion sample could deliver an efficiency of 22.25%, which is among the highest value for PSCs based on Mo electrodes. Meanwhile, the device shows negligible performance decay after 2000 h operation, and retains 91% of the initial value after 1300 h at 50-60 °C. In summary, the multilayer Mo electrode opens an effective avenue to all-round stable electrode design in high-performance PSCs.

18.
Mol Ther Methods Clin Dev ; 32(1): 101169, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38187094

DNA vaccines for infectious diseases and cancer have been explored for years. To date, only one DNA vaccine (ZyCoV-D) has been authorized for emergency use in India. DNA vaccines are inexpensive and long-term thermostable, however, limited by the low efficiency of intracellular delivery. The recent success of mRNA/lipid nanoparticle (LNP) technology in the coronavirus disease 2019 (COVID-19) pandemic has opened a new application for nucleic acid-based vaccines. Here, we report that plasmid encoding a trimeric spike protein with LNP delivery (pTS/LNP), similar to those in Moderna's COVID-19 vaccine, induced more effective humoral responses than naked pTS or pTS delivered via electroporation. Compared with TSmRNA/LNP, pTS/LNP immunization induced a comparable level of neutralizing antibody titers and significant T helper 1-biased immunity in mice; it also prolonged the maintenance of higher antigen-specific IgG and neutralizing antibody titers in hamsters. Importantly, pTS/LNP immunization exhibits enhanced cross-neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and protects hamsters from the challenge of SARS-CoV-2 (Wuhan strain and the Omicron BA.1 variant). This study indicates that pDNA/LNPs as a promising platform could be a next-generation vaccine technology.

19.
NPJ Genom Med ; 9(1): 4, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38195571

Our study presents a 319-gene panel targeting inherited retinal dystrophy (IRD) genes. Through a multi-center retrospective cohort study, we validated the assay's effectiveness and clinical utility and characterized the mutation spectrum of Taiwanese IRD patients. Between January 2018 and May 2022, 493 patients in 425 unrelated families, all initially suspected of having IRD without prior genetic diagnoses, underwent detailed ophthalmic and physical examinations (with extra-ocular features recorded) and genetic testing with our customized panel. Disease-causing variants were identified by segregation analysis and clinical interpretation, with validation via Sanger sequencing. We achieved a read depth of >200× for 94.2% of the targeted 1.2 Mb region. 68.5% (291/425) of the probands received molecular diagnoses, with 53.9% (229/425) resolved cases. Retinitis pigmentosa (RP) is the most prevalent initial clinical impression (64.2%), and 90.8% of the cohort have the five most prevalent phenotypes (RP, cone-rod syndrome, Usher's syndrome, Leber's congenital amaurosis, Bietti crystalline dystrophy). The most commonly mutated genes of probands that received molecular diagnosis are USH2A (13.7% of the cohort), EYS (11.3%), CYP4V2 (4.8%), ABCA4 (4.5%), RPGR (3.4%), and RP1 (3.1%), collectively accounted for 40.8% of diagnoses. We identify 87 unique unreported variants previously not associated with IRD and refine clinical diagnoses for 21 patients (7.22% of positive cases). We developed a customized gene panel and tested it on the largest Taiwanese cohort, showing that it provides excellent coverage for diverse IRD phenotypes.

20.
J Orthop Translat ; 44: 60-71, 2024 Jan.
Article En | MEDLINE | ID: mdl-38269355

Background: The chondrogenic differentiation of mesenchymal stem cells (MSCs) to enhance cartilage repair and regeneration is a promising strategy to alleviate osteoarthritis (OA) progression. Method: The potency of JD-312 in inducing chondrogenic differentiation of MSCs was assessed and verified. The efficacy of JD-312-treated MSCs was evaluated using a Sprague-Dawley rat DMM model. Additionally, the capacity of JD-312 to successfully recruit bone marrow-derived mesenchymal stem cells (BMSCs) for the treatment of OA in vitro was confirmed via intra-articular injection. The repair status of the articular cartilage was analyzed in vivo through histological examination. Result: In this study, we identify JD-312 as a novel non-toxic small molecule that can promote chondrogenic differentiation in human umbilical cord-derived MSCs (hUCMSCs) and human bone marrow MSCS (hBMSCs) in vitro. We also show that transient differentiation of MSCs with JD-312 prior to in vivo administration remarkably improves the regeneration of cartilage and promotes Col2a1 and Acan expression in rat models of DMM, in comparison to kartogenin (KGN) pre-treatment or MSCs alone. Furthermore, direct intra-articular injection of JD-312 in murine model of OA showed reduced loss of articular cartilage and improved pain parameters. Lastly, we identified that the effects of JD-312 are at least in part mediated via upregulation of genes associated with the focal adhesion, PI3K-Akt signaling and the ECM-receptor interaction pathways, and specifically cartilage oligomeric matrix protein (COMP) may play a vital role. Conclusion: Our study demonstrated that JD-312 showed encouraging repair effects for OA in vivo. The translational potential of this article: Together, our findings demonstrate that JD-312 is a promising new therapeutic molecule for cartilage regeneration with clinical potential.

...