Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Front Pediatr ; 12: 1409264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318621

RESUMEN

Background: CNV in KCTD13 has been identified to influence androgen receptor function via its changes in gene dosage, which might contribute to hypospadias. However, there is lack of population-level evidence to assess the contribution of KCTD13 CNV to hypospadias. Methods: 349 isolated hypospadias patients were recruited and their genotyping was performed using real-time qPCR. We use Database of Genomic Variants (DGV) and CNV calls from SNP-array intensity data in 1,008 Chinese healthy men as reference. Results: 11.17% of patients were identified to have KCTD13 CNV deletion, significantly higher than 0.05% in DGV (P < 0.001), but no cases found to have CNV duplication. Meanwhile, no CNV calls encompassing KCTD13 region were detected in Chinese healthy men. Incidence of KCTD13 CNV deletion was significantly increased with the severity of hypospadias, P _trend = 9.00 × 10-6. Compared to distal hypospadias, ORs for the proximal and midshaft were 10.07 (2.91-34.84) and 6.08 (1.69-21.84) respectively. In addition, the association between genital characteristics (stretched penile length and glans width) and KCTD13 CNV showed no significance in hypospadias children (P > 0.05). Conclusions: We demonstrate KCTD13 CNV deletion is strongly associated with hypospadias and its severity, but duplication is not, characterizing KCTD13 genetic variation in more detail than previously described.

2.
Sci Total Environ ; 953: 175922, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39218088

RESUMEN

Exposure to fine particulate matter (PM) disrupts the function of airway epithelial barriers causing cellular stress and damage. However, the precise mechanisms underlying PM-induced cellular injury and the associated molecular pathways remain incompletely understood. In this study, we used intratracheal instillation of PM in C57BL6 mice and PM treatment of the BEAS-2B cell line as in vivo and in vitro models, respectively, to simulate PM-induced cellular damage and inflammation. We collected lung tissues and bronchoalveolar lavage fluids to assess histopathological changes, necroptosis, and airway inflammation. Our findings reveal that PM exposure induces necroptosis in mouse airway epithelial cells. Importantly, concurrent administration of a receptor interacting protein kinases 3 (RIPK3) inhibitor or the deletion of the necroptosis effector mixed-lineage kinase domain-like protein (MLKL) effectively attenuated PM-induced airway inflammation. PM exposure dose-dependently induces the expression of Parkin, an E3 ligase we recently reported to play a pivotal role in necroptosis through regulating necrosome formation. Significantly, deletion of endogenous Parkin exacerbates inflammation by enhancing epithelial necroptosis. These results indicate that PM-induced Parkin expression plays a crucial role in suppressing epithelial necroptosis, thereby reducing airway inflammation. Overall, these findings offer valuable mechanistic insights into PM-induced airway injury and identify a potential target for clinical intervention.


Asunto(s)
Ratones Endogámicos C57BL , Necroptosis , Material Particulado , Ubiquitina-Proteína Ligasas , Necroptosis/efectos de los fármacos , Animales , Material Particulado/toxicidad , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Contaminantes Atmosféricos/toxicidad , Células Epiteliales/efectos de los fármacos , Inflamación , Línea Celular
3.
Environ Geochem Health ; 46(10): 417, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240407

RESUMEN

Soil contamination with heavy metals from industrial and mining activities poses significant environmental and public health risks, necessitating effective remediation strategies. This review examines the utilization of sulfate-reducing bacteria (SRB) for bioremediation of heavy metal-contaminated soils. Specifically, it focuses on SRB metabolic pathways for heavy metal immobilization, interactions with other microorganisms, and integration with complementary remediation techniques such as soil amendments and phytoremediation. We explore the mechanisms of SRB action, their synergistic relationships within soil ecosystems, and the effectiveness of combined remediation approaches. Our findings indicate that SRB can effectively immobilize heavy metals by converting sulfate to sulfide, forming stable metal sulfides, thereby reducing the bioavailability and toxicity of heavy metals. Nevertheless, challenges persist, including the need to optimize environmental conditions for SRB activity, address their sensitivity to acidic conditions and high heavy metal concentrations, and mitigate the risk of secondary pollution from excessive carbon sources. This study underscores the necessity for innovative and sustainable SRB-based bioremediation strategies that integrate multiple techniques to address the complex issue of heavy metal soil contamination. Such advancements are crucial for promoting green mining practices and environmental restoration.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Microbiología del Suelo , Contaminantes del Suelo , Sulfatos , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Sulfatos/metabolismo , Bacterias Reductoras del Azufre/metabolismo , Bacterias/metabolismo , Minería , Suelo/química
4.
Front Neurol ; 15: 1458066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296955

RESUMEN

Objective: To assess the reliability and validity of the Chinese version of the Selective Control Assessment of the Lower Extremity (SCALE) in children with spastic cerebral palsy (CP). Methods: Forty-five children with spastic CP (mean age 7.29 years, SD 2.87 years, rang 4-16 years) were recruited. Internal consistency was measured using Cronbach's α, while test-retest and inter-rater reliability were evaluated using intra-class correlation coefficients (ICC). Construct validity was established through correlation and confirmatory factor analyses. Discriminative validity was assessed by comparing SCALE scores across varying GMFCS levels. Results: The Chinese version of SCALE demonstrates high internal consistency (Cronbach's α = 0.91) and good reliability with ICCs exceeding 0.76 for test-retest and inter-rater assessments. It shows significant correlations with GMFCS (r = -0.76, p < 0.001) and Fugl-Meyer scales (r = 0.79, p < 0.001), confirming its validity. Confirmatory factor analysis supports a well-fitting model (χ 2/df = 1.58, RMSEA = 0.08, SRMR <0.001, GFI = 0.98, AGFI = 0.90, CFI = 0.99, TLI = 0.98), with the latent variable's AVE at 0.59 and CR at 0.88. Discriminative validity is evident in significant differences across GMFCS levels (p < 0.001), notably between levels I and II, I and III, and I and IV (p < 0.05). Conclusion: The Chinese version of SCALE shows good reliability and validity for assessing lower limb selective movement control in children with spastic cerebral palsy in China. Clinical trial registration: https://www.chictr.org.cn/showproj.html?proj=205380, identifier ChiCTR2400083880.

5.
Macromol Biosci ; : e2400297, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269434

RESUMEN

In this study, Amomum longiligulare polysaccharide 1 (ALP1) is used to chelate with magnesium (Mg) to synthesize the ALP1-Mg (II) complex (ALP1-Mg). Based on Box-Behnken response surface design, the optimum technological conditions are 22 mg mL-1 trisodium citrate, 2.10 mol L-1 MgCl2, reaction at 70 °C for 2.9 h, resulting in a maximum Mg content of 2.13%. Next, the physicochemical properties and structural characteristics of ALP1 and ALP1-Mg are characterized, and the results show that the morphology, conformation, crystallinity, and thermal stability of ALP1-Mg are changed. In addition, dietary supplementation of 500 mg kg-1 ALP1-Mg significantly reduces the feed conversion ratio during the grower (15-35 d). Meanwhile, the villus height/crypt depth of the duodenum and ileum are significantly increased, and the relative abundance of Lactobacillus is significantly elevated. Taken together, the results suggest that ALP1-Mg is a potential growth-promoting feed additive.

6.
Org Lett ; 26(36): 7739-7743, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39230062

RESUMEN

We present the application of N-difluoroacetylglucosamine (GlcNDFA) in a chemical evolution strategy to synthesize oligosaccharides. In comparison to conventional N-trifluoroacetylglucosamine, GlcNDFA exhibits superior substrate compatibility with glycosyltransferases as well as stability in aqueous environments. Using our 16-step assembly line, GlcNDFA can be used to produce homogeneous dekaparin, a heparin-like medication, with a yield of 62.2%. This underscores the significant potential of GlcNDFA as a chemical evolution precursor in the precise synthesis of structurally defined polysaccharides.


Asunto(s)
Glicosiltransferasas , Glicosilación , Estructura Molecular , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Hexosaminas/química , Hexosaminas/síntesis química , Oligosacáridos/química , Oligosacáridos/síntesis química
7.
Front Endocrinol (Lausanne) ; 15: 1401531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280009

RESUMEN

Background: Mitochondrial dysfunction plays a crucial role in Type 2 Diabetes Mellitus (T2DM) and its complications. However, the genetic pathophysiology remains under investigation. Through multi-omics Mendelian Randomization (MR) and colocalization analyses, we identified mitochondrial-related genes causally linked with T2DM and its complications. Methods: Summary-level quantitative trait loci data at methylation, RNA, and protein levels were retrieved from European cohort studies. GWAS summary statistics for T2DM and its complications were collected from the DIAGRAM and FinnGen consortiums, respectively. Summary-data-based MR was utilized to estimate the causal effects. The heterogeneity in dependent instrument test assessed horizontal pleiotropy, while colocalization analysis determined whether genes and diseases share the same causal variant. Enrichment analysis, drug target analysis, and phenome-wide MR were conducted to further explore the biological functions, potential drugs, and causal associations with other diseases. Results: Integrating evidence from multi-omics, we identified 18 causal mitochondrial-related genes. Enrichment analysis revealed they were not only related to nutrient metabolisms but also to the processes like mitophagy, autophagy, and apoptosis. Among these genes, Tu translation elongation factor mitochondrial (TUFM), 3-hydroxyisobutyryl-CoA hydrolase (HIBCH), and iron-sulfur cluster assembly 2 (ISCA2) were identified as Tier 1 genes, showing causal links with T2DM and strong colocalization evidence. TUFM and ISCA2 were causally associated with an increased risk of T2DM, while HIBCH showed an inverse causal relationship. The causal associations and colocalization effects for TUFM and HIBCH were validated in specific tissues. TUFM was also found to be a risk factor for microvascular complications in T2DM patients including retinopathy, nephropathy, and neuropathy. Furthermore, drug target analysis and phenome-wide MR underscored their significance as potential therapeutic targets. Conclusions: This study identified 18 mitochondrial-related genes causally associated with T2DM at multi-omics levels, enhancing the understanding of mitochondrial dysfunction in T2DM and its complications. TUFM, HIBCH, and ISCA2 emerge as potential therapeutic targets for T2DM and its complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Análisis de la Aleatorización Mendeliana , Mitocondrias , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Mitocondrias/metabolismo , Mitocondrias/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Predisposición Genética a la Enfermedad , Complicaciones de la Diabetes/genética , Multiómica
8.
Diabetes Metab Syndr Obes ; 17: 3227-3238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224112

RESUMEN

Background: Diabetes mellitus and hypertension often coexist and share common risk factors. This study investigated the correlation between glycemic management and the prevalence of hypertension among Chinese adults diagnosed with type 2 diabetes mellitus (T2DM). Methods: This study included 1715 patients with T2DM from four cities in Anhui Province, China. Sociodemographic characteristics of the sample participants were collected via questionnaires. A univariate analysis of variance (ANOVA) was utilized for continuous variables, and chi-square testing was used for categorical variables. Binary logistic regression was utilized to examine the relationship between blood pressure and variables including fasting plasma glucose (FPG), glycosylated haemoglobin (HbA1c), body mass index (BMI), waist circumference (WC), physical activity, dyslipidemia, and family history of hypertension. Results: FPG levels did not increase the risk of hypertension, while HbA1c was significantly and negatively associated with hypertension risk. HbA1c levels ranged from 7.2 to 8.6%, with odds ratios (OR) of 0.68 and 95% confidence intervals (CI) of 0.48 to 0.97 and a significant p value of less than 0.05. For the HbA1c levels above 8.6%, the OR was 0.58 with a 95% CI of 0.39 to 0.87 and a significant p value of less than 0.01. Furthermore, advanced age, higher BMI, greater waist circumference, presence of dyslipidemia, and positive family history of hypertension were all found to be significantly and independently linked to a heightened risk of developing hypertension. These associations remain significant after further adjustment. Conclusion: There was a negative association between HbA1c and the risk of hypertension, and the association remained significant after adjustment for antihypertensive drug use.

9.
J Mater Chem B ; 12(36): 9018-9029, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39158001

RESUMEN

The primary tumor ("root") and circulating tumor cells (CTCs; "seeds") are vital factors in tumor progression. However, current treatment strategies mainly focus on inhibiting the tumor while ignoring CTCs, resulting in tumor metastasis. Here, we design a multifunctional 3D scaffold with interconnected macropores, excellent photothermal ability and perfect bioaffinity as a blood vessel implantable device. When implanted upstream of the primary tumor, the scaffold intercepts CTCs fleeing back to the primary tumor and then forms "micro-thrombi" to block the supply of nutrients and oxygen to the tumor for embolization therapy. The scaffold implanted downstream of the tumor efficiently captures and photothermally kills the CTCs that escape from the tumor, thereby preventing metastasis. Experiments using rabbits demonstrated excellent biosafety of this scaffold with 86% of the CTC scavenging rate, 99% of the tumor inhibition rate and 100% of CTC killing efficiency. The multifunctional 3D scaffold synergistically inhibits the "root" and eliminates the "seeds" of the tumor, demonstrating its potential for localized cancer therapy with few side effects and high antitumor efficacy.


Asunto(s)
Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patología , Animales , Conejos , Humanos , Embolización Terapéutica , Andamios del Tejido/química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Tamaño de la Partícula
10.
Biomark Med ; 18(15-16): 703-715, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39143949

RESUMEN

Biliary tract cancers (BTCs) have rising incidence and mortality rates. Chemotherapy's limited efficacy has led to exploring new treatments like immunotherapy. which offers modest benefits. Moreover, the identification of reliable predictive biomarkers for immune checkpoint therapy in BTCs remains elusive, hindering personalized treatment strategies. This review provides an overview of the current landscape of emerging biomarkers for immunotherapy response in BTCs. We discuss the incremental benefits of combination therapy and the evolving role of immunotherapy in managing advanced BTC. Additionally, we highlight the need for robust predictive biomarkers to optimize treatment outcomes and foster a more individualized approach to patient care. We aim to identify promising research avenues and strategies to enhance therapeutic efficacy and patient survival in BTCs.


[Box: see text].


Asunto(s)
Neoplasias del Sistema Biliar , Biomarcadores de Tumor , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Humanos , Neoplasias del Sistema Biliar/terapia , Neoplasias del Sistema Biliar/inmunología , Neoplasias del Sistema Biliar/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Biomarcadores de Tumor/metabolismo
11.
Nat Commun ; 15(1): 5882, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003268

RESUMEN

Solar-driven CO2 reduction to yield high-value chemicals presents an appealing avenue for combating climate change, yet achieving selective production of specific products remains a significant challenge. We showcase two osmium complexes, przpOs, and trzpOs, as CO2 reduction catalysts for selective CO2-to-methane conversion. Kinetically, the przpOs and trzpOs exhibit high CO2 reduction catalytic rate constants of 0.544 and 6.41 s-1, respectively. Under AM1.5 G irradiation, the optimal Si/TiO2/trzpOs have CH4 as the main product and >90% Faradaic efficiency, reaching -14.11 mA cm-2 photocurrent density at 0.0 VRHE. Density functional theory calculations reveal that the N atoms on the bipyrazole and triazole ligands effectively stabilize the CO2-adduct intermediates, which tend to be further hydrogenated to produce CH4, leading to their ultrahigh CO2-to-CH4 selectivity. These results are comparable to cutting-edge Si-based photocathodes for CO2 reduction, revealing a vast research potential in employing molecular catalysts for the photoelectrochemical conversion of CO2 to methane.

12.
ACS Nano ; 18(29): 19303-19313, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38976792

RESUMEN

Hybrid-dimensional heterojunction transistor (HDHT) photodetectors (PDs) have achieved high responsivities but unfortunately are still with unacceptably slow response speeds. Here, we propose a MASnI3/MoS2 HDHT PD, which exhibits the possibility to obtain high responsivity and fast response simultaneously. By exploring the detailed photoelectric responses utilizing a precise optoelectronic coupling simulation, the electrical performance of the device is optimally manipulated and the underlying physical mechanisms are carefully clarified. Particularly, the influence and modulation characteristics of the trap effects on the carrier dynamics of the PDs are investigated. We find that the localized trap effect in perovskite, especially at its top surface, is primarily responsible for the high responsivity and long response time; moreover, it is normally hard to break such a responsivity-speed trade-off due to the inherent limitation of the trap effect. By synergistically coupling the photogating effect, trap effect, and gate regulation, we indicate that it is possible to achieve an enhancement of the responsivity-bandwidth product by about 3 orders of magnitude. This study facilitates a fine modulation of the responsivity-speed relationship of hybrid-dimensional PDs, enabling breaking the traditional responsivity-speed trade-off of many PDs.

13.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3493-3504, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041121

RESUMEN

Based on the processing and compatibility, this study explored the effects of components in Corni Fructus(CF) and Astragali Radix(AR) on plasma metabolomics in diabetic nephropathy rats. SD rats were randomly divided into four groups and diabetic nephropathy rat model was induced by high-fat diet combined with 30 mg·kg~(-1) streptozotocin(STZ). Histopathological observations of kidney tissue sections of rats in each group were conducted using HE, PAS, and Masson staining. Ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) metabolomics method was employed to investigate the effects of CF before and after wine-processing combined with AR-related components on plasma metabolites in diabetic nephropathy rats. After drug treatment, kidney tissue damage and interstitial collagen fiber deposition area in diabetic nephropathy rats were improved to varying degrees(P<0.001). The detection results of plasma metabolomics showed that 71 biomarkers related to the pathogenesis of diabetic nephropathy were identified in diseased rats, mainly involving linoleic acid metabolism, caffeine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, phenylalanine metabolism, retinol metabolism, and ether lipid metabolism. After drug intervention, 26 of them were significantly downregulated, with better efficacy observed in precision processed herb-pair group(P-CG_5). This study elucidated from the perspective of plasma metabolomics that P-CG_5 could improve metabolic disorders in diabetic nephropathy through pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and caffeine metabolism, providing theoretical support and experimental basis for the clinical application of CF and AR compatibility in traditional Chinese medicine.


Asunto(s)
Cornus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Metabolómica , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Ratas , Masculino , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Cornus/química , Astragalus propinquus/química , Vino/análisis , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo
14.
J Phys Chem Lett ; 15(28): 7183-7190, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38968427

RESUMEN

Surface-enhanced Raman scattering (SERS) is renowned for amplifying Raman signals, with electromagnetic mechanism (EM) enhancement arising from localized surface plasmon resonances and chemical mechanism (CM) enhancement as a result of charge transfer interactions. Despite the conventional emphasis on EM as a result of plasmonic effects, recent findings highlight the significance of CM when noble metals appear as smaller entities. However, the threshold size of the noble metal clusters/particles corresponding to the switch in SERS mechanisms is not clear at present. In this work, the VSe2-xOx/Au composites with different Au sizes are employed, in which a clear view of the SERS mechanism switch is observed at the Au size range of 16-21 nm. Our findings not only provide insight into the impact of noble metal size on SERS efficiency but also offer quantitative data to assist researchers in making informed judgments when analyzing SERS mechanisms.

15.
Alzheimers Dement ; 20(8): 5492-5510, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973166

RESUMEN

INTRODUCTION: More robust non-human primate models of Alzheimer's disease (AD) will provide new opportunities to better understand the pathogenesis and progression of AD. METHODS: We designed a CRISPR/Cas9 system to achieve precise genomic deletion of exon 9 in cynomolgus monkeys using two guide RNAs targeting the 3' and 5' intron sequences of PSEN1 exon 9. We performed biochemical, transcriptome, proteome, and biomarker analyses to characterize the cellular and molecular dysregulations of this non-human primate model. RESULTS: We observed early changes of AD-related pathological proteins (cerebrospinal fluid Aß42 and phosphorylated tau) in PSEN1 mutant (ie, PSEN1-ΔE9) monkeys. Blood transcriptome and proteome profiling revealed early changes in inflammatory and immune molecules in juvenile PSEN1-ΔE9 cynomolgus monkeys. DISCUSSION: PSEN1 mutant cynomolgus monkeys recapitulate AD-related pathological protein changes, and reveal early alterations in blood immune signaling. Thus, this model might mimic AD-associated pathogenesis and has potential utility for developing early diagnostic and therapeutic interventions. HIGHLIGHTS: A dual-guide CRISPR/Cas9 system successfully mimics AD PSEN1-ΔE9 mutation by genomic excision of exon 9. PSEN1 mutant cynomolgus monkey-derived fibroblasts exhibit disrupted PSEN1 endoproteolysis and increased Aß secretion. Blood transcriptome and proteome profiling implicate early inflammatory and immune molecular dysregulation in juvenile PSEN1 mutant cynomolgus monkeys. Cerebrospinal fluid from juvenile PSEN1 mutant monkeys recapitulates early changes of AD-related pathological proteins (increased Aß42 and phosphorylated tau).


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Macaca fascicularis , Mutación , Presenilina-1 , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/sangre , Presenilina-1/genética , Mutación/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/genética , Sistemas CRISPR-Cas , Exones/genética , Masculino , Transcriptoma , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo
16.
Environ Pollut ; 358: 124493, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960116

RESUMEN

Metal exposure is associated with vascular endothelial inflammation, an early pathological phenotype of atherosclerotic cardiovascular events. However, the underlying mechanism linking exposure, metabolic changes, and outcomes remains unclear. We aimed to investigate the metabolic changes underlying the associations of chronic exposure to metal mixtures with vascular endothelial inflammation. We recruited 960 adults aged 20-75 years from residential areas surrounding rivers near abandoned lead-zinc mine and classified them into river area and non-river area exposure groups. Urine levels of 25 metals, Framingham risk score (FRS), and serum concentrations of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as biomarkers of vascular endothelial inflammation, were assessed. A "meet-in-the-middle" approach was applied to identify causal intermediate metabolites and metabolic pathways linking metal exposure to vascular endothelial inflammation in representative metabolic samples from 64 participants. Compared to the non-river area exposure group, the river area exposure group had significantly greater urine concentrations of chromium, copper, cadmium, and lead; lower urine concentrations of selenium; elevated FRS; and increased concentrations of ICAM-1 and VCAM-1. In total, 38 differentially abundant metabolites were identified between the river area and non-river area exposure groups. Among them, 25 metabolites were significantly associated with FRS, 8 metabolites with ICAM-1 expression, and 10 metabolites with VCAM-1 expression. Furthermore, fructose, ornithine, alpha-ketoglutaric acid, urea, and cytidine monophosphate, are potential mediators of the relationship between metal exposure and vascular endothelial inflammation. Additionally, the metabolic changes underlying these effects included changes in arginine and proline metabolism, pyrimidine metabolism, starch and sucrose metabolism, galactose metabolism, arginine biosynthesis, and alanine, aspartate, and glutamate metabolism, suggesting the disturbance of amino acid metabolism, the tricarboxylic acid cycle, nucleotide metabolism, and glycolysis. Overall, our results reveal biomechanisms that may link chronic exposure to multiple metals with vascular endothelial inflammation and elevated cardiovascular risk.


Asunto(s)
Exposición a Riesgos Ambientales , Inflamación , Molécula 1 de Adhesión Intercelular , Plomo , Minería , Ríos , Molécula 1 de Adhesión Celular Vascular , Zinc , Humanos , Persona de Mediana Edad , Adulto , Masculino , Femenino , Anciano , Plomo/sangre , Zinc/sangre , Exposición a Riesgos Ambientales/estadística & datos numéricos , Molécula 1 de Adhesión Intercelular/sangre , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Celular Vascular/sangre , Adulto Joven , Biomarcadores/sangre , Biomarcadores/orina , Endotelio Vascular/metabolismo , Metales/orina , Metales/sangre
17.
Chem Biol Interact ; 397: 111088, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823534

RESUMEN

Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphorus flame retardant ubiquitously present in the environment and even the human body. TBOEP is toxic in multiple tissues, which forms dealkylated and hydroxylated metabolites under incubation with human hepatic microsomes; however, the impact of TBOEP metabolism on its toxicity, particularly mutagenicity (typically requiring metabolic activation), is left unidentified. In this study, the mutagenicity of TBOEP in human hepatoma cell lines (HepG2 and C3A) and the role of specific CYPs were studied. Through molecular docking, TBOEP bound to human CYP1A1, 1B1, 2B6 and 3A4 with energies and conformations favorable for catalyzing reactions, while the conformations of its binding with human CYP1A2 and 2E1 appeared unfavorable. In C3A cells (endogenous CYPs being substantial), TBOEP exposing for 72 h (2-cell cycle) at low micromolar levels induced micronucleus, which was abolished by 1-aminobenzotriazole (inhibitor of CYPs); in HepG2 cells (CYPs being insufficient) TBOEP did not induce micronucleus, whose effect was however potentiated by pretreating the cells with PCB126 (CYP1A1 inducer) or rifampicin (CYP3A4 inducer). TBOEP induced micronucleus in Chinese hamster V79-derived cell lines genetically engineered for stably expressing human CYP1A1 and 3A4, but not in cells expressing the other CYPs. In C3A cells, TBOEP selectively induced centromere protein B-free micronucleus (visualized by immunofluorescence) and PIG-A gene mutations, and elevated γ-H2AX rather than p-H3 (by Western blot) which indicated specific double-strand DNA breaks. Therefore, this study suggests that TBOEP may induce DNA/chromosome breaks and gene mutations in human cells, which requires metabolic activation by CYPs, primarily CYP1A1 and 3A4.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Retardadores de Llama , Simulación del Acoplamiento Molecular , Animales , Humanos , Retardadores de Llama/toxicidad , Cricetinae , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Mutágenos/toxicidad , Compuestos Organofosforados/toxicidad , Cricetulus , Organofosfatos/toxicidad , Células Hep G2 , Pruebas de Micronúcleos
18.
Talanta ; 276: 126278, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776776

RESUMEN

Perfluoroalkyl substances (PFASs) are ubiquitous in the environment and even accumulate in the human body associated with their excellent stability and persistence. However, the effect and reaction mechanism at the molecular level on the cell phospholipid peroxidation remained unclear. In this work, the interfacial reaction of model phospholipids (POPG) intervened by per- and polyfluoroalkyl substances (PFASs) at the air-water interface of a hanged droplet exposed to ozone (O3) was investigated. Perfluorinated carboxylates and sulfonates were evaluated. Four-carbon PFASs promoted interfacial ozonolysis, but PFASs with longer carbon skeletons impeded this chemistry. A model concerning POPG packing was proposed and it was concluded that the interfacial chemistry was mediated by chain length rather than their functional groups. Four-carbon PFASs could couple into POPG ozonolysis by mainly reacting with aldehyde products along with minor Criegee intermediates, but this was not observed for longer PFASs. This is different from that condensed-phase Criegee intermediates preferred to reacting with per-fluoroalkyl carboxylic acids. These results provide insight into the adverse health of PFASs on cell peroxidation.

19.
Heliyon ; 10(9): e30080, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765079

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel human coronavirus, which has triggered a global pandemic of the coronavirus infectious disease 2019 (COVID-19). Outbreaks of emerging infectious diseases continue to challenge human health worldwide. The virus conquers human cells through the angiotensin-converting enzyme 2 receptor-driven pathway by mostly targeting the human respiratory tract. Quercetin is a natural flavonoid widely represented in the plant kingdom. Cumulative evidence has demonstrated that quercetin and its derivatives have various pharmacological properties including anti-cancer, anti-hypertension, anti-hyperlipidemia, anti-hyperglycemia, anti-microbial, antiviral, neuroprotective, and cardio-protective effects, because it is a potential treatment for severe inflammation and acute respiratory distress syndrome. Furthermore, it is the main life-threatening condition in patients with COVID-19. This article provides a comprehensive review of the primary literature on the predictable effectiveness of quercetin and its derivatives docked to multi-target of SARS-CoV-2 and host cells via in silico and some of validation through in vitro, in vivo, and clinically to fight SARS-CoV-2 infections, contribute to the reduction of inflammation, which suggests the preventive and therapeutic latency of quercetin and its derived-products against COVID-19 pandemic, multisystem inflammatory syndromes (MIS), and long-COVID.

20.
Ren Fail ; 46(1): 2358187, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38803234

RESUMEN

BACKGROUND AND OBJECTIVES: Acute kidney injury (AKI) is one of the most common and severe clinical syndromes of diffuse proliferative lupus nephritis (DPLN), of which poor prognosis is indicated by aggravated renal function deterioration. However, the specific therapy and mechanisms of AKI in DPLN remain to be explored. METHODS: The correlation between AKI and clinical pathological changes in DPLN patients was analyzed. Expression of STAT3 signaling was detected in MRL/lpr mice with DPLN using immunohistochemical staining and immunoblotting. Inhibition of STAT3 activation by combination therapy was assessed in MRL/lpr mice. RESULTS: Correlation analysis revealed only the interstitial leukocytes were significantly related to AKI in endocapillary DPLN patients. MRL/lpr mice treated with vehicle, which can recapitulate renal damages of DPLN patients, showed upregulation of STAT3, pSTAT3 and caspase-1 in renal cortex. FLLL32 combined with methylprednisolone therapy significantly inhibited the STAT3 activation, improved acute kidney damage, reduced the interstitial infiltration of inflammatory cells and decreased the AKI incidence in MRL/lpr mice. CONCLUSION: STAT3 activation may play an important role in the pathogenesis of DPLN and the development of AKI. Hence, STAT3 inhibition based on the combination of FLLL32 with methylprednisolone may represent a new strategy for treatment of DPLN with AKI.


Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Nefritis Lúpica , Ratones Endogámicos MRL lpr , Factor de Transcripción STAT3 , Animales , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/patología , Nefritis Lúpica/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Ratones , Femenino , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Humanos , Metilprednisolona/uso terapéutico , Riñón/patología , Riñón/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Adulto , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA