Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Biosens Bioelectron ; 249: 116021, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38219466

Flexible laser-scribed graphene (LSG) substrates with gold nanoislands have been developed as biochips for in situ electrochemical (EC) and surface-enhanced Raman scattering (SERS) biodetection (biomolecules and viral proteins). A flexible biochip was fabricated using CO2 laser engraving polyimide (PI) films to form a 3D porous graphene-like nanostructure. Gold nanoislands were deposited on the LSG substrates to enhance the intensity of the Raman signals. Moreover, the addition of auxiliary and reference electrodes induced a dual-function EC-SERS biochip with significantly enhanced detection sensitivity. The biochip could selectively and easily capture SARS-CoV-2 S1 protein through the SARS-CoV-2 S1 antibody immobilized on EC-SERS substrates using 1-ethyl-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The grafted antibody specifically bound to SARS-CoV-2, resulting in a significant increase in the SERS signal of the target analyte. The limit of detection (LOD) of the SARS-CoV-2 S1 protein was 5 and 100 ng/mL by using EC and SERS detection, respectively. Although the LOD of the SARS-CoV-2 S1 protein detected using SERS is only 100 ng/mL, it can provide fingerprint information for identification. To improve the LOD, EC detection was integrated with SERS detection. The three-electrode detection chip enables the simultaneous detection of SERS and EC signals, which provides complementary information for target identification. The dual-functional detection technology demonstrated in this study has great potential for biomedical applications, such as the rapid and sensitive detection of SARS-CoV-2.


Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Humans , SARS-CoV-2 , COVID-19/diagnosis , Antibodies , Gold , Spectrum Analysis, Raman
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123190, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37499474

Gold (Au) nano-island arrays were deposited on the glass substrate to fabricate surface-enhanced Raman scattering (SERS) substrates by in-situ thermal evaporation (deposited and annealed samples at the same time). The optimal SERS intensity deposited by various thicknesses and in-situ annealing temperatures of Au nano-island arrays would be investigated. The biomolecules (adenine) were dropped on the well-designed SERS substrate for precise and quantitative SERS detection. The characterization of Au nano-island arrays SERS substrate would be evaluated by scanning electron microscope (SEM) and Raman spectroscopy. The results showed that the optimal deposition thickness and annealing temperature of Au nano-island arrays SERS substrate is about 14 nm and 200 °C respectively, which can construct the smallest interparticle spacing (W)/ particle diameter (D) ratio and the lowest reflection (%) and transmittance (%) to form the strongest SERS intensity. Moreover, finite-difference time-domain (FDTD) simulation of the electromagnetic field distributions on Au nano-island arrays displays the similar trend with the experimental results. The 14 nm deposition with 200 °C in-situ annealing temperature would display the highest density of hot-spots by FDTD simulation. The reproducible Au nano-island arrays SERS substrates with tunable surface roughness, W/D ratio, and lower reflection and transmittance show promising potential for SERS detection of biomolecules, bacteria, and viruses.

3.
J Control Release ; 359: 373-383, 2023 07.
Article En | MEDLINE | ID: mdl-37295729

Sustained local delivery of meloxicam by polymeric structures is desirable for preventing subacute inflammation and biofilm formation following tissue incision or injury. Our previous study demonstrated that meloxicam release from hot-melt extruded (HME) poly(ε-caprolactone) (PCL) matrices could be controlled by adjusting the drug content. Increasing drug content accelerated the drug release as the initial drug release generated a pore network to facilitate subsequent drug dissolution and diffusion. In this study, high-resolution micro-computed tomography (HR µCT) and artificial intelligence (AI) image analysis were used to visualize the microstructure of matrices and simulate the drug release process. The image analysis indicated that meloxicam release from the PCL matrix was primarily driven by diffusion but limited by the amount of infiltrating fluid when drug content was low (i.e., the connectivity of the drug/pore network was poor). Since the drug content is not easy to change when a product has a fixed dose and dimension/geometry, we sought an alternative approach to control the meloxicam release from the PCL matrices. Here, magnesium hydroxide (Mg(OH)2) was employed as a solid porogen in the drug-PCL matrix so that Mg(OH)2 dissolved with time in the aqueous environment creating additional pore networks to facilitate local dissolution and diffusion of meloxicam. PCL matrices were produced with a fixed 30 wt% meloxicam loading and variable Mg(OH)2 loadings from 20 wt% to 50 wt%. The meloxicam release increased in proportion to the Mg(OH)2 content, resulting in almost complete drug release in 14 d from the matrix with 50 wt% Mg(OH)2. The porogen addition is a simple strategy to tune drug release kinetics, applicable to other drug-eluting matrices with similar constraints.


Artificial Intelligence , Drug Liberation , Delayed-Action Preparations/chemistry , Meloxicam , Kinetics , X-Ray Microtomography
4.
Humanit Soc Sci Commun ; 10(1): 87, 2023.
Article En | MEDLINE | ID: mdl-36909258

Employee assistance programs (EAPs) provide work, living, and health services to help employees overcome personal and organizational obstacles that affect their productivity. Most businesses in Taiwan are small or medium-sized, and their scale, stage of development, and resources affect their implementation of EAPs. This study explored EAPs and related measures that organizations can implement in each stage of their development. The results may serve as a reference for human resources personnel in planning EAPs, specifically in identifying appropriate measures to implement for each developmental stage of their organizations. The modified Delphi method and fuzzy analytic hierarchy process were used to organize and analyze key EAP measures and their weights during the creation, guidance, authorization, coordination, and collaboration stages of organizational development. Data analysis revealed that in all five stages of organizational development, work-related EAP measures are the most crucial. As an organization transitions from the creation to collaboration stages, the work dimension is neglected in favor of the health dimension. In the authorization stage, the organization begins to provide a wider range of services in the living dimension. The results and other information regarding EAP service models indicate that in each developmental stage, an organization should adopt a different EAP service model that suits its resources, organizational structure, implementation of EAP measures, and other factors.

5.
J Control Release ; 342: 189-200, 2022 02.
Article En | MEDLINE | ID: mdl-34990702

For effective resolution of regional subacute inflammation and prevention of biofouling formation, we have developed a polymeric implant that can release meloxicam, a selective cyclooxygenase (COX)-2 inhibitor, in a sustained manner. Meloxicam-loaded polymer matrices were produced by hot-melt extrusion, with commercially available biocompatible polymers, poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(ethylene vinyl acetate) (EVA). PLGA and EVA had a limited control over the drug release rate partly due to the acidic microenvironment and hydrophobicity, respectively. PCL allowed for sustained release of meloxicam over two weeks and was used as a carrier of meloxicam. Solid-state and image analyses indicated that the PCL matrices encapsulated meloxicam in crystalline clusters, which dissolved in aqueous medium and generated pores for subsequent drug release. The subcutaneously implanted meloxicam-loaded PCL matrices in rats showed pharmacokinetic profiles consistent with their in vitro release kinetics, where higher drug loading led to faster drug release. This study finds that the choice of polymer platform is crucial to continuous release of meloxicam and the drug release rate can be controlled by the amount of drug loaded in the polymer matrices.


Drug Carriers , Polymers , Animals , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Drug Liberation , Meloxicam , Polymers/chemistry , Rats
6.
Nanomaterials (Basel) ; 11(7)2021 Jul 09.
Article En | MEDLINE | ID: mdl-34361175

We developed a method based on surface-enhanced Raman spectroscopy (SERS) and a sample pretreatment process for rapid, sensitive, reproducible, multiplexed, and low-cost detection of illegal drugs in urine. The abuse of new psychoactive substances (NPS) has become an increasingly serious problem in many countries. However, immunoassay-based screening kits for NPS are usually not available because of the lack of corresponding antibodies. SERS has a great potential for rapid detection of NPS because it can simultaneously detect multiple kinds of drugs without the use of antibodies. To achieve highly sensitive SERS detection of drugs, sodium bromide was first employed to induce the rapid formation of Ag nanoclusters by aggregating silver nanoparticles (AgNPs) in the extracted sample solution. SERS measurements were performed immediately after the sample pretreatment without incubation. The three-dimensional SERS hot spots were believed to form significantly within the nanoclusters, providing strong SERS enhancement effects. The displacement of citrate molecules on the surfaces of the AgNPs by bromide ions helped increase the adsorption of drug molecules, increasing their areal density. We demonstrated the simultaneous detection of two kinds of NPS, methcathinone and 4-methylmethcathinone, in urine at a concentration as low as 0.01 ppm.

7.
Plant Cell ; 33(3): 750-765, 2021 05 05.
Article En | MEDLINE | ID: mdl-33955491

Systemic acquired resistance (SAR) is a mechanism that plants utilize to connect a local pathogen infection to global defense responses. N-hydroxy-pipecolic acid (NHP) and a glycosylated derivative are produced during SAR, yet their individual roles in this process are currently unclear. Here, we report that Arabidopsis thaliana UGT76B1 generated glycosylated NHP (NHP-Glc) in vitro and when transiently expressed alongside Arabidopsis NHP biosynthetic genes in two Solanaceous plants. During infection, Arabidopsis ugt76b1 mutants did not accumulate NHP-Glc and accumulated less glycosylated salicylic acid (SA-Glc) than wild-type plants. The metabolic changes in ugt76b1 plants were accompanied by enhanced defense to the bacterial pathogen Pseudomonas syringae, suggesting that glycosylation of the SAR molecules NHP and salicylic acid by UGT76B1 plays an important role in modulating defense responses. Transient expression of Arabidopsis UGT76B1 with the Arabidopsis NHP biosynthesis genes ALD1 and FMO1 in tomato (Solanum lycopersicum) increased NHP-Glc production and reduced NHP accumulation in local tissue and abolished the systemic resistance seen when expressing NHP-biosynthetic genes alone. These findings reveal that the glycosylation of NHP by UGT76B1 alters defense priming in systemic tissue and provide further evidence for the role of the NHP aglycone as the active metabolite in SAR signaling.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/microbiology , Pipecolic Acids/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Immunity, Innate/physiology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Immunity/physiology , Pseudomonas syringae/pathogenicity
8.
J Dairy Sci ; 104(7): 8276-8289, 2021 Jul.
Article En | MEDLINE | ID: mdl-33865597

The aim of this trial was to evaluate the effects of an immunomodulatory supplement (OmniGen AF, OG; Phibro Animal Health Corp.) and heat stress on hormonal, inflammatory, and immunological responses of lactating dairy cows. Sixty multiparous Holstein cows were randomly assigned to 4 treatments in a 2 × 2 factorial arrangement using 2 environments: cooled using fans and misters, or noncooled, and 2 top-dressed feed supplements (56 g/d): OG or a placebo (CTL). Temperature-humidity index averaged 78 during the 8-wk trial. Blood was drawn to analyze cortisol, prolactin, and circulating tumor necrosis factor (TNF)-α and IL-10. Peripheral blood mononuclear cells (PBMC) were isolated and stimulated with hydrocortisone, prolactin, or lipopolysaccharide (LPS), individually or in several combinations, to assess induced proliferation and cytokine production. At d 52, 6 cows per treatment were injected i.v. with an LPS bolus (ivLPS) to assess hormone and cytokine responses. For cooled cows, feeding OG increased plasma cortisol concentration relative to CTL. Noncooled cows fed CTL had lower circulating TNF-α concentrations than noncooled-OG and cooled-CTL cows, with cooled-OG intermediate. Hydrocortisone+LPS-stimulated PBMC from OG cows tended to proliferate more than CTL. Relative to cooled cows, PBMC from noncooled cows produced more TNF-α and IL-10 when stimulated with LPS. Following ivLPS, cooled-OG cows had a greater cortisol response than the other treatments. In conclusion, OG supplementation enhanced cortisol release under basal condition and induced inflammation with cooling compared with CTL. This suggests that heat stress inhibits OG-mediated cortisol release. Heat stress seemed to enhance the inflammatory responses of PBMC from lactating cows. However, OG supplementation promoted PBMC proliferation under stress, or in the presence of hydrocortisone.


Lactation , Milk , Animal Feed , Animals , Cattle , Diet , Dietary Supplements , Female , Heat-Shock Response , Leukocytes, Mononuclear
9.
J Control Release ; 330: 438-460, 2021 02 10.
Article En | MEDLINE | ID: mdl-33352244

Inflammation that is not resolved in due course becomes a chronic disease. The treatment of chronic inflammatory diseases involves a long-term use of anti-inflammatory drugs such as corticosteroids and nonsteroidal anti-inflammatory drugs, often accompanied by dose-dependent side effects. Local drug delivery systems have been widely explored to reduce their off-target side effects and the medication frequency, with several products making to the market or in development over the years. However, numerous challenges remain, and drug delivery technology is underutilized in some applications. This review showcases local drug delivery systems in different inflammatory diseases, including the targets well-known to drug delivery scientists (e.g., joints, eyes, and teeth) and other applications with untapped opportunities (e.g., sinus, bladder, and colon). In each section, we start with a brief description of the disease and commonly used therapy, introduce local drug delivery systems currently on the market or in the development stage, focusing on polymeric systems, and discuss the remaining challenges and opportunities in future product development.


Drug Delivery Systems , Polymers , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Humans , Inflammation/drug therapy , Polymers/therapeutic use
10.
Eur J Nutr ; 60(4): 1781-1793, 2021 Jun.
Article En | MEDLINE | ID: mdl-32860126

PURPOSE: The major aim of the present study was to determine the effects of quercetin, a well-known flavonoid, on attenuating cisplatin (CDDP)-induced fat loss and the possible mechanisms. METHODS: Tumor-bearing nude mice and tumor-free BALB/c mice were administrated with CDDP alone or in combination with quercetin by a diet containing 0.1% or 1% quercetin (LQ or HQ) or by intraperitoneal injection (IQ) to determine the effects of quercetin on the anticancer effect of CDDP or CDDP-induced fat loss. The effects of quercetin on fat accumulation in CDDP-exposed 3T3-L1 cells were also determined. RESULTS: We first showed that HQ and IQ significantly enhanced the anticancer effect of CDDP by upregulating p53- and p21-associated pathways, while tended to attenuate CDDP-induced fat loss in tumor-bearing nude mice. The study in 3T3-L1 cells showed that CDDP decreased the fat accumulation accompanied by strong upregulation of the expression of six genes which are associated with fat metabolism, while quercetin completely suppressed such an effect. The tumor-free BALB/c mice study consistently showed a protective effect of HQ on CDDP-induced body weight and epididymal fat loss. HQ also increased the fat levels in liver and muscle tissues. In epididymal fat tissues, HQ consistently attenuated CDDP-induced changes in fat metabolism-associated gene expression. However, CDDP alone or in combination with HQ did not affect the food intake. CONCLUSIONS: This study demonstrates that quercetin possesses the potential to suppress CDDP-induced fat loss may partly through the regulation of the fat metabolism-associated gene expression.


Antineoplastic Agents , Neoplasms , Animals , Cisplatin/toxicity , Mice , Mice, Inbred BALB C , Mice, Nude , Quercetin/pharmacology
11.
Theriogenology ; 150: 437-444, 2020 Jul 01.
Article En | MEDLINE | ID: mdl-32173067

Lactating dairy cows exhibit a myriad of responses to heat stress. These responses partially facilitate the thermal balance between heat gain and heat loss, but also account for reduction in productivity. Decreased milk yield is the most recognized impact of heat stress on a dairy cow and results in significant economic loss to dairy producers. The reduced milk yield by heat stress is observed when daily average temperature-humidity index exceeds 68, above which the milk yield of a cow is negatively correlated with temperature-humidity index or dry bulb temperature. Milk yield is also positively correlated with body temperature of the cows under evaporative cooling, which reflects the positive relationship between metabolic heat production and milk yield. During summer, feed intake is positively correlated with milk yield, and the decreased intake explains at least half of the reduction in milk yield by heat stress. These emphasize the importance of maintaining intake on productivity during summer. Although not entirely clear, mechanisms that mediate the reduced milk yield by heat stress in addition to intake may be multifactorial. These could include but are not limited to altered metabolism, potential activation of immune system and inflammation, changes in behavior, and altered mammary gland development and function.


Cattle Diseases/metabolism , Heat Stress Disorders/veterinary , Lactation/physiology , Animals , Cattle , Female , Hot Temperature/adverse effects , Milk/physiology
12.
Sci Signal ; 12(604)2019 10 22.
Article En | MEDLINE | ID: mdl-31641079

Systemic acquired resistance (SAR) is a powerful immune response that triggers broad-spectrum disease resistance throughout a plant. In the model plant Arabidopsis thaliana, long-distance signaling and SAR activation in uninfected tissues occur without circulating immune cells and instead rely on the metabolite N-hydroxy-pipecolic acid (NHP). Engineering SAR in crop plants would enable external control of a plant's ability to mount a global defense response upon sudden changes in the environment. Such a metabolite-engineering approach would require the molecular machinery for producing and responding to NHP in the crop plant. Here, we used heterologous expression in Nicotiana benthamiana leaves to identify a minimal set of Arabidopsis genes necessary for the biosynthesis of NHP. Local expression of these genes in tomato leaves triggered SAR in distal tissues in the absence of a pathogen, suggesting that the SAR trait can be engineered to enhance a plant's endogenous ability to respond to pathogens. We also showed tomato produces endogenous NHP in response to a bacterial pathogen and that NHP is present across the plant kingdom, raising the possibility that an engineering strategy to enhance NHP-induced defenses could be possible in many crop plants.


Crops, Agricultural/immunology , Disease Resistance , Plant Diseases , Plants, Genetically Modified/immunology , Solanum lycopersicum , Arabidopsis/genetics , Arabidopsis/immunology , Crops, Agricultural/genetics , Disease Resistance/genetics , Disease Resistance/immunology , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Metabolic Engineering , Plant Diseases/genetics , Plant Diseases/immunology , Plants, Genetically Modified/genetics , Nicotiana/genetics , Nicotiana/immunology
13.
Mol Plant Microbe Interact ; 31(12): 1301-1311, 2018 12.
Article En | MEDLINE | ID: mdl-29947282

The 14-3-3 phospho-binding proteins with scaffolding activity play central roles in the regulation of enzymes and signaling complexes in eukaryotes. In plants, 14-3-3 isoforms are required for disease resistance and key targets of pathogen effectors. Here, we examined the requirement of the tomato (Solanum lycopersicum) 14-3-3 isoform (TFT) protein family for Xv3 disease resistance in response to the bacterial pathogen Xanthomonas euvesicatoria. In addition, we determined whether TFT proteins interact with the repertoire of X. euvesicatoria type III secretion effector proteins, including AvrXv3, the elicitor of Xv3 resistance. We show that multiple TFT contribute to Xv3 resistance. We also show that one or more TFT proteins physically interact with multiple effectors (AvrXv3, XopE1, XopE2, XopN, XopO, XopQ, and XopAU). Genetic analyses indicate that none of the identified effectors interfere with AvrXv3-elicited resistance into Xv3 tomato leaves; however, XopE1, XopE2, and XopO are required to suppress symptom development in susceptible tomato leaves. Phospho-peptide mapping revealed that XopE2 is phosphorylated at multiple residues in planta and residues T66, T131, and S334 are required for maximal binding to TFT10. Together, our data support the hypothesis that multiple TFT proteins are involved in immune signaling during X. euvesicatoria infection.


14-3-3 Proteins/metabolism , Disease Resistance , Plant Diseases/immunology , Solanum lycopersicum/immunology , Xanthomonas/physiology , 14-3-3 Proteins/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Xanthomonas/genetics
14.
Proc Natl Acad Sci U S A ; 115(21): E4920-E4929, 2018 05 22.
Article En | MEDLINE | ID: mdl-29735713

Systemic acquired resistance (SAR) is a global response in plants induced at the site of infection that leads to long-lasting and broad-spectrum disease resistance at distal, uninfected tissues. Despite the importance of this priming mechanism, the identity and complexity of defense signals that are required to initiate SAR signaling is not well understood. In this paper, we describe a metabolite, N-hydroxy-pipecolic acid (N-OH-Pip) and provide evidence that this mobile molecule plays a role in initiating SAR signal transduction in Arabidopsis thaliana We demonstrate that FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), a key regulator of SAR-associated defense priming, can synthesize N-OH-Pip from pipecolic acid in planta, and exogenously applied N-OH-Pip moves systemically in Arabidopsis and can rescue the SAR-deficiency of fmo1 mutants. We also demonstrate that N-OH-Pip treatment causes systemic changes in the expression of pathogenesis-related genes and metabolic pathways throughout the plant and enhances resistance to a bacterial pathogen. This work provides insight into the chemical nature of a signal for SAR and also suggests that the N-OH-Pip pathway is a promising target for metabolic engineering to enhance disease resistance.


Arabidopsis/immunology , Disease Resistance/immunology , Metabolomics , Pipecolic Acids/metabolism , Plant Diseases/immunology , Plant Leaves/immunology , Pseudomonas syringae/pathogenicity , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/microbiology , Signal Transduction
15.
Sci Rep ; 7: 46568, 2017 04 24.
Article En | MEDLINE | ID: mdl-28436442

Biological substances based on proteins, including vaccines, antibodies, and enzymes, typically degrade at room temperature over time due to denaturation, as proteins unfold with loss of secondary and tertiary structure. Their storage and distribution therefore relies on a "cold chain" of continuous refrigeration; this is costly and not always effective, as any break in the chain leads to rapid loss of effectiveness and potency. Efforts have been made to make vaccines thermally stable using treatments including freeze-drying (lyophilisation), biomineralisation, and encapsulation in sugar glass and organic polymers. Here for the first time we show that proteins can be enclosed in a deposited silica "cage", rendering them stable against denaturing thermal treatment and long-term ambient-temperature storage, and subsequently released into solution with their structure and function intact. This "ensilication" method produces a storable solid protein-loaded material without the need for desiccation or freeze-drying. Ensilication offers the prospect of a solution to the "cold chain" problem for biological materials, in particular for vaccines.


Computer Simulation , Recombinant Fusion Proteins/chemistry , Animals , Freeze Drying , Hot Temperature , Humans , Protein Denaturation , Protein Stability
16.
J Plant Res ; 129(6): 1127-1140, 2016 Nov.
Article En | MEDLINE | ID: mdl-27443795

The Arabidopsis thaliana T-DNA insertion mutant glucose hypersensitive (ghs) 40-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The ghs40-1 mutant displayed severely impaired cotyledon greening and expansion and showed enhanced reduction in hypocotyl elongation of dark-grown seedlings when grown in Glc concentrations higher than 3 %. The Glc-hypersensitivity of ghs40-1 was correlated with the hyposensitive phenotype of 35S::AtGHS40 seedlings. The phenotypes of ghs40-1 were recovered by complementation with 35S::AtGHS40. The AtGHS40 (At5g11240) gene encodes a WD40 protein localized primarily in the nucleus and nucleolus using transient expression of AtGHS40-mRFP in onion cells and of AtGHS40-EGFP and EGFP-AtGHS40 in Arabidopsis protoplasts. The ABA biosynthesis inhibitor fluridone extensively rescued Glc-mediated growth arrest. Quantitative real time-PCR analysis showed that AtGHS40 was involved in the control of Glc-responsive genes. AtGHS40 acts downstream of HXK1 and is activated by ABI4 while ABI4 expression is negatively modulated by AtGHS40 in the Glc signaling network. However, AtGHS40 may not affect ABI1 and SnRK2.6 gene expression. Given that AtGHS40 inhibited ABA degrading and signaling gene expression levels under high Glc conditions, a new circuit of fine-tuning modulation by which ABA and ABA signaling gene expression are modulated in balance, occurred in plants. Thus, AtGHS40 may play a role in ABA-mediated Glc signaling during early seedling development. The biochemical function of AtGHS40 is also discussed.


Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Signal Transduction , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Glucose/metabolism , Seedlings/genetics , Seedlings/growth & development
17.
Planta ; 240(3): 525-37, 2014 Sep.
Article En | MEDLINE | ID: mdl-24944111

This work characterizes an anther/pollen-specific gene that encodes potential intermediate filament (IF)-binding glycoproteins in lily (Lilium longiflorum Thunb. cv. Snow Queen) anthers during the development and pollen germination. LLP13 is a single gene that encodes a polypeptide of 807 amino acids, and a calculated molecular mass of 91 kDa. The protein contains a predicted transmembrane domain at the N-terminus and a conserved domain of unknown function (DUF)593 at the C-terminal half of the polypeptide. Sequence analysis revealed that LLP13 shares significant identity (37-41 %) with two intermediate filament antigen-binding proteins, representing a unique subgroup of DUF593 domain proteins from known rice and Arabidopsis species. The expression of LLP13 gene is anther-specific, and the transcript accumulates only at the stage of pollen maturation. Both premature drying and abscisic acid (ABA) treatment of developing pollen indicated that LLP13 was not induced by desiccation and ABA, but by other developmental cues. Antiserum was raised against the overexpressed LLP13C fragment of the protein in Escherichia coli and affinity-purified antibodies were prepared. Immunoblot analyses revealed that the LLP13 protein was a heterogeneous, anther-specific glycoprotein that accumulated only at the stage of pollen maturation. The protein is not heat-soluble. The level of LLP13 protein remained for 24 h during germination in vitro. Overexpression of LLP13-GFP or GFP-LLP13 in lily pollen tubes caused severe inhibition of tube elongation. The LLP13 protein codistributed with mTalin in growing tubes, suggesting that it apparently decorates actin cytoskeleton and is likely a cytoskeleton-binding protein that binds with IFs that potentially exist in pollen tubes.


Flowers/metabolism , Glycoproteins/genetics , Lilium/physiology , Plant Proteins/genetics , Pollen Tube/growth & development , Amino Acid Sequence , Cytoskeleton/metabolism , Glycoproteins/metabolism , Molecular Sequence Data , Plant Proteins/metabolism
18.
Plant J ; 77(1): 119-35, 2014 Jan.
Article En | MEDLINE | ID: mdl-24176057

The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth.


Abscisic Acid/metabolism , Arabidopsis/enzymology , DEAD-box RNA Helicases/genetics , Plant Growth Regulators/metabolism , RNA, Ribosomal/metabolism , Seeds/enzymology , Amino Acid Motifs , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DEAD-box RNA Helicases/metabolism , Gene Expression , Gene Expression Regulation, Plant , Germination , Glucose/metabolism , Models, Biological , Mutagenesis, Insertional , Phenotype , Plants, Genetically Modified , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Ribosomal/genetics , Ribosomes/genetics , Ribosomes/metabolism , Seedlings/enzymology , Seedlings/genetics , Seedlings/growth & development , Seeds/genetics , Seeds/growth & development , Signal Transduction
19.
PLoS One ; 8(2): e56704, 2013.
Article En | MEDLINE | ID: mdl-23437217

Infection with influenza virus is a major public health problem, causing serious illness and death each year. Emergence of drug-resistant influenza virus strains limits the effectiveness of drug treatment. Importantly, a dual H275Y/I223R mutation detected in the pandemic influenza A 2009 virus strain results in multidrug resistance to current neuraminidase (NA) drugs. Therefore, discovery of new agents for treating multiple drug-resistant (MDR) influenza virus infections is important. Here, we propose a parallel screening strategy that simultaneously screens wild-type (WT) and MDR NAs, and identifies inhibitors matching the subsite characteristics of both NA-binding sites. These may maintain their potency when drug-resistant mutations arise. Initially, we analyzed the subsite of the dual H275Y/I223R NA mutant. Analysis of the site-moiety maps of NA protein structures show that the mutant subsite has a relatively small volume and is highly polar compared with the WT subsite. Moreover, the mutant subsite has a high preference for forming hydrogen-bonding interactions with polar moieties. These changes may drive multidrug resistance. Using this strategy, we identified a new inhibitor, Remazol Brilliant Blue R (RB19, an anthraquinone dye), which inhibited WT NA and MDR NA with IC(50) values of 3.4 and 4.5 µM, respectively. RB19 comprises a rigid core scaffold and a flexible chain with a large polar moiety. The former interacts with highly conserved residues, decreasing the probability of resistance. The latter forms van der Waals contacts with the WT subsite and yields hydrogen bonds with the mutant subsite by switching the orientation of its flexible side chain. Both scaffolds of RB19 are good starting points for lead optimization. The results reveal a parallel screening strategy for identifying resistance mechanisms and discovering anti-resistance neuraminidase inhibitors. We believe that this strategy may be applied to other diseases with high mutation rates, such as cancer and human immunodeficiency virus type 1.


Drug Resistance, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/drug therapy , Influenza, Human/genetics , Neuraminidase/antagonists & inhibitors , Anthraquinones/administration & dosage , Anthraquinones/chemistry , Antiviral Agents , Drug Resistance, Multiple/genetics , Genotype , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/virology , Mutation , Neuraminidase/genetics , Neuraminidase/metabolism , Pandemics
20.
Biomaterials ; 32(30): 7347-54, 2011 Oct.
Article En | MEDLINE | ID: mdl-21783248

The three-dimensional (3D) biochips prepared in this study are composed of a glass microscopy slide arrayed with amino aerogel dots. The amino aerogel was produced using the sol-gel process, with an ionic liquid as the template followed by a solvent extraction to remove the template and build a three-dimensional mesoporous structure. The FTIR spectrum verified that the major template was removed and the (29)Si solid-state NMR spectra recognized the cross-linkages in the SiO(2) network structure. SEM images measured the particles at around 100 nm. After grinding, the BET analysis confirmed that the nano-size amino aerogel powders had exhibited specific surface area of 188 m(2)/g, pore volume of 0.83 cm(3)/g, and average pore size of 16.2 nm. The as-prepared amino aerogel surface contained amino functional groups capable of performing a sandwich immunoassay. The primary antibody was immobilized on the internal surface of the arrayed amino aerogel to capture its affinity antigen. On the top of the captured antigen, the report antibody was read its labeling fluorescent dye. In comparison to the corresponding two-dimensional (2D) biochip, the 3D amino aerogel biochips were observed to amplify signal intensities more effectively due to their remarkable capturing capability.


Amines/chemistry , Antibodies, Immobilized/chemistry , Gels/chemistry , Immunoassay/instrumentation , Interleukin-6/analysis , Antibodies, Immobilized/immunology , Equipment Design , Humans , Interleukin-6/immunology , Limit of Detection , Porosity , Silicon Dioxide/chemistry
...