Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Environ Health Perspect ; 132(5): 57009, 2024 May.
Article En | MEDLINE | ID: mdl-38775486

BACKGROUND: More frequent and intense exposure to extreme heat conditions poses a serious threat to public health. However, evidence on the association between heat and specific diagnoses of morbidity is still limited. We aimed to comprehensively assess the short-term association between cause-specific hospital admissions and high temperature, including the added effect of temperature variability and heat waves and the effect modification by humidity and air pollution. METHODS: We used data on cause-specific hospital admissions, weather (i.e., temperature and relative humidity), and air pollution [i.e., fine particulate matter with aerodynamic diameter ≤2.5µm (PM2.5), fine particulate matter with aerodynamic diameter ≤10µm (PM10), NO2, and ozone (O3)] for 48 provinces in mainland Spain and the Balearic Islands between 1 January 2006 and 31 December 2019. The statistical analysis was performed for the summer season (June-September) and consisted of two steps. We first applied quasi-Poisson generalized linear regression models in combination with distributed lag nonlinear models (DLNM) to estimate province-specific temperature-morbidity associations, which were then pooled through multilevel univariate/multivariate random-effect meta-analysis. RESULTS: High temperature had a generalized impact on cause-specific hospitalizations, while the added effect of temperature variability [i.e., diurnal temperature range (DTR)] and heat waves was limited to a reduced number of diagnoses. The strongest impact of heat was observed for metabolic disorders and obesity [relative risk (RR) = 1.978; 95% empirical confidence interval (eCI): 1.772, 2.208], followed by renal failure (1.777; 95% eCI: 1.629, 1.939), urinary tract infection (1.746; 95% eCI: 1.578, 1.933), sepsis (1.543; 95% eCI: 1.387, 1.718), urolithiasis (1.490; 95% eCI: 1.338, 1.658), and poisoning by drugs and nonmedicinal substances (1.470; 95% eCI: 1.298, 1.665). We also found differences by sex (depending on the diagnosis of hospitalization) and age (very young children and the elderly were more at risk). Humidity played a role in the association of heat with hospitalizations from acute bronchitis and bronchiolitis and diseases of the muscular system and connective tissue, which were higher in dry days. Moreover, heat-related effects were exacerbated on high pollution days for metabolic disorders and obesity (PM2.5) and diabetes (PM10, O3). DISCUSSION: Short-term exposure to heat was found to be associated with new diagnoses (e.g., metabolic diseases and obesity, blood diseases, acute bronchitis and bronchiolitis, muscular and connective tissue diseases, poisoning by drugs and nonmedicinal substances, complications of surgical and medical care, and symptoms, signs, and ill-defined conditions) and previously identified diagnoses of hospital admissions. The characterization of the vulnerability to heat can help improve clinical and public health practices to reduce the health risks posed by a warming planet. https://doi.org/10.1289/EHP13254.


Hospitalization , Hot Temperature , Spain/epidemiology , Humans , Hospitalization/statistics & numerical data , Cross-Sectional Studies , Hot Temperature/adverse effects , Air Pollution/statistics & numerical data , Air Pollution/adverse effects , Environmental Exposure/statistics & numerical data , Air Pollutants/analysis , Female , Male
2.
Nat Commun ; 15(1): 2094, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480711

Air pollution remains as a substantial health problem, particularly regarding the combined health risks arising from simultaneous exposure to multiple air pollutants. However, understanding these combined exposure events over long periods has been hindered by sparse and temporally inconsistent monitoring data. Here we analyze daily ambient PM2.5, PM10, NO2 and O3 concentrations at a 0.1-degree resolution during 2003-2019 across 1426 contiguous regions in 35 European countries, representing 543 million people. We find that PM10 levels decline by 2.72% annually, followed by NO2 (2.45%) and PM2.5 (1.72%). In contrast, O3 increase by 0.58% in southern Europe, leading to a surge in unclean air days. Despite air quality advances, 86.3% of Europeans experience at least one compound event day per year, especially for PM2.5-NO2 and PM2.5-O3. We highlight the improvements in air quality control but emphasize the need for targeted measures addressing specific pollutants and their compound events, particularly amidst rising temperatures.


Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Nitrogen Dioxide/analysis , Air Pollution/analysis , Europe , Particulate Matter/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis
3.
Sci Total Environ ; 918: 170593, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38307268

Aerosol Optical Depth (AOD) data derived from satellites is crucial for estimating spatially-resolved PM concentrations, but existing AOD data over land remain affected by several limitations (e.g., data gaps, coarser resolution, higher uncertainty or lack of size fraction data), which weakens the AOD-PM relationship. We developed a 0.1° resolution daily AOD data set over Europe over the period 2003-2020, based on two-stage Quantile Machine Learning (QML) frameworks. Our approach first fills gaps in satellite AOD data and then constructs three components' models to obtain reliable full-coverage AOD along with Fine-mode AOD (fAOD) and Coarse-mode AOD (cAOD). These models are based on AERONET (AErosol RObotic NETwork) observations, Gap-filled satellite AOD, climate and atmospheric composition reanalyses. Our QML AOD products exhibit better quality with an out-of-sample R2 equal to 0.68 for AOD, 0.66 for fAOD and 0.65 for cAOD, which is 23-92 %, 11-13 % and 115-132 % higher than the corresponding satellite or reanalysis products, respectively. Over 91.6 %, 81.6 %, and 88.9 % of QML AOD, fAOD and cAOD predictions fall within ±20 % Expected Error (EE) envelopes, respectively. Previous studies reported that a weak satellite AOD-PM correlation across Europe (Pearson correlation coefficient (PCC) around 0.1). Our QML products exhibit higher correlations with ground-level PMs, particularly when broadly matched by size: AOD with PM10, fAOD with PM2.5, cAOD with PM coarse (R = 0.41, 0.45 and 0.26, respectively). Different AOD fractions more effectively distinct PM size fractions, than total AOD. Our QML aerosol dataset and models pioneer full-coverage, daily high-resolution monitoring of fine-mode and coarse-mode aerosols, effectively addressing existing AOD challenges for further PMs exposures' estimations. This dataset opens avenues for more in-depth exploration of the impacts of aerosols on human health, climate, visibility, and biogeochemical processes, offering valuable insights for air quality management and environmental health risk assessment.

4.
Lancet Reg Health Eur ; 36: 100779, 2024 Jan.
Article En | MEDLINE | ID: mdl-38188278

Background: Daily time-series regression models are commonly used to estimate the lagged nonlinear relation between temperature and mortality. A major impediment to this type of analysis is the restricted access to daily health records. The use of weekly and monthly data represents a possible solution unexplored to date. Methods: We temporally aggregated daily temperatures and mortality records from 147 contiguous regions in 16 European countries, representing their entire population of over 400 million people. We estimated temperature-lag-mortality relationships by using standard time-series quasi-Poisson regression models applied to daily data, and compared the results with those obtained with different degrees of temporal aggregation. Findings: We observed progressively larger differences in the epidemiological estimates with the degree of temporal data aggregation. The daily data model estimated an annual cold and heat-related mortality of 290,104 (213,745-359,636) and 39,434 (30,782-47,084) deaths, respectively, and the weekly model underestimated these numbers by 8.56% and 21.56%. Importantly, differences were systematically smaller during extreme cold and heat periods, such as the summer of 2003, with an underestimation of only 4.62% in the weekly data model. We applied this framework to infer that the heat-related mortality burden during the year 2022 in Europe may have exceeded the 70,000 deaths. Interpretation: The present work represents a first reference study validating the use of weekly time series as an approximation to the short-term effects of cold and heat on human mortality. This approach can be adopted to complement access-restricted data networks, and facilitate data access for research, translation and policy-making. Funding: The study was supported by the ERC Consolidator Grant EARLY-ADAPT (https://www.early-adapt.eu/), and the ERC Proof-of-Concept Grants HHS-EWS and FORECAST-AIR.

5.
Environ Sci Pollut Res Int ; 30(32): 78802-78810, 2023 Jul.
Article En | MEDLINE | ID: mdl-37273056

Some studies have investigated the effects of PM2.5 on cardiovascular diseases based on the population-average exposure data from several monitoring stations. No one has explored the short-term effect of PM2.5 on cardiovascular hospitalizations using individual-level exposure data. We assessed the short-term effects of individual exposure to PM2.5 on hospitalizations for myocardial infarction (MI) and stroke in Guangzhou, China, during 2014-2019. The population-based data on cardio-cerebrovascular events were provided by Guangzhou Center for Disease Control and Prevention. Average annual percent changes (AAPCs) were used to describe trends in the hospitalization rates of MI and stroke. The conditional logistic regression model with a time-stratified case-crossover design was applied to estimate the effects of satellite-retrieved PM2.5 with 1-km resolution as individual-level exposure. Furthermore, we performed stratified analyses by demographic characteristics and season. There were 28,346 cases of MI, 188,611, and 36,850 cases of ischemic stroke (IS) and hemorrhagic stroke (HS), respectively, with an annual average hospitalization rate of 37.2, 247, and 48.4 per 100,000 people. Over the six-year study period, significant increasing trends in the hospitalization rates were observed with AAPCs of 12.3% (95% confidence interval [CI]: 7.24%, 17.6%), 13.1% (95% CI: 9.54%, 16.7%), and 9.57% (95% CI: 6.27%, 13.0%) for MI, IS, and HS, respectively. A 10 µg/m3 increase in PM2.5 was associated with an increase of 1.15% (95% CI: 0.308%, 1.99%) in MI hospitalization and 1.29% (95% CI: 0.882%, 1.70%) in IS hospitalization. A PM2.5-associated reduction of 1.17% (95% CI: 0.298%, 2.03%) was found for HS hospitalization. The impact of PM2.5 was greater in males than in females for MI hospitalization, and greater effects were observed in the elderly (≥ 65 years) and in cold seasons for IS hospitalization. Our study added important evidence on the adverse effect of PM2.5 based on satellite-retrieved individual-level exposure data.


Air Pollutants , Air Pollution , Myocardial Infarction , Stroke , Male , Female , Humans , Aged , Cross-Over Studies , Particulate Matter/analysis , Air Pollution/analysis , Hospitalization , Myocardial Infarction/epidemiology , Myocardial Infarction/chemically induced , China/epidemiology , Stroke/epidemiology , Hospitals , Environmental Exposure/analysis , Air Pollutants/analysis
6.
Environ Sci Pollut Res Int ; 29(8): 11699-11706, 2022 Feb.
Article En | MEDLINE | ID: mdl-34545525

Few studies have evaluated the short-term association between hospital admissions and individual exposure to ambient particulate matter (PM2.5). Particularly, no studies focused on hospital admissions for chronic obstructive pulmonary disease (COPD) at the individual level. We assessed the short-term effects of PM2.5 on hospitalization admissions for COPD in Guangzhou, China, during 2014-2015, based on satellite-derived estimates of ambient PM2.5 concentrations at a 1-km resolution near the residential address as individual-level exposure for each patient. Around 40,002 patients with COPD admitted to 110 hospitals were included in this study. A time-stratified case-crossover design with conditional logistic regression models was applied to assess the effects of PM2.5 based on a 1-km grid data of aerosol optical depth provided by the National Aeronautics and Space Administration on hospital admissions for COPD. Further, we performed stratified analyses by individual demographic characteristics and season of hospital admission. Around 10 µg/m3 increase in individual-level PM2.5 was associated with an increase of 1.6% (95% confidence interval [CI]: 0.6%, 2.7%) in hospitalization for COPD at a lag of 0-5 days. The impact of PM2.5 on hospitalization for COPD was greater significantly in males and patients admitted in summer. Our study strengthened the evidence for the adverse effect of PM2.5 based on satellite-based individual-level exposure data.


Air Pollutants , Air Pollution , Pulmonary Disease, Chronic Obstructive , Air Pollutants/analysis , Air Pollution/analysis , China/epidemiology , Cross-Over Studies , Environmental Exposure/analysis , Hospitalization , Hospitals , Humans , Male , Particulate Matter/analysis , Pulmonary Disease, Chronic Obstructive/epidemiology
7.
Environ Pollut ; 254(Pt A): 113023, 2019 Nov.
Article En | MEDLINE | ID: mdl-31404733

OBJECTIVE: Ambient particulate pollution, especially PM2.5, has adverse impacts on health and welfare. To manage and control PM2.5 pollution, it is of great importance to determine the factors that affect PM2.5 levels. Previous studies commonly focused on a single or several cities. This study aims to analyze the impacts of meteorological and socio-economic factors on daily concentrations of PM2.5 in 109 Chinese cities from January 1, 2015 to December 31, 2015. METHODS: To evaluate potential risk factors associated with the spatial and temporal variations in PM2.5 levels, we developed a Bayesian spatio-temporal model in which the potential temporal autocorrelation and spatial autocorrelation of PM2.5 levels were taken into account to ensure the independence of the error term of the model and hence the robustness of the estimated parameters. RESULTS: Daily concentrations of PM2.5 peaked in winter and troughed in summer. The annual average concentration reached its highest value (79 µg/m3) in the Beijing-Tianjin-Hebei area. The city-level PM2.5 was positively associated with the proportion of the secondary industry, the total consumption of liquefied petroleum gas and the total emissions of industrial sulfur dioxide (SO2), but negatively associated with the proportion of the primary industry. A reverse U-shaped relationship between population density and PM2.5 was found. The city-level and daily-level of weather conditions within a city were both associated with PM2.5. CONCLUSION: PM2.5 levels had significant spatio-temporal variations which were associated with socioeconomic and meteorological factors. Particularly, economic structure was a determinant factor of PM2.5 pollution rather than per capita GDP. This finding will be helpful for the intervention planning of particulate pollution control when considering the environmental and social-economic factors as part of the strategies.


Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Particulate Matter/analysis , Bayes Theorem , Beijing , Cities , Coal , Dust/analysis , Humans , Meteorological Concepts , Population Density , Seasons , Socioeconomic Factors , Spatial Analysis , Weather
8.
Sci Total Environ ; 690: 556-564, 2019 Nov 10.
Article En | MEDLINE | ID: mdl-31301496

It is unclear how to develop a model based on the combined satellite data and ground monitoring data to accurately estimate daily NO2 levels. Furthermore, the conventional cross-validation (CV) results represent average levels but the model performance may vary greatly from grid to grid. It is an essential issue to evaluate model's prediction ability in different grids and determine the factors affecting model extrapolating ability, which have never been well examined to date. The aim of this study was to compare the ability of three different methods to estimate the daily NO2 across mainland China during 2014-2016; and to develop a novel two-stage meta-analysis method for exploring the influence of the number and the distribution of nearby sites on grid-level prediction accuracy. For better estimating the daily NO2 level, we developed and compared three methods, including universal kriging model, satellite-based method (Non-linear exposure-lag-response model & Extreme gradient boosting combined technique) and the kriging-calibrated satellite method. For exploring influencing factors, the two-stage meta-analysis method was purposed. The kriging-calibrated satellite method had an overall CV R-square and root mean square error (RMSE) of 0.85 and 7.87µg/m3, better than the Universal Kriging model and the satellite-based method (CV R2 = 0.57 and 0.81). The two-stage meta-analysis method revealed that the model performance did decrease with the sparser distribution of nearby sites. And adding 5 sites within 50 km in the random mode can bring 17.51% improvement in model extrapolating ability. The kriging-calibration can help satellite-based machine learning to provide more accurate NO2 prediction. Our novel evaluation method can provide the suggestion of adding new sites effectively within a limit budget.

9.
Sci Total Environ ; 665: 338-346, 2019 May 15.
Article En | MEDLINE | ID: mdl-30772564

BACKGROUND: Drought is a major natural disaster that causes severe social and economic losses. The prediction of regional droughts may provide important information for drought preparedness and farm irrigation. The existing drought prediction models are mainly based on a single weather station. Efforts need to be taken to develop a new multistation-based prediction model. OBJECTIVES: This study optimizes the predictor selection process and develops a new model to predict droughts using past drought index, meteorological measures and climate signals from 32 stations during 1961 to 2016 in Shaanxi province, China. METHODS: We applied and compared two methods, including a cross-correlation function and a distributed lag nonlinear model (DLNM), in selecting the optimal predictors and specifying their lag time. Then, we built a DLNM, an artificial neural network model and an XGBoost model and compared their validations for predicting the Standardized Precipitation Evapotranspiration Index (SPEI) 1-6 months in advance. RESULTS: The DLNM was better than the cross-correlation function in predictor selection and lag effect determination. The XGBoost model more accurately predicted SPEI with a lead time of 1-6 months than the DLNM and the artificial neural network, with cross-validation R2 values of 0.68-0.82, 0.72-0.89, 0.81-0.92, and 0.84-0.95 at 3-, 6-, 9- and 12-month time scales, respectively. Moreover, the XGBoost model had the highest prediction accuracy for overall droughts (89%-97%) and for three specific drought categories (i.e., moderate, severe, and extreme) (76%-94%). CONCLUSION: This study offers a new modeling strategy for drought predictions based on multistation data. The incorporation of nonlinear and lag effects of predictors into the XGBoost method can significantly improve prediction accuracy of SPEI and drought.

...