Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Biomed Pharmacother ; 177: 116872, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908202

RESUMEN

Insulin stimulates osteoblast proliferation and differentiation as an anabolic agent in bone. Insulin Receptor Tyrosine Kinase Substrate (IRTKS) is involved in insulin signaling as an adapter for insulin receptors (IR). Here, we showed that IRTKS levels were significantly decreased in bone marrow mesenchymal stem cells (BMSCs) derived from the bone marrow of patients with osteoporosis. Based on relevant experiments, we observed that IRTKS promoted the proliferation, migration, and osteoblast differentiation of BMSCs and MC3T3-E1 cells. In addition, we identified a Phosphatase and Tensin homolog deleted on chromosome 10 (PTEN) as a potential active substrate of IRTKS. We demonstrated a direct interaction between IRTKS and PTEN using co-immunoprecipitation. Subsequently, we confirmed that the SH3 domain of IRTKS directly binds to the C-terminal tail of PTEN. Further experimental results demonstrated that PTEN attenuated the promoting effects of IRTKS on the proliferation, migration, and osteoblast differentiation of BMSCs and MC3T3-E1 cells. In conclusion, this study suggests that IRTKS contributes to osteogenic differentiation by inhibiting PTEN phosphorylation and provides a potential therapeutic target for osteoporosis patients.

2.
Horm Metab Res ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307091

RESUMEN

Perimenopausal period causes a significant amount of bone loss, which results in primary osteoporosis (OP). The Periostin (Postn) may play important roles in the pathogenesis of OP after ovariectomized (OVX) rats. To identify the roles of Postn in the bone marrow mesenchymal stem cell derived osteoblasts (BMSC-OB) in OVX rats, we investigated the expression of Wnt/ß-catenin signaling pathways in BMSC-OB and the effects of Postn on bone formation by development of BMSC-OB cultures. Twenty-four female Sprague-Dawley rats at 6 months were randomized into 3 groups: sham-operated (SHAM) group, OVX group and OVX+Postn group. The rats were killed after 3 months, and their bilateral femora and tibiae were collected for BMSC-OB culture, Micro-CT Analysis, Bone Histomorphometric Measurement, Transmission Electron Microscopy and Immunohistochemistry Staining. The dose/time-dependent effects of Postn on the proliferation, differentiation and mineralization of BMSC-OB and the expression of osteoblastic markers were measured in in vitro experiments. We found increased Postn increased bone mass, promoted bone formation of trabeculae, Wnt signaling and the osteogenic activity in osteoblasts in sublesional femur. Postn have the function to enhance cell proliferation, differentiation and mineralization at a proper concentration and incubation time. Interestingly, in BMSC-OB from OVX rats treated with the different dose of Postn, the osteoblastic markers expression and Wnt/ß-catenin signaling pathways were significantly promoted. The direct effect of Postn may lead to inhibit excessive bone resorption and increase bone formation through the Wnt/ß-catenin signaling pathways after OVX. Postn may play a very important role in the pathogenesis of OP after OVX.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38401088

RESUMEN

Background: Lumbar spondylolysis (LS) poses a potential threat, and there is a need to evaluate and compare the effectiveness of direct pars repair techniques. Objective: To assess and compare the clinical and radiographic outcomes of direct pars repair techniques using the pedicle screw hook system (PSHS) and the pedicle screw rod system (PSRS) in young symptomatic patients with lumbar spondylolysis. Methods: A retrospective study was conducted to compare clinical and radiological data in young symptomatic LS patients after surgery. Records of 45 post-surgery LS patients with a minimum 24-month follow-up (January 2014 to June 2019) were reviewed. A total of 26 patients underwent PSHS, and 19 had PSRS. Treatment outcomes were analyzed using the visual analog pain scale (VAS), Oswestry disability index (ODI), MacNab criteria, lumbar fusion status, and Pfirrmann grading standards. Patient baseline characteristics were also compared between the two groups. Results: No disc degeneration was observed in either PSHS or PSRS groups at 24 months postoperatively, according to the Pfirrmann grading scale. The PSRS group outperformed the PSHS group in operative time, intraoperative blood loss, postoperative drainage, length of hospital stays, ODI, VAS values at 3 months postoperatively, and fusion status at 6 months postoperatively. No notable differences were observed in other parameters during the 24-month follow-up period, and no significant surgical complications were recorded. Conclusions: Direct pars repair techniques using PSHS and PSRS yielded satisfactory clinical and radiographic results in young patients with symptomatic LS. PSRS, compared to PSHS, demonstrated greater effectiveness in young individuals with LS and promoted early recovery.

4.
Biol Trace Elem Res ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177717

RESUMEN

Glucocorticoid-induced osteonecrosis of the femoral head (SONFH) is the most prevalent form of secondary osteonecrosis affecting the femoral head. Glucocorticoids can cause damage to both vascular endothelial cells and osteoblasts. Previous studies have demonstrated that silicon can improve the resistance of vascular endothelial cells to oxidative stress and positively impact bone health. However, the impact of silicon on SONFH has yet to be investigated. We examined the influence of ortho-silicic acid (OSA, Si(OH)4) on the apoptosis and proliferation of vascular endothelial cells after glucocorticoid induction. Additionally, we evaluated the expression of apoptosis-related genes such as cleaved-caspase-3, Bcl-2 and Bax. The impact of glucocorticoids and OSA on the function of vascular endothelial cells was evaluated through wound healing, transwell and angiogenesis assays. Osteogenic function was subsequently evaluated through alizarin red staining, alkaline phosphatase staining and expression levels of osteogenic genes like RUNX2 and ALP. Moreover, we investigated the potential role of OSA in vivo using the SONFH animal model. At concentrations below 100 µM, OSA exhibits no toxicity on vascular endothelial cells and effectively reverses glucocorticoid-induced apoptosis in these cells. OSA increases the resilience of vascular endothelial cells against oxidative stress and enhances osteoblast differentiation. Our study revealed that glucocorticoids activate endoplasmic reticulum stress, a process that mediates the apoptosis of vascular endothelial cells. OSA ameliorated the endoplasmic reticulum stress associated with glucocorticoids through the increased expression of p-Akt levels. In vivo, OSA treatment effectively improved SONFH by enhancing vascular endothelial cell function and promoting osteogenic differentiation. OSA counteracted the adverse effects of glucocorticoids both in vitro and in vivo, demonstrating a beneficial therapeutic effect on SONFH.

5.
Aging (Albany NY) ; 15(18): 9499-9520, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37751585

RESUMEN

BACKGROUND: An imbalance between osteogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMMSCs) can cause osteoporosis. Macrophage-derived exosomes (MD-Exos) and microRNAs (miRNAs) enriched in exosomes participate in the differentiation of BMMSCs. METHODS: Bioinformatics methods were used to analyze differentially expressed miRNAs. We cocultured M2 macrophages and BMMSCs to examine the biological function of exosomal microRNA-486-5p (miR-486-5p) on BMMSCs differentiation. Gain-of-function experiments related to osteogenesis were designed to investigate the effects of exosomes carrying miR-486-5p on an ovariectomized (OVX) mice model and the direct impact of miR-486-5p on BMMSCs. A dual luciferase experiment was performed to demonstrate the target gene of miR-486-5p. RESULTS: Bioinformatics analysis identified high expression of miRNA-486 in M2 macrophage-derived exosomes (M2D-Exos). The in vitro results demonstrated that M2 macrophage-derived exosomal miR-486-5p enhanced osteogenic capacity but inhibited the adipogenesis of BMMSCs. The direct effect of miR-486-5p on BMMSCs showed the same effects. Animal experiments revealed that exosomal miR-486-5p rescued bone loss of OVX mice. SMAD2 was characterized as a target gene of miR-486-5p. Pathway analysis showed that M2 macrophage-derived exosomal miR-486-5p stimulated osteogenic differentiation via the TGF-ß/SMAD2 signalling pathway. CONCLUSIONS: Taken together, M2 macrophage-derived exosomal miR-486-5p influences the differentiation potential of BMMSCs through the miR-486-5p/SMAD2/TGF-ß signalling pathway and osteoporosis.

6.
Clin Transl Med ; 13(9): e1369, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37649137

RESUMEN

BACKGROUND: The imbalance between osteoblasts and osteoclasts may lead to osteoporosis. Osteoblasts and osteoclasts have different energy requirements, with aerobic glycolysis being the prominent metabolic feature of osteoblasts, while osteoclast differentiation and fusion are driven by oxidative phosphorylation. METHODS: By polymerase chain reaction as well as Western blotting, we assayed coactivator-associated arginine methyltransferase 1 (CARM1) expression in bone tissue, the mouse precranial osteoblast cell line MC3T3-E1 and the mouse monocyte macrophage leukaemia cell line RAW264.7, and expression of related genes during osteogenic differentiation and osteoclast differentiation. Using gene overexpression (lentivirus) and loss-of-function approach (CRISPR/Cas9-mediated knockout) in vitro, we examined whether CARM1 regulates osteogenic differentiation and osteoblast differentiation by metabolic regulation. Transcriptomic assays and metabolomic assays were used to find the mechanism of action of CARM1. Furthermore, in vitro methylation assays were applied to clarify the arginine methylation site of PPP1CA by CARM1. RESULTS: We discovered that CARM1 reprogrammed glucose metabolism in osteoblasts and osteoclasts from oxidative phosphorylation to aerobic glycolysis, thereby promoting osteogenic differentiation and inhibiting osteoclastic differentiation. In vivo experiments revealed that CARM1 significantly decreased bone loss in osteoporosis model mice. Mechanistically, CARM1 methylated R23 of PPP1CA, affected the dephosphorylation of AKT-T450 and AMPK-T172, and increased the activities of phosphofructokinase-1 and pructose-2,6-biphosphatase3, causing an up-regulation of glycolytic flux. At the same time, as a transcriptional coactivator, CARM1 regulated the expression of pyruvate dehydrogenase kinase 3, which resulted in the inhibition of pyruvate dehydrogenase activity and inhibition of the tricarboxylic acid cycle, leading to a subsequent decrease in the flux of oxidative phosphorylation. CONCLUSIONS: These findings reveal for the first time the mechanism by which CARM1 affects both osteogenesis and osteoclast differentiation through metabolic regulation, which may represent a new feasible treatment strategy for osteoporosis.


Asunto(s)
Arginina , Osteogénesis , Animales , Ratones , Osteogénesis/genética , Metilación , Diferenciación Celular/genética , Arginina/genética , Glucosa
7.
Stem Cells Transl Med ; 12(5): 307-321, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37010483

RESUMEN

N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the progression of osteoporosis (OP), providing novel insights into the pathogenesis of OP. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been studied in OP. Here we explored the biological role and underlying mechanism of WTAP in OP and the differentiation of bone marrow mesenchymal stem cells (BMMSCs). We demonstrated that WTAP was expressed at low levels in bone specimens from patients with OP and OVX mice. Functionally, WTAP promoted osteogenic differentiation and inhibited adipogenic differentiation of BMMSCs in vitro and in vivo. In addition, microRNA-29b-3p (miR-29b-3p) was identified as a downstream target of WTAP. M6A modifications regulated by WTAP led to increased miR-29b-3p expression. WTAP interacted with the microprocessor protein DGCR8 and accelerated the maturation of pri-miR-29b-3p in an m6A-dependent manner. Target prediction and dual-luciferase reporter assays identified the direct binding sites of miR-29b-3p with histone deacetylase 4 (HDAC4). WTAP-mediated m6A modification promoted osteogenic differentiation and inhibited adipogenic differentiation of BMMSCs through the miR-29b-3p/HDAC4 axis. Furthermore, WTAP-mediated m6A methylation negatively regulates osteoclast differentiation. Collectively, our study first identified a critical role of WTAP-mediated m6A methylation in BMMSC differentiation and highlighted WTAP as a potential therapeutic target for OP treatment.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Animales , Ratones , Células de la Médula Ósea , Diferenciación Celular/genética , Histona Desacetilasas/genética , Metilación , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética , Proteínas de Unión al ARN/metabolismo , Humanos
8.
Curr Pharm Des ; 29(9): 713-722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998133

RESUMEN

INTRODUCTION: Diabetic osteoporosis (DOP) has gradually gained public attention. The clinical manifestations of DOP include bone mass loss, bone microstructural damage, and increased bone fragility.


Asunto(s)
Células Madre Mesenquimatosas , Osteoporosis , Ratas , Animales , Osteogénesis , Diferenciación Celular , Estrés Oxidativo , Osteoporosis/tratamiento farmacológico , Células Cultivadas , Glucosa/farmacología
9.
Sci Rep ; 13(1): 2333, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759677

RESUMEN

The prevention and treatment of postmenopausal osteoporosis (PMOP) is a significant public health issue, and non-coding RNAs are of vital importance in this process. In this study, we find that the long non-coding RNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (lncRNA KCNQ1OT1) can alleviate the ovariectomy-induced (OVX) PMOP in vivo. We determined that over-expression of KCNQ1OT1 could enhance functions of MC3T3-E1 cells, whereas an opposite trend was observed when KCNQ1OT1 was knocked down. Subsequently, miR-421-3p targeting KCNQ1OT1 was detected through a database search, and RNA fluorescent in situ hybridization, RNA immunoprecipitation, dual luciferase reporter assays all verified this relationship. Notably, KCNQ1OT1 stifled the miR-421-3p expression. The inhibition of proliferation, migration, and osteogenic differentiation caused by KCNQ1OT1 knock-down were reversed by an miR-421-3p inhibitor, further confirming the above findings. We verified that miR-421-3p specifically targeted the mammalian target of rapamycin (mTOR), and miR-421-3p inhibitor could reverse the negative effects of small interfering RNA of mTOR (si-mTOR) on MC3T3-E1 cells. Finally, osteoblasts isolated and cultured from OVX mice model and control mice also confirmed the observed trend. In combination, results mentioned above reveal that KCNQ1OT1 regulates MC3T3-E1 cell functions by regulating the miR-421-3p/mTOR axis.


Asunto(s)
MicroARNs , Osteoporosis Posmenopáusica , ARN Largo no Codificante , Humanos , Femenino , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Osteoporosis Posmenopáusica/genética , Osteogénesis/genética , Hibridación Fluorescente in Situ , Serina-Treonina Quinasas TOR/genética , Mamíferos/metabolismo
10.
Cell Death Dis ; 14(1): 33, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650131

RESUMEN

An imbalance in the differentiation potential of bone marrow mesenchymal stem cells (BMSCs) is an important pathogenic mechanism underlying osteoporosis (OP). N6-methyladenosine (m6A) is the most common post-transcriptional modification in eukaryotic cells. The role of the Wilms' tumor 1-associated protein (WTAP), a member of the m6A functional protein family, in regulating BMSCs differentiation remains unknown. We used patient-derived and mouse model-derived samples, qRT-PCR, western blot assays, ALP activity assay, ALP, and Alizarin Red staining to determine the changes in mRNA and protein levels of genes and proteins associated with BMSCs differentiation. Histological analysis and micro-CT were used to evaluate developmental changes in the bone. The results determined that WTAP promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. We used co-immunoprecipitation (co-IP), RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation (MeRIP), RNA pulldown, and dual-luciferase assay to explore the direct mechanism. Mechanistically, the expression of WTAP increased during osteogenic differentiation and significantly promoted pri-miR-181a and pri-miR-181c methylation, which was recognized by YTHDC1, and increased the maturation to miR-181a and miR-181c. MiR-181a and miR-181c inhibited the mRNA expression of SFRP1, promoting the osteogenic differentiation of BMSCs. Our results demonstrated that the WTAP/YTHDC1/miR-181a and miR-181c/SFRP1 axis regulated the differentiation fate of BMSCs, suggesting that it might be a potential therapeutic target for osteoporosis.


Asunto(s)
Proteínas de Ciclo Celular , Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , Factores de Empalme de ARN , Animales , Ratones , Células de la Médula Ósea/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Osteogénesis/genética , Osteoporosis/patología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , Humanos
11.
Biol Trace Elem Res ; 201(2): 843-855, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35314965

RESUMEN

Glucocorticoid-induced osteoporosis (GIOP) has been the most common form of secondary osteoporosis. Glucocorticoids (GCs) can induce osteocyte and osteoblast apoptosis. Plenty of research has verified that silicon intake would positively affect bone. However, the effects of silicon on GIOP are not investigated. In this study, we assessed the impact of ortho-silicic acid (OSA) on Dex-induced apoptosis of osteocytes by cell apoptosis assays. The apoptosis-related genes, cleaved-caspase-3, Bcl-2, and Bax, were detected by western blotting. Then, we evaluated the possible role of OSA on osteogenesis and osteoclastogenesis with Dex using Alizarin red staining and tartrate-resistant acid phosphatase (TRAP) staining. We also detected the related genes by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting. We then established the GIOP mouse model to evaluate the potential role of OSA in vivo. We found that OSA showed no cytotoxic on osteocytes below 50 µM and prevented MLO-Y4 from Dex-induced apoptosis. We also found that OSA promoted osteogenesis and inhibited osteoclastogenesis with Dex. OSA had a protective effect on GIOP mice via the Akt signal pathway in vivo. In the end, we verified the Akt/Bad signal pathway in vitro, which showed the same results. Our finding demonstrated that OSA could protect osteocytes from apoptosis induced by GCs both in vitro and in vivo. Also, it promoted osteogenesis and inhibited osteoclastogenesis with the exitance of Dex. In conclusion, OSA has the potential value as a therapeutic agent for GIOP.


Asunto(s)
Osteoporosis , Animales , Ratones , Dexametasona/farmacología , Glucocorticoides/efectos adversos , Osteoblastos , Osteogénesis , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Ácido Silícico/farmacología , Silicio/farmacología
12.
Global Spine J ; 13(5): 1229-1237, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34569334

RESUMEN

STUDY DESIGN: A prospective, randomized, double-blind, placebo-controlled study. OBJECTIVES: There are few studies examining the balance between preventing venous thrombus embolism (VTE) and reducing blood loss in posterior/transforaminal lumbar interbody fusion (PLIF/TLIF) surgeries. This study aimed to evaluate the efficacy and safety of the combine application of TXA and rivaroxaban in patients undergoing PLIF/TLIF and explore relevant factors related to blood loss and VTE. METHODS: Patients in group A which was the control group received 0.9% NaCl solution intravenously. Group B was treated by an intravenous injection of 2 g tranexamic acid (TXA) and the local use of 1 g intraoperatively. Group C was treated the same as group B intraoperatively, and they received 10 mg rivaroxaban qd treatment postoperatively. Eligible patients with an Autar score ≤ 10 were randomly assigned to group A or group B. Patients with an Autar score >10 were allocated into group C. RESULTS: The intraoperative blood loss and postoperative drainage were lower in groups B and C than in group A (P < .001). The blood transfusion rate in group B was lower than that in group A (P < .001), while the incidence of VTE in group C was lower (P < .001). Four factors were found to be positively correlated with obvious total blood loss (P < .05). The data showed that 5 factors were correlated with the development of a thrombus (P < .1). CONCLUSIONS: The combination of TXA and rivaroxaban in PLIF/TLIF patients is safe and effective in reducing D-dimer levels associated with VTE and reducing blood loss.

13.
J Orthop Surg Res ; 17(1): 473, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309697

RESUMEN

OBJECTIVE: The association between the single-nucleotide polymorphisms (SNPs) rs28742109, rs12955018, rs987850, rs8093805, rs12965084 and rs145497186 related to gene named NADH dehydrogenase [ubiquinone] flavoprotein 2 (NDUFV2) and lumbar disc degeneration (LDD) was preliminary investigated in a small sample size. METHODS: A total of 46 patients with LDD and 45 controls were recruited at Qilu Hospital of Shandong University, and each participant provided 5 mL peripheral venous blood. NA was extracted from the blood of each participant for further genotyping. The frequency of different genotypes in the case group and control group was determined, and analysis of the risk of LDD associated with different SNP genotypes was performed. The visual analogue scale (VAS) scores of the patients' degree of chronic low back pain were calculated, and the relationship between VAS scores and SNPs was analysed. RESULTS: After excluding the influence of sex, age, height, and weight on LDD, a significant association between SNP rs145497186 related to NDUFV2 and LDD persisted (P = 0.006). Simultaneously, rs145497186 was found to be associated with chronic low back pain in LDD populations. CONCLUSION: NDUFV2 rs145497186 SNP could be associated with susceptibility to LDD and the degree of chronic low back pain.


Asunto(s)
Degeneración del Disco Intervertebral , Dolor de la Región Lumbar , Humanos , Degeneración del Disco Intervertebral/genética , Polimorfismo de Nucleótido Simple/genética , Estudios de Casos y Controles , Dolor de la Región Lumbar/genética , Vértebras Lumbares , Predisposición Genética a la Enfermedad/genética , NADH Deshidrogenasa/genética
14.
Front Oncol ; 12: 884559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651811

RESUMEN

Background: Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. microRNAs have been found to play a vital role in tumor angiogenesis. Here, we investigated the effects of miR-199a-5p on tumor growth and angiogenesis in osteosarcoma. Furthermore, the underlying molecular mechanisms and signaling pathways were explored. Methods: The datasets were extracted from the Gene Expression Omnibus and the differentially expressed miRNAs (DEmiRNAs) were screened out by the GEO2R online platform. The potential target genes were predicted using the miRTarBase database. The predicted target genes were further analyzed by Gene Ontology and pathway enrichment analysis and a regulatory network of DEmiRNAs and their target genes was constructed. In addition, the effects of osteosarcoma cell derived exosomal miR-199a-5p on the proliferation, migration and neovascularization of HUVECs were evaluated by conducting EdU assays, Transwell experiments and tube formation assays. A dual-luciferase reporter assay was performed to detect whether VEGFA was the direct target of miR-199a-5p. Furthermore, in vivo xenograft models were established to further investigate the intrinsic role of miR-199a-5p in osteosarcoma tumorigenesis and angiogenesis. Results: A total of 149 DE-miRNAs were screened out, including 136 upregulated miRNAs and 13 downregulated miRNAs in human osteosarcoma plasma samples compared with normal plasma samples. A total of 1313 target genes of the top three upregulated and downregulated miRNAs were predicted. In the PPI network, the top 10 hub nodes with higher degrees were identified as hub genes, such as TP53 and VEGFA. By constructing the miRNA-hub gene network, we found that most of hub genes could be potentially modulated by miR-663a, miR-199a-5p and miR-223-3p. In addition, we found that the expression level of miR-199a-5p in exosomes derived from osteosarcoma cells was remarkably higher than the osteosarcoma cells, and the exosomes derived from osteosarcoma cells were transported to HUVECs. Overexpression of miR-199a-5p could significantly inhibited HUVEC proliferation, migration and neovascularization, whereas downregulation of miR-199a-5p expression exerted the opposite effect. Moreover, the in vivo results verified that overexpression of miR-199a-5p in osteosarcoma cells could suppress the growth and angiogenesis of tumors. Conclusion: Our results demonstrated that miR-199a-5p could be transported from osteosarcoma cells to HUVECs through exosomes, subsequently targeting VEGFA and inhibiting the growth and angiogenesis of osteosarcoma. Therefore, miR-199a-5p may act as a biomarker in the diagnosis and treatment of osteosarcoma.

15.
Aging (Albany NY) ; 14(10): 4486-4499, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35587369

RESUMEN

Noncoding RNAs play an important role in regulating osteoclast differentiation. We investigated whether and how potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1), a long noncoding RNA, regulates osteoclast differentiation. We found that the expression of KCNQ1OT1 was downregulated in osteoporotic bone tissue. Then transfection of KCNQ1OT1 overexpression vectors or small interfering RNAs showed that the proliferation, migration, and osteoclast differentiation of RAW 264.7 cells were inhibited by KCNQ1OT1 upregulation, while they were promoted by KCNQ1OT1 knockdown. Interestingly, we found and confirmed that miR-128-3p was a target of KCNQ1OT1 using online databases, dual luciferase reporter assays and quantitative real-time polymerase chain reaction, and that it inhibited the expression of miR-128-3p. Moreover, we confirmed that miR-128-3p directly targeted nuclear factor of activated T cell 5 (NFAT5), a protein that combines with osteoprotegerin and thus regulates osteoclastogenesis with the presence of the receptor activator of nuclear factor κB ligand. Furthermore, we demonstrated that both the knockdown of KCNQ1OT1 and the overexpression of miR-128-3p attenuate the expression of NFAT5, while upregulating the osteoclastogenesis markers c-Fos, NFATc1, and Ctsk. The results from overexpression of KCNQ1OT1 and the inhibition of miR-128-3p were contrary to the above. Finally, we found that the inhibition of osteoclast differentiation by KCNQ1OT1 overexpression could be rescued using a miR-128-3p mimic, while the enhancement of migration and osteoclast differentiation by si-NFAT5 could be reversed with a miR-128-3p inhibitor. These results suggested that KCNQ1OT1 regulates the osteoclast differentiation via the miR-128-3p/NFAT5 axis.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Proliferación Celular , MicroARNs/genética , MicroARNs/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba
16.
J Pain Res ; 14: 2001-2012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234546

RESUMEN

OBJECTIVE: To examine the association between single nucleotide polymorphisms (SNPs) rs2228570, rs731236, rs7975232, and rs1544410 and lumbar disc degeneration (LDD) predisposition. METHODS: A search strategy was carried out, and the data were extracted after being chosen by the inclusion and exclusion criteria. Pooled odds ratios and 95% confidence intervals were calculated to assess the association between the aforementioned SNPs and LDD under allelic, dominant, recessive, heterozygous, and homozygous genetic models. In addition, a case-control study involving 46 LDD cases and 45 controls was also performed in the analysis to verify the result. RESULTS: A total of 17 studies were included in this meta-analysis. The pooled results did not show any association between vitamin D receptor (VDR) gene polymorphisms and LDD. But, interestingly, in subgroup analysis, the rs2228570 polymorphism was associated with LDD under the allelic (OR = 0.70, 95% CI = 0.56-0.87, p = 0.002), recessive (OR = 0.60, 95% CI = 0.43-0.84, p = 0.003), and homozygous (OR = 0.47, 95% CI= 0.28-0.79, p = 0.004) genetic models in the Asian population. SNPs rs731236 and rs7975232 still did not show any obvious association. We obtained a similar result from the case-control study: rs2228570 had an obvious relationship with LDD under allelic and homozygous genetic models. At the same time, we found that rs2228570 was also associated with the degree of low back pain (visual analogue scale, VAS score) in LDD population. CONCLUSION: SNP rs2228570 was significantly associated with LDD predisposition and the degree of low back pain in the Asian population.

17.
Acta Orthop Traumatol Turc ; 55(3): 253-257, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34100367

RESUMEN

OBJECTIVE: This study aimed to investigate the possible relationship between Scheuermann disease (SD) and the pathophysiological factors of thoracic spinal stenosis (TSS), including ossification of the ligamentum flavum (OLF), ossification of the posterior longitudinal ligament (OPLL), and thoracic disc herniation (TDH) in patients with symptomatic TSS. METHODS: Demographic and radiological data from 66 consecutive patients diagnosed with symptomatic TSS from 2013 to 2018 were retrospectively collected and divided into 3 groups depending on the underlying pathomechanism of TSS: TDH group (18 patients; 6 women; mean age ± standard deviation [Sd] = 59.89 ± 11.34), OPLL group (12 patients; 8 women; mean age ± Sd = 56.08 ± 14.74), and OLF group (36 patients; 20 women; mean age ± Sd = 58.69 ± 9.77). A total of 41 age-matched healthy individuals (19 women; mean age ± Sd = 54.88 ± 13.63) were designated as the control group. In each group, both typical and atypical SD criteria were radiologically examined. The demographic data and presence of SD between the control group and 3 subgroups of TSS pathomechanisms were evaluated. RESULTS: SD characteristics were identified in 83.33% (15/18) of patients in the TDH group, 44.44% (16/36) in the OLF group, 25% (3/12) in the OPLL group, and 17.07% (7/41) of the control individuals. When analyzed by the chi-squared test and logistic regression analysis, the presence of SD was significantly associated with TDH (P < 0.01) and OLF (P < 0.05) but not OPLL (P > 0.05). Patients with TDH and OLF showed peak involvement of T10/11, and patients with OPLL did not. Furthermore, we determined that age, sex, body-mass index, and smoking status were not the risk factors for TDH, OPLL, and OLF (P > 0.05). SD was found to be a risk factor for TDH (P < 0.01) and OLF (P < 0.05) but not for OPLL (P > 0.05). CONCLUSION: Evidence from this study indicated that SD might be a risk factor for OLF and TDH but not for OPLL.


Asunto(s)
Enfermedad de Scheuermann , Estenosis Espinal , Vértebras Torácicas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osificación del Ligamento Longitudinal Posterior/diagnóstico , Osificación del Ligamento Longitudinal Posterior/etiología , Radiografía/métodos , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Enfermedad de Scheuermann/complicaciones , Enfermedad de Scheuermann/fisiopatología , Estenosis Espinal/diagnóstico , Estenosis Espinal/etiología , Estenosis Espinal/fisiopatología , Vértebras Torácicas/diagnóstico por imagen , Vértebras Torácicas/patología
19.
Orthop Surg ; 13(3): 1111-1118, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33818004

RESUMEN

OBJECTIVE: To study the curative effect of bionic tiger-bone powder on osteoporosis in ovariectomized rats and investigate its mechanism. METHODS: Overall, a 120 female Wistar rats were randomly divided into Sham (sham-operated group), ovariectomy (OVX, ovariectomized group), TB (bionic tiger-bone powder treatment group after ovariectomy) and TB + VD groups (bionic tiger-bone powder + vitamin D treatment group after ovariectomy). The osteoporotic rat model was established 3 months after ovariectomy, and rats were intragastrically administrated with the corresponding drugs. Serum and bone tissue samples were collected from 10 rats in each group at weeks 4, 12 and 24 after intragastric administration. The bone microstructure of L6 vertebrae was analyzed by MicroCT, the biomechanical strength of left femurs was measured by the three-point bending test, and serum bone metabolism markers (P1NP and CTX) were detected by ELISA. Changes in bone collagen were analyzed by Masson's trichrome staining and hydroxyproline detection, and members of the BMP2/SMAD/RUNX2 and OPG/RANKL/RANK signal pathways were detected by immunoblotting. RESULTS: Compared with the OVX group, the serum level of P1NP in the TB and TB + VD groups was higher (P < 0.05), while the CTX level was lower (P < 0.05). Bone collagen fiber structures in the TB and TB + VD groups were repaired, and the collagen content was significantly higher than that in the OVX group (P < 0.05). In the TB group, BMP-2, P-SMAD1/5, RUNX2 and OPG levels were increased in bone tissue (P < 0.01), RANKL levels were decreased (P < 0.01), and the bone microstructure and biomechanical strength were improved. CONCLUSION: Bionic tiger-bone powder promotes osteogenesis by activating the BMP2/SMAD/RUNX2 signaling pathway, suppresses osteoclasts by downregulating the OPG/RANK/RANKL signaling pathway, increases bone collagen content, and improves bone microstructure and bone biomechanical strength.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Sustitutos de Huesos/farmacología , Medicina Tradicional China/métodos , Osteoporosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Fémur/efectos de los fármacos , Vértebras Lumbares/efectos de los fármacos , Ovariectomía , Polvos , Ratas , Ratas Wistar , Vitamina D/farmacología
20.
Oncol Lett ; 21(5): 391, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33777214

RESUMEN

Osteosarcoma is the most common malignant bone tumor in adolescents and young adults, and identifying biomarkers for prognosis and therapy is necessary. Bone morphogenetic protein receptor 2 (BMPR2) is involved in various cellular functions, including cell adhesion, proliferation and invasion, inflammation, apoptosis and metastatic spread. However, the correlation between BMPR2 expression levels and prognosis and tumor-infiltrating immune cells in osteosarcoma is not well understood. In the present study, the expression level of BMPR2 was investigated using the Oncomine and R2 databases. The association between the expression level of BMPR2 and the clinical prognosis of patients with cancer was analyzed using the R2 database. The relationship between the expression level of BMPR2 and immune cell infiltration in the stroma of osteosarcoma was assessed using the Tumor Immune Estimation Resource (TIMER) and CIBERSORT. The correlations between BMPR2 expression level and infiltrated immune cell gene marker sets in osteosarcoma were validated in the TIMER and R2 databases. Analysis of a cohort of patients with osteosarcoma revealed that BMPR2 expression was significantly higher in osteosarcoma compared with in normal tissue and was correlated with poor prognosis. M0 macrophages, M2 macrophages, resting mast, γ δ T and CD8+ T cells were the top five immune cells with the highest degrees of infiltration in osteosarcoma. In addition, BMPR2 expression level showed a significant negative correlation with the gene markers of CD8+ T cells, monocytes and M2 macrophages. Low levels of infiltrating CD8+ T cells, monocytes or M2 macrophages in osteosarcoma was significantly associated with poor survival. These data suggested that CD8+ T cells, monocytes and M2 macrophages play significant roles in the establishment of the immune microenvironment of osteosarcoma. High BMPR2 expression was associated with poor prognosis and low infiltration of CD8+ T cells, monocytes and M2 macrophages in osteosarcoma. Hence, BMPR2 can be considered a biomarker of the immune infiltration, metastasis and prognosis of osteosarcoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...